Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.701
Filtrar
1.
Chemosphere ; 362: 142732, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950746

RESUMO

Industrial wastewater containing heavy metal Cr(VI) seriously affects the health of organisms and may even lead to cancer. Developing efficient adsorbents that can quickly separate heavy metals is crucial for treating wastewater. In this study, magnetic multiwalled carbon nanotubes (MMWCNTs) with moderate particle size and abundant surface active sites were prepared by coating multiwalled carbon nanotubes with magnetic nanoparticles. The results of FTIR, XRD, TG, VSM, BET, and EDS showed MWCNTs completely encapsulated on the surface of the magnetic nanoparticles, with a particle size of approximately 30 nm. Oxygenated groups provided abundant surface active sites and formed numerous mesopores. The response surface methodology was used to optimize the adsorbent dose, adsorption contact time and adsorption temperature, and the removal rate of Cr(VI) was more than 95%. The quasi-second order kinetics and Freundlich adsorption isotherm model explained the adsorption process to Cr(VI). MMWCNTs interacted with Cr(VI) through electrostatic attraction, reduction reactions, complexation, and other means. The extensive hydrogen bonding of the green solvent deep eutectic solvent (DES) was employed to desorb the MMWCNTs and desorption rate exceed 90%. Even after five adsorption-regeneration cycles, the adsorbent maintained a high capacity. In conclusion, these novel MMWCNTs, as efficient adsorbents paired with DES desorption, hold broad potential for application in the treatment of Cr(VI)-contaminated wastewater.

2.
ChemSusChem ; : e202400911, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957114

RESUMO

Catalytic C-H functionalization has provided new opportunities to access novel organic molecules more sustainably and efficiently. However, these procedures typically rely on precious metals or complex organic catalysts as well as on hazardous solvents or reaction conditions. Herein, a pioneering methodology for direct C-C bond formation enabled by Ligand-to-Metal Charge Transfer (LMCT) and mediated by UV irradiation has been developed using Deep Eutectic Solvents (DESs) as sustainable reaction media. This direct C-H bond functionalization via a radical addition to electrophiles was successfully confirmed over a broad scope of substrates. More importantly, this is the first example of photocatalytic C-C bond formation in DESs. An inexpensive and abundant iron catalyst (FeCl3) was used under air and mild conditions. Different functional groups were well tolerated obtaining promising results that were comparable to those reported in the literature. Additionally, the reaction medium along with the catalyst could be reused for up to 5 consecutive cycles without a significant loss in the reaction outcome. Several green metrics were calculated and compared to those of conventional procedures, revealing the advantages of using DESs.

3.
Electrophoresis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962870

RESUMO

The present study investigates the utilization of a supramolecular deep eutectic solvent (SUPRADES), consisting of sulfated-ß-cyclodextrin (S-ß-CD) and citric acid (CA), as a chiral selector (CS) in capillary electrophoresis for the enantiomeric separation of nefopam (NEF) and five cathinone derivatives (3-methylmethcathinone [3-MMC], 4-methylmethcathinone [4-MMC], 3,4-dimethylmethcathinone [3,4-DMMC], 4-methylethcathinone [4-MEC], and 3,4-methylendioxycathinone [MDMC]). A significant improvement in enantiomeric separation of the target analytes was observed upon the addition of S-ß-CD-CA to the background electrolyte (BGE), leading to a baseline separation of all analytes. In particular, the optimum percentage of S-ß-CD-CA, added to the BGE, was determined to be 0.075% v/v for NEF (Rs = 1.5) and 0.050% v/v for three out of five cathinone derivatives (Rs = 1.5, 1.6, and 2.4 for 3-MMC, 4-MEC, and 3,4-DMMC, respectively). In the case of 4-MMC and MDMC, a higher percentage of the CS, equal to 0.075% and 0.10% v/v, respectively, was required to achieve baseline separation (Rs = 1.5, 1.9 for MDMC and 4-MMC, respectively). The outcomes of the present study highlight the potential effectiveness of using SUPRADES as a CS in electrophoretic enantioseparations.

