Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Mol Genet Genomic Med ; 12(6): e2468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864382

RESUMO

BACKGROUND: Polydactyly, particularly of the index finger, remains an intriguing anomaly for which no specific gene or locus has been definitively linked to this phenotype. In this study, we conducted an investigation of a three-generation family displaying index finger polydactyly. METHODS: Exome sequencing was conducted on the patient, with a filtration to identify potential causal variation. Validation of the obtained variant was conducted by Sanger sequencing, encompassing all family members. RESULTS: Exome analysis uncovered a novel heterozygous missense variant (c.1482A>T; p.Gln494His) at the zinc finger DNA-binding domain of the GLI3 protein within the proband and all affected family members. Remarkably, the variant was absent in unaffected individuals within the pedigree, underscoring its association with the polydactyly phenotype. Computational analyses revealed that GLI3 p.Gln494His impacts a residue that is highly conserved across species. CONCLUSION: The GLI3 zinc finger DNA-binding region is an essential part of the Sonic hedgehog signaling pathway, orchestrating crucial aspects of embryonic development through the regulation of target gene expression. This novel finding not only contributes valuable insights into the molecular pathways governing polydactyly during embryonic development but also has the potential to enhance diagnostic and screening capabilities for this condition in clinical settings.


Assuntos
Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Linhagem , Polidactilia , Proteína Gli3 com Dedos de Zinco , Humanos , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Polidactilia/genética , Polidactilia/patologia , Masculino , Feminino , Proteínas do Tecido Nervoso/genética , Dedos de Zinco/genética , Fatores de Transcrição Kruppel-Like/genética , Dedos/anormalidades , Heterozigoto , População do Sudeste Asiático
2.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612913

RESUMO

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Assuntos
Proteínas Hedgehog , Perciformes , Animais , Proteínas Hedgehog/genética , Cloreto de Sódio/farmacologia , Água , Peixe-Zebra/genética , Cloreto de Cálcio , Ecossistema , Cloreto de Sódio na Dieta , Larva/genética , Expressão Gênica
3.
Case Rep Dermatol ; 16(1): 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178864

RESUMO

Introduction: Basosquamous carcinoma is an uncommon subtype of basal cell carcinoma (BCC), characterized by aggressive local growth and metastatic potential, that mainly develops on the nose, perinasal area, and ears, representing 1.2-2.7% of all head-neck keratinocyte carcinomas. Although systemic therapy with hedgehog inhibitors (HHIs) represents the first-line medical treatment in advanced BCC, to date, no standard therapy for advanced basosquamous carcinoma has been established. Herein, we reported a case series of patients affected by locally advanced basosquamous carcinomas, who were treated with HHIs. Case Presentation: Data of 5 patients receiving HHIs for locally advanced basosquamous carcinomas were retrieved (2 women and 3 males, age range: 63-89 years, average age of 77 years). Skin lesions were located on the head-neck area; in particular, 4 tumors involved orbital and periorbital area and 1 tumor developed in the retro-auricular region. A clinical response was obtained in 3 out of 5 patients (2 partial responses and 1 complete response), while disease progression was observed in the remaining 2 patients. Hence, therapy was interrupted, switching to surgery or immunotherapy. Conclusion: Increasing evidence suggests considering HHIs for large skin tumors developing in functionally and cosmetically sensitive areas, in patients with multiple comorbidities, although their use for basosquamous carcinoma require more exploration, large cohort populations, and long follow-up assessment.

4.
Pathol Res Pract ; 253: 155086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176308

RESUMO

Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/ß-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt
5.
Australas J Dermatol ; 65(2): 103-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927116

RESUMO

Locally advanced (laBSCs) and metastatic basosquamous carcinomas (mBSCs) represent a therapeutic challenge. By definition, these forms are not amenable to surgery or radiotherapy, but according to literature reports, sonic hedgehog pathway inhibitors (HHIs), anti-programmed death 1 receptor antibodies (anti-PD-1), and other treatment approaches involving chemotherapy, surgery, and radiotherapy have been used. This work features 5 real-life cases of advanced BSCs, treated at the Dermato-Oncology Unit of Trieste (Maggiore Hospital, University of Trieste). In addition, a review of the current treatment options reported in the literature for laBSC and mBSC is provided, collecting a total of 17 patients. According to these preliminary data, HHIs such as sonidegib and vismodegib could represent a safe and effective first line of treatment, while the anti-PD-1 cemiplimab may be useful as a second-line option. Chemotherapy and combined approaches involving surgery and radiotherapy have been also reported to be suitable in some patients.


Assuntos
Antineoplásicos , Carcinoma Basocelular , Carcinoma Basoescamoso , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/radioterapia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/radioterapia , Proteínas Hedgehog , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Basoescamoso/tratamento farmacológico , Antineoplásicos/uso terapêutico
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166961, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979732

RESUMO

Disruption of intervertebral disc (IVD) homeostasis caused by oxidative stress and nucleus pulposus cell (NPC) senescence is a main cause of intervertebral disc degeneration (IDD). The sonic hedgehog (Shh) pathway plays an important role in IVD development, but its roles in IDD are unknown. This study aimed to investigate the effects of the Shh pathway on the alleviation of IDD and the related mechanisms. In vivo, the effect of the Shh pathway on IVD homeostasis was studied by intraperitoneal injection of recombinant Shh (rShh) and GANT61 based on puncture-induced IDD. GANT61, lentivirus-coated sh-Gli1 and rShh were used to investigate the role and mechanism of the Shh pathway in NPCs based on senescence induced by Braco19 and oxidative stress induced by TBHP. Shh pathway expression decreased, and senescence and oxidative stress increased with age. Intraperitoneal injection of rShh activated the Shh pathway to suppress oxidative stress and NPC senescence and consequently alleviated needle puncture-induced IDD. In vitro, the Shh pathway upregulated glutathione peroxidase 4 (GPX4) expression to suppress oxidative stress and senescence in NPCs. Moreover, GPX4 suppression in NPCs by si-GPX4 significantly reduced the protective effect of the Shh pathway on oxidative stress and senescence in NPCs. Our results demonstrate for the first time that the Shh pathway plays a key role in the alleviation of IDD by suppressing oxidative stress and cell senescence in NP tissues. This study provides a new potential target for the prevention and reversal of IDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Estresse Oxidativo , Transdução de Sinais
7.
J Neurochem ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148633

RESUMO

We have previously demonstrated a rapid secretion of matrix metalloproteinase-2 (MMP-2) in the ischemic brain. Since Scube2 can interact with Sonic hedgehog (Shh) to maintain blood-brain barrier (BBB) integrity via regulating the interaction between brain capillary endothelial cells (ECs) and perivascular astrocytes, and it is also a substrate of MMP-2, we hypothesized that the secreted MMP-2 could degrade Scube2 and contribute to ischemic BBB disruption. Using an in vitro ischemic model of 90-min oxygen-glucose deprivation/3-h reoxygenation (OGD/R) and an in vivo mouse stroke model of 90-min middle cerebral artery occlusion (MCAO) with 3-h reperfusion, we established an important role of MMP-2-mediated Scube2 degradation in early ischemic BBB disruption. Exposure of C8-D1A cells and bEnd.3 cells to OGD/R increased MMP secretion in both cells, and C8-D1A cells appeared to secrete more MMPs than bEnd.3 cells. Co-IP and double-immunostaining revealed that Scube2 co-localized well with MMP-2 in C8-D1A cells and could be pulled down by MMP-2 antibodies. In MCAO mice, Scube2 protein showed a drastic reduction in ischemic brain tissue, which was accompanied by suppressed expression of Shh and its downstream molecules. Of note, specific knockdown of astrocytic Scube2 with AAV-shScube2 augmented MCAO-induced Shh suppression and exacerbated BBB leakage and inflammatory reactions in the ischemic brain. Last, incubation of bEnd.3 cells with conditioned medium derived from OGD-treated C8-D1A cells led to a significant inhibition of the Shh pathway in bEnd.3 cells and degradation of VE-cadherin and ZO-1. Inhibition of MMP-2 with SB-3CT or over-expression of Scube2 with plasmids in C8-D1A cells alleviated the above effect of C8-D1A cells-derived conditioned medium. Taken together, our data indicate that ischemia-induced secretion of MMP-2 may contribute to early BBB disruption in ischemic stroke via interrupting the shared Scube2-Shh pathway between brain capillary ECs and perivascular astrocytes.