4.
Biosens Bioelectron ; 262: 116529, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38950518

RESUMO

In the food industry, sulfides are commonly used as preservatives and flavor regulators. However, long-term excessive intake of sulfides can lead to serious health problems. Therefore, developing efficient sulfide detection methods is particularly important. Here, we have effectively synthesized a novel bifunctional copper hydroxide nitrate (Cu2(OH)3NO3) nanozyme with outstanding peroxidase-like and laccase-like behaviors in basic deep eutectic solvents (DES). Because the various types of sulfides have diverse regulatory effects on the two catalytic behaviors of Cu2(OH)3NO3, a two channel nanozyme sensor array based on the peroxidase-like and laccase-like behaviors of Cu2(OH)3NO3 was constructed and successfully used for the identification of six kinds of sulfides (Na2S, Na2S2O3, Na2SO3, Na2SO4, NaHSO3, and Na2S2O8). Remarkably, the sensor array has achieved successful discrimination among six sulfides present in wine, egg, and milk samples. Finally, the sensor array has successfully distinguished and differentiated three actual samples (wine, egg, and milk). This study is of great significance in promoting the efficient construction of array units and improving the effective identification of sulfides in complex food samples.

5.
Adv Colloid Interface Sci ; 331: 103242, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38964196

RESUMO

Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.

6.
Int J Pharm ; : 124418, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964488

RESUMO

There is increasing pharmaceutical interest in deep eutectic solvents not only as a green alternative to organic solvents in drug manufacturing, but also as liquid formulation for drug delivery. The present work introduces a hydrophobic deep eutectic solvent (HDES) to the field of lipid-based formulations (LBF). Phase behavior of a mixture with 2:1 M ratio of decanoic- to dodecanoic acid was studied experimentally and described by thermodynamic modelling. Venetoclax was selected as a hydrophobic model drug and studied by atomistic molecular dynamics simulations of the mixtures. As a result, valuable molecular insights were gained into the interaction networks between the different components. Moreover, experimentally the HDES showed greatly enhanced drug solubilization compared to conventional glyceride-based vehicles, but aqueous dispersion behavior was limited. Hence surfactants were studied for their ability to improve aqueous dispersion and addition of Tween 80 resulted in lowest droplet sizes and high in vitro drug release. In conclusion, the combination of HDES with surfactant(s) provides a novel LBF with high pharmaceutical potential. However, the components must be finely balanced to keep the integrity of the solubilizing HDES, while enabling sufficient dispersion and drug release.

7.
Int J Pharm ; : 124417, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964489

RESUMO

Benznidazole (BNZ) serves as the primary drug for treating Chagas Disease and is listed in the WHO Model List of Essential Medicines for Children. Herein, a new child-friendly oral BNZ delivery platform is developed in the form of supramolecular eutectogels (EGs). EGs address BNZ's poor oral bioavailability and provide a flexible twice-daily dose in stick-pack format. This green and sustainable formulation strategy relies on the gelation of drug-loaded Natural Deep Eutectic Solvents (NaDES) with xanthan gum (XG) and water. Specifically, choline chloride-based NaDES form stable and biocompatible 5 mg/mL BNZ-loaded EGs. Rheological and Low-field NMR investigations indicate that EGs are viscoelastic materials comprised of two co-existing regions in the XG network generated by different crosslink distributions between the biopolymer, NaDES and water. Remarkably, the shear modulus and relaxation spectrum of EGs remain unaffected by temperature variations. Upon dilution with simulated gastrointestinal fluids, EGs results in BNZ supersaturation, serving as the primary driving force for its absorption. Interestingly, after oral administration of EGs to rats, drug bioavailability increases by 2.6-fold, with a similar increase detected in their cerebrospinal fluid. The noteworthy correlation between in vivo results and in vitro release profiles confirms the efficacy of EGs in enhancing both peripheral and central BNZ oral bioavailability.

8.
Chemistry ; : e202304364, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965045

RESUMO

The application of biocatalysis has become essential in both academic and industrial domains for the asymmetric synthesis of chiral amines, and it serves as an alternative tool to transition-metal catalysis and complements traditional chemical methods. It relies on the swift expansion of available processes, primarily as a result of advanced tools for enzyme discovery, combined with high-throughput laboratory evolution techniques for optimising biocatalysts. This manuscript highlights recent chemical and technological developments contributing to the sustainable applications of biocatalysis with industrial interest. Specifically, the use of non-conventional reaction media and the combination with photocatalysis can enhance production of chiral amines by allowing higher working concentrations and cascade transformations, leading to high yields and enantiomeric excesses. Furthermore, a selection of both known and modern strategies for enzyme immobilisation, along with the use of fed-batch and flow synthesis, demonstrates the potential to translate laboratory synthesis to effective scaled-up applications and improve the processing of large reaction volumes.