8.
Chin J Dent Res ; 26(4): 209-226, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126367

RESUMO

Birth defects have always been one of the most important diseases in medical research as they affect the quality of the birth population. Orofacial clefts (OFCs) are common birth defects that place a huge burden on families and society. Early screening and prevention of OFCs can promote better natal and prenatal care and help to solve the problem of birth defects. OFCs are the result of genetic and environmental interactions; many genes are involved, but the current research has not clarified the specific pathogenesis. The mouse animal model is commonly used for research into OFCs; common methods of constructing OFC mouse models include transgenic, chemical induction, gene knockout, gene knock-in and conditional gene knockout models. Several main signal pathways are involved in the pathogenesis of OFCs, including the Sonic hedgehog (SHH) and transforming growth factor (TGF)-ß pathways. The genes and proteins in each molecular pathway form a complex network to jointly regulate the formation and development of the lip and palate. When one or more genes, proteins or interactions is abnormal, OFCs will form. This paper summarises the mouse models of OFCs formed by different modelling methods, as well as the key pathogenic genes from the SHH and TGF-ß pathways, to help to clarify the pathogenesis of OFCs and develop targets for early screening and prevention.


Assuntos
Fenda Labial , Fissura Palatina , Modelos Animais de Doenças , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Fenda Labial/genética , Fenda Labial/epidemiologia , Fissura Palatina/genética , Fissura Palatina/epidemiologia , Proteínas Hedgehog/genética
9.
BMC Cancer ; 23(1): 1110, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964226

RESUMO

Kidney renal clear cell carcinoma (KIRC) is the most common type of kidney cancer and its pathogenesis is strongly associated with VHL-HIF-VEGF signaling. SHH ligand is the upstream SHH pathway regulator, while GLI1 is its major effector that stimulates as a transcription factor, i.a. expression of VEGFA gene. The aim of present study was to assess the prognostic significance of SHH, GLI1 and VEGFA immunoreactivity in KIRC tissues. The analysis included paired tumor and normal samples from 34 patients with KIRC. The immunoreactivity of SHH, GLI1 and VEGFA proteins was determined by immunohistochemical (IHC) renal tissues staining. The IHC staining results were assessed using the immunoreactive score (IRS) method which takes into account the number of cells showing a positive reaction and the intensity of the reaction. Increased GLI1 protein immunoreactivity was observed in KIRC tissues, especially in early-stage tumors, according to the TNM classification. Elevated expression of the VEGFA protein was noted primarily in high-grade KIRC samples according to the Fuhrman/WHO/ISUP scale. Moreover, a directly proportional correlation was observed between SHH and VEGFA immunoreactivity in TNM 3 + 4 and Fuhrman/ISUP/WHO 3 + 4 tumor tissues as well as in samples of patients with shorter survival. We also observed an association between shorter patient survival as well as increased and decreased immunoreactivity, of the VEGFA and GLI1, respectively. The aforementioned findings suggest that the expression pattern of SHH, GLI1 and VEGFA demonstrates prognostic potential in KIRC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Humanos , Prognóstico , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Hedgehog/metabolismo , Rim/metabolismo , Carcinoma de Células Renais/genética , Fator A de Crescimento do Endotélio Vascular
10.
ACS Chem Neurosci ; 14(18): 3347-3356, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37691264

RESUMO

Adamantinomatous craniopharyngioma (ACP) is a neuroendocrine tumor whose pathogenesis remains unclear. This study investigated the role of glioma-associated oncogene family zinc finger 1 (GLI1), a transcription factor in the sonic hedgehog (SHH) signaling pathway, in ACP. We discovered that GLI1 regulates the expression of IL-6, thereby triggering inflammatory responses in ACP and influencing the tumor's progression. Analyzing the Gene Expression Omnibus (GEO) database chip GSE68015, we found that GLI1 is overexpressed in ACP, correlating positively with the spite of ACP and inflammation markers. Knockdown of GLI1 significantly inhibited the levels of tumor necrosis factor α, interleukin-6 (IL-6), and IL-1ß in ACP cells, as well as cell proliferation and migration. We further identified a binding site between GLI1 and the promoter region of IL-6, demonstrating that GLI1 can enhance the expression of IL-6. These findings were verified in vivo, where activation of the SHH pathway significantly promoted GLI1 and IL-6 expressions in nude mice, inducing inflammation and tumor growth. Conversely, GLI1 knockdown markedly suppressed these processes. Our study uncovers a potential molecular mechanism for the occurrence of inflammatory responses and tumor progression in ACP.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Animais , Camundongos , Proteínas Hedgehog , Fatores de Transcrição , Interleucina-6 , Craniofaringioma/genética , Camundongos Nus , Proteína GLI1 em Dedos de Zinco/genética , Inflamação , Neoplasias Hipofisárias/genética
11.
Arch Toxicol ; 97(9): 2385-2398, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37407723