9.
Int J Biol Macromol ; : 133629, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964682

RESUMO

In this study, we investigated the use of deep eutectic solvents (DESs) at different molar ratios and temperatures as a green and efficient approach for microfibers (MFs) extraction. Our approach entailed the utilization of Firmiana simplex bark (FSB) fibers, enabling the production of different dimensions of FSB microfibers (FSBMFs) by combining DES pretreatment and mechanical disintegration technique. The proposed practice demonstrates the simplicity and effectiveness of the method. The morphology of the prepared microfibers was studied using the Scanning electron microscopic (SEM) technique. Additionally, the results revealed that the chemical and mechanical treatments did not significantly alter the well-preserved cellulose structure of microfibers, and a crystallinity index of 56.6 % for FSB fibers and 63.8 % for FSBMFs was observed by X-ray diffraction (XRD) analysis. Furthermore, using the freeze-drying technique, FSBMFs in water solutions produced effective aerogels for air purification application. In comparison to commercial mask (CM), FSBMF aerogels' superior hierarchical cellular architectures allowed them to attain excellent filtration efficiencies of 94.48 % (PM10) and 91.51 % (PM2.5) as well as excellent degradation properties were analyzed. The findings show that FSBMFs can be extracted from Firmiana simplex bark, a natural cellulose-rich material, using DES for environmentally friendly aerogel preparation and applications.

10.
Heliyon ; 10(12): e32550, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38948051

RESUMO

Redox biocatalysis plays an increasingly important role in modern organic synthesis. The recent integration of novel media such as deep eutectic solvents (DESs) has significantly impacted this field of chemical biology. Alcohol dehydrogenases (ADHs) are important biocatalysts where their unique specificity is used for enantioselective synthesis. This review explores aspects of redox biocatalysis in the presence of DES both with whole cells and with isolated ADHs. In both cases, the presence of DES has a significant influence on the outcome of reactions albeit via different mechanisms. For whole cells, DES was shown to be a useful tool to direct product formation or configuration - a process of solvent engineering. Whole cells can tolerate DES as media components for the solubilization of hydrophobic substrates. In some cases, DES in the growth medium altered the enantioselectivity of whole cell transformations by solvent control. For isolated enzymes, on the other hand, the presence of DES promotes substrate solubility as well as enhancing enzyme stability and activity. DES can be employed as a smart solvent or smart cosubstrate particularly for cofactor regeneration purposes. From the literatures examined, it is suggested that DES based on choline chloride (ChCl) such as ChCl:Glycerol (Gly), ChCl:Glucose (Glu), and ChCl:1,4-butanediol (1,4-BD) are useful starting points for ADH-based redox biocatalysis. However, each specific reaction will require optimisation due to the influence of several factors on biocatalysis in DES. These include solvent composition, enzyme source, temperature, pH and ionic strength as well as the substrates and products under investigation.

11.
Chemosphere ; : 142716, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945223

RESUMO

Due to its adverse health and environmental impacts, groundwater contamination by toxic organic compounds such as chlorinated solvents is a global concern. The slow-release permanganate gel (SRP-G) is a mixture of potassium permanganate (KMnO4) and colloidal silica solution. The SRP-G is designed to radially spread after injection via wells, gelate in situ to form gel barriers containing permanganate (MnO4-), and slowly release MnO4- to treat plumes of chlorinated solvents in groundwater. This study aimed to characterize the effects of temperature on the dynamics of SRP-G in saturated porous media. In gelation batch tests, the viscosity of ambient-temperature (24 oC) SRP-G with 30 g/L-KMnO4 was 21 cP at 70 min, 134 cP at 176 min, and peaked at 946 cP to solidification at 229 min. The viscosity of low-temperature (4 oC) SRP-G with 30 g/L-KMnO4 was 71 cP at 273 min, 402 cP at 392 min, and peaked at 818 cP to solidification at 485 min. A similar pattern, e.g., increased gelation lag time with low-temperature SRP-G, was observed for SRP-Gs with 40 g/L, 50 g/L, and 60 g/L KMnO4. In flow-through tests using a glass column filled with saturated sands, injection rates, spreading rates, and release durations were 0.6 mL/min, 46 mm/min, and 33 hr for KMnO4(aq), 0.2 mL/min, 2 mm/min, and 38 hr for ambient-temperature SRP-G, and 0.4 mL/min, 16 mm/min, and 115 hr for low-temperature SRP-G, respectively. These results indicated that the injectability, injection rate, and gelation lag time of SRP-G and the size, release rate, and release duration of MnO4- gel barriers can be increased at low temperatures. The low-temperature SRP-G scheme can be useful for treating large or dilute dissolved plumes of chlorinated solvents or other pollutants in groundwater.