RESUMO

Glioblastomas (GBs) are one of the most aggressive and invasive intracranial cancers. Recently, it has been postulated that, among other factors, the hedgehog (HH) pathway may be a key factor in this phenomenon. Moreover, it has been reported that small-size silver nanoparticles (AgNPs) are characterized by a high cytotoxic effect towards GBs. However, their effect on the sonic hedgehog (SHH) pathway has never been demonstrated in any cancer cells. Therefore, the aim of the present study was to evaluate the impact of the anti-proliferative properties of 5-nm AgNPs on the SHH pathway in the GB cell line (U-87MG) in vitro. The results showed a time- and dose-dependent decrease in the metabolic activity in the U-87MG cells treated with AgNPs, with IC50 reaching 30.41 and 21.16 µg/mL after 24 h and 48 h, respectively, followed by an increase in the intracellular reactive oxygen species (ROS) level. The co-treatment of the cells with AgNPs and Robotnikinin (SHH inhibitor) abolished and/or strengthened the effect of AgNPs, especially on the SHH mRNA levels and on the PCNA, PTCH1, Gli1, and SUFU protein levels. Interestingly, no changes in the level of ERK1/2, Akt, and SRC kinase protein expression were detected, suggesting a direct impact of AgNPs and/or ROS on the inhibition of the canonical SHH pathway. However, more studies are needed due to the increase in the mTOR protein expression after the treatment of the cells with AgNPs, as in the Robotnikinin treatment. In conclusion, small-size AgNPs are able to inhibit the proliferation of GB cells in vitro by suppressing the canonical SHH pathway.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Humanos , Proteínas Hedgehog/metabolismo , Prata , Glioblastoma/tratamento farmacológico , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proliferação de Células
12.
Plants (Basel) ; 12(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447107

RESUMO

Datura metel L. (thorn apple) has been used in Thai folk wisdom for wound care. In this study, we chose supercritical carbon dioxide extraction (scCO2) to develop crude extraction from the leaves of the thorn apple. The phytochemical profiles were observed using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). The biological activities of D. metel were performed through antioxidant assays, anti-inflammation based on the Griess reaction, the migration assay, the expression of matrix metalloproteinase-2 (MMP-2), and regulatory genes in fibroblasts. Dm1 and Dm2 extracts were obtained from scCO2 procedures at different pressures of 300 and 500 bar, respectively. Bioactive compounds, including farnesyl acetone, schisanhenol B, and loliolide, were identified in both extracts. The antioxidant properties of both D. metel extracts were comparable to those of l-ascorbic acid in hydrogen peroxide-induced fibroblasts with no significant difference. Additionally, Dm1 and Dm2 significantly inhibited the nitrite production levels of 1.23 ± 0.19 and 1.52 ± 0.05 µM, respectively, against the lipopolysaccharide-treated group (3.82 ± 0.39 µM). Interestingly, Dm1 obviously demonstrated the percentage of wound closure with 58.46 ± 7.61 and 82.62 ± 6.66% after 36 and 48 h of treatment, which were comparable to the commercial deproteinized dialysate from the calf blood extract. Moreover, both extracts were comparable to l-ascorbic acid treatment in their ability to suppress the expression of MMP-2: an enzyme that breaks down collagen. The gene expressions of SHH, SMO, and GLI1 that control the sonic hedgehog pathway were also clearly upregulated by Dm1. Consequently, the scCO2 technique could be applied in D. metel extraction and contribute to potentially effective wound closure.

13.
Mol Carcinog ; 62(11): 1673-1685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477518

RESUMO

Gastric cancer is one of the deadliest malignant tumors, and half of the patients develop recurrences or metastasis within 5 years after eradication therapy. Cancer stem cells (CSCs) are considered to be important in this progress. The sonic hedgehog (SHH) pathway plays an important role in the maintenance of gastric CSCs characteristics. The p63 proteins are vital transcription factors belonging to the p53 family, while their functions in regulating CSCs remain unclear. The preventive effects of dietary diallyl trisulfide (DATS) against human gastric cancer have been verified. However, whether DATS can target gastric CSCs are poorly understood. Here, we investigated the role of ΔNp63/SHH pathway in gastric CSCs and the inhibitory effect of DATS on gastric CSCs via ΔNp63/SHH pathway. We found that ΔNp63 was upregulated in serum-free medium cultured gastric tumorspheres compared with the parental cells. Overexpression of ΔNp63 elevated the self-renewal capacity and CSC markers' levels in gastric sphere-forming cells. Furthermore, we found that ΔNp63 directly bound to the promoter region of Gli1, the key transcriptional factor of SHH pathway, to enhance its expression and to activate SHH pathway. In addition, it was revealed that DATS effectively inhibited gastric CSC properties both in vitro and in vivo settings. Activation of SHH pathway attenuated the suppressive effects of DATS on the stemness of gastric cancer. Moreover, DATS suppression of gastric CSC properties was also diminished by ΔNp63 upregulation through SHH pathway activation. These findings illustrated the role of ΔNp63/SHH pathway in DATS inhibition of gastric cancer stemness. Taken together, the present study suggested for the first time that DATS inhibited gastric CSCs properties by ΔNp63/SHH pathway.


Assuntos
Proteínas Hedgehog , Neoplasias Gástricas , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Neoplasias Gástricas/patologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
14.
Heliyon ; 9(6): e17130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389068

RESUMO

Developmental cysts are pathological epithelial-lined cavities arising in various organs as a result of systemic or hereditary diseases. Molecular mechanisms involved in the formation of developmental odontogenic cysts (OCs) are not fully understood yet; the cystogenesis of renal cysts originating from the autosomal dominant polycystic kidney disease (ADPKD) has been, however, explored in much greater detail. This narrative review aimed i) to summarize molecular and cellular processes involved in the formation and growth of developmental OCs, especially dentigerous cysts (DCs) and odontogenic keratocysts (OKCs), ii) to find if there are any similarities in their cystogenesis to ADPKD cysts, and, based on that, iii) to suggest potential factors, candidate molecules, and mechanisms that could be involved in the DC formation, thus proposing further research directions. Here we suggest a possible association of developmental OCs with primary cilia disruption and with hypoxia, which have been previously linked with cyst formation in ADPKD patients. This is illustrated on the imagery of tissues from an ADPKD patient (renal cyst) and from developmental OCs, supporting the similarities in cell proliferation, apoptosis, and primary cilia distribution in DC/OKC/ADPKD tissues. Based on all that, we propose a novel hypothesis of OCs formation suggesting a crucial role of mutations associated with the signaling pathways of primary cilia (in particular, Sonic Hedgehog). These can lead to excessive proliferation and formation of cell agglomerates, which is followed by hypoxia-driven apoptosis in the centers of such agglomerates (controlled by molecules such as Hypoxia-inducible factor-1 alpha), leading to cavity formation and, finally, the OCs development. Based on this, we propose future perspectives in the investigation of OC pathogenesis.