12.
Chemistry ; : e202402090, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945826

RESUMO

Wittig reaction between substituted phosphonium salts and (hetero)aromatic and alkyl carbonyl compounds in Deep Eutectic Solvents has been developed under a scalable and friendly protocol. Highly efficient reactions were successfully run with a wide range of bases including organic (DBU, LiTMP, t-BuOK) and inorganic (NaOH, Na2CO3, K2CO3) ones in ChCl/Gly 1:2 (mol/mol) as solvent under mild conditions, at room temperature and under air. The proposed protocol was applied to a wide range of substrates, including (hetero)aromatic aldehydes with substituents as halogens (I, Br, Cl), EDG (alkoxy, methyl), EWG (NO2, CF3) or reactive groups as CN, esters, and ketones. Vinylic, alkynyl and cycloalkyl, alicyclic and α,ß-unsaturated aldehydes can also be used. Highly electrophilic ketones gave good yields. The diastereoselectivity of the reaction is in complete agreement with the E/Z ratio observed under traditional conditions. We demonstrated that the reaction is scalable to 2 g (5 mmol) of phosphonium salt, furthermore the proposed workup protocol allows to remove TPPO without need of additional chromatographic purification.

13.
Int J Biol Macromol ; 274(Pt 1): 133308, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908619

RESUMO

Loquat leaves are the by-product of loquat fruit production. Polysaccharides are one of the main active ingredients in loquat leaves. In this study, polysaccharides were extracted from loquat leaves by ultrasonic-assisted deep eutectic solvents (DESs) extraction method. Further, the extracted crude loquat leaf polysaccharides (CLLP) were purified and separated via S-8 resin and DEAE-52 cellulose column chromatography, respectively. Additionally, the effects of polysaccharides on activity of sperm in boar semen preserved in medium at 17 °C, were evaluated preliminarily. DES, composed of choline chloride/ethylene glycol (1:6, molar ratio), was proved to be the suitable solvent for LLP extraction. The optimized extraction conditions were water content 44 %, liquid-solid ratio 1:29 (g/g), extraction temperature 61 °C and extraction time 98 min. Under these conditions, the LLP yield was 57.82 ± 1.50 mg/g. A homogeneous polysaccharide (LLP1-2, Mw: 2.17 × 104 Da) was isolated from CLLP. Its total sugar, uronic acid and protein contents were 76.31 ± 1.25 %, 14.19 ± 0.67 % and 3.28 ± 0.42 %, respectively. Further, 800 µg/mL LLP1-2 could effectively enhance the antioxidant activity of sperm. This study laid a foundation for DESs and column chromatography in the field of polysaccharide extraction and separation, proving that LLP can be used as a natural antioxidant for sperm preservation.

14.
Membranes (Basel) ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921506

RESUMO

The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene-methanol-water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water.

15.
Mar Drugs ; 22(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921592

RESUMO

The growing demand for phycobiliproteins from microalgae generates a significant volume of by-products, such as extraction cakes. These cakes are enriched with products of interest for the cosmetics market, namely free fatty acids, particularly polyunsaturated (PUFA). In this work, two cakes, one of spirulina and one of Porphyridium cruentum, were valorized using innovative natural hydrophobic deep eutectic solvents (NaDES) based on alkanediols. The most promising NaDES, as determined by physicochemical properties and screening, are mixtures of alkanediols and fatty acids. These include the mixtures of 1,3-propanediol and octanoic acid (1:5, mol/mol) and 1,3-propanediol and octanoic and decanoic acid (1:3:1, mol/mol). Two extractive processes were implemented: ultrasound-assisted extraction and an innovative mechanical process involving dual asymmetric centrifugation. The second process resulted in the production of extracts significantly enriched in PUFA, ranging from 65 to 220 mg/g dry matter with the two cakes. The extracts and NaDES demonstrated good safety with respect to epidermal keratinocyte viability (>80% at 200 µg/mL). The study of their impact on commensal and pathogenic cutaneous bacteria demonstrated significant effects on the viability of Staphylococcus aureus and Staphylococcus epidermidis (>50% decrease at 200 µg/mL) while preserving Corynebacterium xerosis and Cutibacterium acnes. These results highlight the potential of valorizing these co-products using alkanediol-based NaDES, in a strategy combining an active vector (NaDES) and a growth regulator extract, for the management of cutaneous dysbiosis involving staphylococci.