15.
Ecotoxicol Environ Saf ; 252: 114605, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753971

RESUMO

BACKGROUND: The omnipresence of human phthalate (PAE) exposure is linked to various adverse health issues, including breast cancer. However, the effects of low-dose PAE exposure on breast cancer stem cells (BCSCs) and the underlying mechanism remain unexplored. METHODS: BCSCs from breast cancer cell lines (MDA-MB-231 and MCF-7) were enriched using a tumorsphere formation assay. Gene and protein expression was detected by measurement of quantitative real-time reverse transcription PCR, western blot, and immunofluorescence assays. Transient transfection assays were used to evaluate the involvement of Gli1, a signaling pathway molecule and ΔNp63α, an oncogene in influencing the PAE-induced characteristics of BCSCs. RESULTS: PAE (butylbenzyl phthalate, BBP; di-butyl phthalate, DBP; di-2-ethylhexyl phthalate, DEHP) exposure of 10-9 M significantly promoted the tumorsphere formation ability in BCSCs. Breast cancer spheroids with a 10-9 M PAE exposure had higher levels of BCSC marker mRNA and protein expression, activated sonic hedgehog (SHH) pathway, and increased mRNA and protein levels of an oncogene, ΔNp63α. Furthermore, suppression of the SHH pathway attenuated the effects of PAEs on BCSCs. And the overexpression of ΔNp63α enhanced PAE-induced characteristics of BCSCs, while low expression of ΔNp63α inhibited the promotion effects of PAEs on BCSCs and the SHH pathway. CONCLUSION: Low-dose PAE exposure promoted the stem cell properties of BCSCs in a ΔNp63α- and SHH-dependent manner. The influence of low-dose exposure of PAEs and its relevance for the lowest observed effect concentrations requires further investigation, and the precise underlying mechanism needs to be further explored.


Assuntos
Neoplasias da Mama , Proteínas Hedgehog , Humanos , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
16.
J Biophotonics ; 15(12): e202200103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054290

RESUMO

Photobiomodulation therapy (PBMT) is a non-invasive and pain-less treatment for hair loss. Researches on PBMT rarely considered the impact of different light structures. In this study, we irradiated shaven rats with both 650 nm, m = 32 vortex beams and ordinary Gaussian beams. The laser treatment was performed at 24-hour intervals for 20 days. The energy density was set to 4.25 J/cm2 . The results indicated that low-level vortex beam irradiation led to better stimulation of hair growth than the Gaussian beams, which might be related to deeper penetration. The underlying biological mechanisms are discussed in terms of the activation of Wnt/ß-catenin/sonic hedgehog pathway. Our results suggest that low-level vortex beam irradiation is advantageous to the treatment of hair loss because it is technically feasible, convenient and effective.


Assuntos
Proteínas Hedgehog , Terapia com Luz de Baixa Intensidade , Animais , Ratos , Cabelo , Alopecia , Terapia com Luz de Baixa Intensidade/métodos
17.
Oncol Lett ; 24(3): 326, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35949590

RESUMO

Gorlin syndrome or nevoid basal cell carcinoma syndrome is a rare genetic disease characterized by predisposition to congenital defects, basal cell carcinomas and medulloblastoma. The syndrome results from a heritable mutation in PATCHED1 (PTCH1), causing constitutive activation of the Hedgehog pathway. The present study described a patient with Gorlin syndrome who presented early in life with characteristic basal cell carcinomas and later developed a small cell glioblastoma (GBM), World Health Organization grade IV, associated with a Patched 1 (PTCH1) N97fs*43 mutation. Comprehensive genomic profiling of GBM tissues also revealed multiple co-occurring alterations including cyclin-dependent kinase 4 (CDK4) amplification, receptor tyrosine-protein kinase 3 (ERBB3) amplification, a fibroblast growth factor receptor 1 and transforming acidic coiled-coil containing protein 1 (FGFR1-TACC1) fusion, zinc finger protein (GLI1) amplification, E3 ubiquitin-protein ligase (MDM2) amplification and spectrin α chain, erythrocytic 1 (SPTA1) T1151fs*24. After the biopsy, imaging revealed extensive leptomeningeal enhancement intracranially and around the cervical spinal cord due to leptomeningeal disease. The patient underwent craniospinal radiation followed by 6 months of adjuvant temozolomide (150 mg/m2) with good response. She was then treated with vismodegib for 11 months, first combined with temozolomide and then with bevacizumab, until disease progression was noted on MRI, with no significant toxicities associated with the combination therapy. She received additional therapies but ultimately succumbed to the disease four months later. The current study presents the first documentation in the literature of a primary (non-radiation induced) glioblastoma secondary to Gorlin syndrome. Based on this clinical experience, vismodegib should be considered in combination with standard-of-care therapies for patients with known Gorlin syndrome-associated glioblastomas and sonic hedgehog pathway mutations.

18.
Cell Biol Int ; 46(9): 1468-1479, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35811464

RESUMO

Replicative immortality is a key feature of cancer cells and it is maintained by the expression of telomerase, a promising target of novel therapies. Long-term telomerase inhibition can induce resistance, but the mechanisms underlying this process remain unclear. The Sonic hedgehog pathway (SHH) is an embryogenic pathway involved in tumorigenesis and modulates the transcription of telomerase. We evaluated the effects of long-term treatment of the telomerase inhibitor MST-312 in morphology, proliferation, resistance, and in the SHH pathway molecules expression levels in lung cancer cells. Cells treated for 12 weeks with MST-312 showed changes in morphology, such as spindle-shaped cells, and a shift in the distribution of F-ACTIN from cortical to diffuse. Treatment also significantly reduced cells' efficiency to form spheroids and their clonogenic potential, independently of the cell cycle and telomeric DNA content. Moreover, GLI-1 expression levels were significantly reduced after 12 weeks of MST-312 treatment, indicating a possible inhibition of this signaling axis in the SHH pathway, without hindering NANOG and OCT4 expression. Here, we described a novel implication of long-term treatment with MST-312 functionally and molecularly, shedding new light on the molecular mechanisms of this drug in vitro.


Assuntos
Neoplasias Pulmonares , Telomerase , Benzamidas , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Hedgehog/metabolismo , Humanos , Telomerase/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
19.
BMC Cancer ; 22(1): 490, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505292

RESUMO

BACKGROUND: Sonic Hedgehog (SHH) pathway dysregulation is implicated in basal cell carcinoma (BCC) development. To evaluate the possible wider role of SHH gene variants in skin carcinogenesis, we assessed associations of genes in the SHH pathway with lifetime development of any keratinocyte cancer (KC), and with developing either BCCs or squamous cell carcinomas (SCCs) exclusively, in a 25-year prospective, population-based study of 1,621 Australians. METHODS: We genotyped 795 unrelated adults with available blood samples: 311 cases with any KC (186 developing BCCs-only, 55 SCCs-only, 70 BCCs and SCCs) and 484 controls. We compared allele frequencies of 158 independent SNPs across 43 SHH genes between cases and controls, and performed a gene-based analysis. RESULTS: We found associations between SNP rs4848627 (GLI2) (related to DNA synthesis in keratinocytes) and development of any KC (OR = 1.53; 95% CI = 1.06-2.13, P < 0.01) and SCCs exclusively (OR = 2.12; 95%CI = 1.39-3.23, P < 0.01). SNP rs3217882 located in CCND2 was associated with exclusive BCC development (OR = 1.43, CI = 1.12-1.82, P < 0.01). The gene-based analysis suggested an association of PRKACG (protein kinase cAMP-activated catalytic subunit gamma) with any KC (P = 0.013). CONCLUSION: We conclude that variants located in genes in the SHH pathway may are involved in SCC as well as BCC development.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Transdução de Sinais , Neoplasias Cutâneas , Adulto , Austrália , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Queratinócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Neoplasias Cutâneas/patologia
20.
Pharmacol Res ; 179: 106194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364246

RESUMO

Hedgehog, a developmental morphogen, and its downstream signalling have recently been associated with metabolic control. Sonic hedgehog signalling (Shh) is a significant pathway that regulates various events during the growth and development of embryos. The dysregulation of the Shh pathway has been implicated in many physiological and pathological processes, including adipocyte differentiation, cancer, diabetes and obesity. Researchers have proved that pharmacological modulation of the Shh pathway might help to improve better outcomes in metabolic disorders. A systemic review was conducted through various search engines to understand the molecular nature of Shh Pathway in Metabolic Disorders and its therapeutic implication in the future. However, we could find that by studying the crosstalk between various pathways, such as Wnt/ ß-catenin, TGF (transforming growth factor ß), mTOR, and notch with Sonic hedgehog, a close link between the pathogenesis of different metabolic disorders. Understanding the importance of these molecular interlinking networks will provide a rational basis that influences its activity. This article discusses the changes and modifications that happen due to up-or down-regulation of various transcription factors in the Shh pathway. The study attempts to provide a complete overview of the main signalling events involved with canonical and non-canonical Hedgehog signalling and the increasingly complicated regulatory modalities related to Hedgehog for regulating metabolism. Further, it investigates the possible approaches needed to treat metabolic disorders for better results.


Assuntos
Proteínas Hedgehog , Doenças Metabólicas , Regulação para Baixo , Proteínas Hedgehog/metabolismo , Humanos , Doenças Metabólicas/tratamento farmacológico , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...