Assuntos
Ácidos Graxos não Esterificados , Spirulina , Spirulina/química , Humanos , Solventes Eutéticos Profundos/química , Microalgas/química , Queratinócitos/efeitos dos fármacos , Cosméticos/química , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/química , Organismos Aquáticos
16.
Int J Biol Macromol ; 273(Pt 2): 133007, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857729

RESUMO

Heteroatom-doped porous carbon-based materials with high surface area compared to their metal-based homologs are considered environmentally friendly and ideal catalysts for organic reactions. In this paper, a new method for the convenient fabrication, cost-effective, and high efficiency of nitrogen/selenium co-doped porous carbon-based catalysis (marked as N/SePC-T) was designed. The N/SePC-T catalysts were created from the direct pyrolysis of a eutectic solvent containing choline chloride/urea as the nitrogen-rich carbon source, selenium dioxide as a source of heteroatom and chitosan as a secondary carbon source in different temperatures (T). The efficacy of the carbonization temperature on the pore structure, morphology, and catalytic activity of the N/SePC-T materials was investigated and displayed, the N/SePC-900 (having a surface area of 562.01 m2/g and total pore volume of 0.2351 cm3 g-1) has the best performance. The morphology, structure, and physicochemical properties of N/SePC-900 were characterized using various analyses including XRD, TEM, TGA, FE-SEM, EDX, FT-IR, XPS, and Raman. The optimized N/SePC-900 catalyst indicated excellent catalytic performance in the oxidation of benzylalcohols to corresponding aldehydes in very mild conditions.


Assuntos
Álcoois , Carbono , Quitosana , Solventes Eutéticos Profundos , Nitrogênio , Oxirredução , Selênio , Quitosana/química , Catálise , Porosidade , Carbono/química , Nitrogênio/química , Álcoois/química , Selênio/química , Solventes Eutéticos Profundos/química , Química Verde , Solventes/química
17.
Int J Biol Macromol ; 273(Pt 1): 133012, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866296

RESUMO

The process of dissolving cellulose is a pivotal step in transforming it into functional, value-added materials, necessitating a thorough comprehension of the underlying mechanisms to refine its advanced processing. This article reviews cellulose dissolution using various solvent systems, along with an in-depth exploration of the associated dissolution mechanisms. The efficacy of different solvents, including aqueous solvents, organic solvents, ionic liquids, hybrid ionic liquid/cosolvent systems, and deep eutectic solvents, in dissolving cellulose is scrutinized, and their limitations and advantages are highlighted. In addition, this review methodically outlines the mechanisms at play within these various solvent systems and the factors influencing cellulose solubility. Conclusions drawn highlight the integral roles of the degree of polymerization, crystallinity, particle size, the type and sizes of cations and anions, alkyl chain length, ionic liquid/cosolvent ratio, viscosity, solvent acidity, basicity, and hydrophobic interactions in the dissolution process. This comprehensive review aims to provide valuable insights for researchers investigating biopolymer dissolution in a broader context, thereby paving the way for broader applications and innovations of these solvent systems.


Assuntos
Celulose , Líquidos Iônicos , Solubilidade , Solventes , Celulose/química , Solventes/química , Líquidos Iônicos/química , Viscosidade
18.
Int J Biol Macromol ; 273(Pt 2): 133141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878935

RESUMO

Forests are a major source of wealth for Canadians, and cellulose makes up the "skeleton" of wood fibers. Concentrated H2SO4 and NaOH/urea aqueous solutions are two efficient solvents that can rapidly dissolve cellulose. Our preliminary experiment obtained regenerated wood cellulose films with different mechanical properties from these two solvents. Therefore, herein, we aim to investigate the effects of aqueous solvents on the structure and properties of wood cellulose films. Regenerated cellulose (RC) films were produced by dissolving wood cellulose in either 64 wt% H2SO4 solution (RC-H4) or NaOH/urea aqueous solution (RC-N4). RC-H4 showed the higher tensile strength (109.78 ± 2.14 MPa), better folding endurance (20-28 times), and higher torsion angle (42°) than RC-N4 (62.90 ± 2.27 MPa, un-foldable, and 12°). The increased cellulose contents in the H2SO4 solutions from 3 to 5 wt% resulted in an improved tensile strength from 102.61 ± 1.99 to 132.93 ± 5.64 MPa and did not affect the foldability. RC-H4 also exhibited better water vapor barrier property (1.52 ± 0.04 × 10-7 g m-1 h-1 Pa-1), superior transparency (~90 % transmittance at 800 nm), but lower thermal stability compared to RC-N4. This work provides special insights into the regenerated wood cellulose from two aqueous solvents and is expected to facilitate the development of high-performance RC films from abundant forestry resources.


Assuntos
Celulose , Hidróxido de Sódio , Ácidos Sulfúricos , Resistência à Tração , Ureia , Madeira , Celulose/química , Hidróxido de Sódio/química , Ácidos Sulfúricos/química , Madeira/química , Ureia/química , Água/química , Solventes/química , Soluções , Solubilidade
19.
Front Chem ; 12: 1411727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860238

RESUMO

Introduction: The endorsement of circular economy, zero-waste, and sustainable development by the EU and UN has promoted non-thermal technologies in agro-food and health industries. While northern European countries rapidly integrate these technologies, their implementation in Mediterranean food-supply chains remains uncertain. Aims: We evaluated the usefulness of hydrodynamic cavitation (HC) for valorizing orange peel waste in the fresh orange juice supply chain of the Maltese Islands. Method: We assessed: a) the effectiveness of HC in extracting bioactive compounds from orange peels (Citrus sinensis) in water (35°C) and 70% (v/v) ethanol (-10°C) over time, compared to conventional maceration, and b) the potato sprouting-suppression and biosorbent potential of the processed peel for copper, nitrate, and nitrite binding. Results: Prolonged HC-assisted extractions in water (high cavitation numbers), damaged and/or oxidized bioactive compounds, with flavonoids and ascorbic acid being more sensitive, whereas cold ethanolic extractions preserved the compounds involved in radical scavenging. HC-processing adequately modified the peel, enabling its use as a potato suppressant and biosorbent for copper, nitrate, and nitrite. Conclusion: Coupling HC-assisted bioactive compound extractions with using leftover peel for potato-sprouting prevention and as biosorbent for water pollutant removal offers a straightforward approach to promoting circular economic practices and sustainable agriculture in Malta.

20.
J Chromatogr A ; 1730: 465084, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879980

RESUMO

A green and recyclable switchable supramolecular deep eutectic solvent (SS-DES) was designed and prepared for effective extraction of flavonoids from Scutellariae Radix. The novel SS-DES has both excellent extraction performance of DES and the host guest inclusion of cyclodextrin, thereby showing superior extraction efficiency and selectivity. The characteristic of polarity switching can endow the SS-DES with achieving homogeneous extraction and rapid two-phase separation, shorting per-treatment time largely. Parameters affecting the extraction performance were investigated by the response surface methodology. The results indicated that the SS-DES showed better extraction yield of total flavonoids (157.95 mg/g) compared with pure DES (135 mg/g) and traditional organic solvent (60 % ethanol, 104.87 mg/g). Moreover, the switching mechanism of SS-DES was characterized by FT-IR and 1H NMR, and the extraction mechanism was studied by density functional theory and molecular docking analysis. After evaluating the ecological impact of the method, the cytotoxicity of SS-DES was investigated and the result displayed that its toxicity was very low or even negligible with the EC50>2000 mg/L. After being adsorbed by macroporous AB-8 resin, the regenerated SS-DES was recycled 5 times and the extraction efficiency still remained above 90 %, indicating the desirable reusability. Therefore, the proposed method was efficient and sustainable, and revealed favorable application prospect for the extraction of bio-active compounds from plant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...