Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Gene ; : 148753, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972556

RESUMO

BACKGROUND: Transgenic insect-resistant rice offers an environmentally friendly approach to mitigate yield losses caused by lepidopteran pests, such as stem borers. Bt (Bacillus thuringiensis) genes encode insecticidal proteins and are widely used to confer insect resistance to genetically modified crops. This study investigated the integration, inheritance, and expression characteristics of codon-optimised synthetic Bt genes, cry1C* and cry2A*, in transgenic early japonica rice lines. METHODS: The early japonica rice cultivar, Songgeng 9 (Oryza sativa), was transformed with cry1C* or cry2A*, which are driven by the ubi promoter via Agrobacterium tumefaciens-mediated transformation. Molecular analyses, including quantitative PCR (qPCR), enzyme-linked immunosorbent assay (ELISA), and Southern blot analysis were performed to confirm transgene integration, inheritance, transcriptional levels, and protein expression patterns across different tissues and developmental stages. RESULTS: Stable transgenic early japonica lines exhibiting single-copy transgene integration were established. Transcriptional analysis revealed variations in Bt gene expression among lines, tissues, and growth stages, with higher expression levels observed in leaves than in other organs. Notably, cry2A* exhibited consistently higher mRNA and protein levels than cry1C* across all examined tissues and developmental time points. Bt protein accumulation followed the trend of leaves > stem sheaths > young panicles > brown rice, with peak expression during the filling stage in the vegetative tissues. CONCLUSIONS: Synthetic cry2A* displayed markedly elevated transcription and translation compared to cry1C* in the transgenic early japonica rice lines examined. Distinct spatiotemporal patterns of Bt gene expression were elucidated, providing insights into the potential insect resistance conferred by these genes in rice. These findings will contribute to the development of insect-resistant japonica rice varieties and facilitate the rational deployment of Bt crops.

2.
Methods Mol Biol ; 2819: 103-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028504

RESUMO

The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as in regulation of the Escherichia coli lactose (lac) operon. Here we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis. As an example, we apply these in vivo protein-mapping methods to E. coli to show direct binding of architectural proteins in the Lac repressor-mediated DNA repression loop.


Assuntos
Imunoprecipitação da Cromatina , DNA Bacteriano , Escherichia coli , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Imunoprecipitação da Cromatina/métodos , Ligação Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Óperon Lac , Reação em Cadeia da Polimerase/métodos , Southern Blotting , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo
3.
Aging Cell ; : e14241, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943263

RESUMO

In adults, polygenic scores (PGSs) of telomere length (TL) alleles explain about 4.5% of the variance in TL, as measured by quantitative polymerase chain reaction (qPCR). Yet, these PGSs strongly infer a causal role of telomeres in aging-related diseases. To better understand the determinants of TL through the lifespan, it is essential to examine to what extent these PGSs explain TL in newborns. This study investigates the effect of PGSs on TL in both newborns and their parents, with TL measured by Southern blotting and expressed in base-pairs (bp). Additionally, the study explores the impact of PGSs related to transmitted or non-transmitted alleles on TL in newborns. For parents and newborns, the PGS effects on TL were 172 bp (p = 2.03 × 10-15) and 161 bp (p = 3.06 × 10-8), explaining 6.6% and 5.2% of the TL variance, respectively. The strongest PGS effect was shown for maternally transmitted alleles in newborn girls, amounting to 214 bp (p = 3.77 × 10-6) and explaining 7.8% of the TL variance. The PGS effect of non-transmitted alleles was 56 bp (p = 0.0593) and explained 0.6% of the TL variance. Our findings highlight the importance of TL genetics in understanding early-life determinants of TL. They point to the potential utility of PGSs composed of TL alleles in identifying susceptibility to aging-related diseases from birth and reveal the presence of sexual dimorphism in the effect of TL alleles on TL in newborns. Finally, we attribute the higher TL variance explained by PGSs in our study to TL measurement by Southern blotting.

4.
Breed Sci ; 73(3): 290-299, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840982

RESUMO

Light provides energy for photosynthesis and is also an important environmental signal that regulates plant growth and development. Ribose-5-phosphate isomerase plays a crucial role in photosynthesis. However, ribose-5-phosphate isomerase has yet to be studied in soybean photosynthesis. To understand the biological function of GmRPI2, in this study, GmRPI2 was cloned, plant overexpression vectors and gene editing vectors were successfully constructed, and transformed into recipient soybean JN74 using the Agrobacterium-mediated method. Using qRT-PCR, we analyzed that GmRPI2 gene expression was highest in leaves, second highest in roots, and lowest in stems. Promoter analysis revealed the presence of multiple cis-acting elements related to light response in the promoter region of GmRPI2. Compared with the control soybean plants, the net photosynthetic rate and transpiration rate of the overexpression lines were higher than those of the control and gene editing lines, while the intercellular CO2 concentration was significantly lower than that of the control and gene editing lines; the total chlorophyll, chlorophyll a, chlorophyll b contents and soluble sugar contents of the overexpression plants were significantly higher than those of the recipient and editing plants, indicating that the GmRPI2 gene can increase The GmRPI2 gene can increase the photosynthetic capacity of soybean plants, providing a theoretical basis and genetic resources for improving soybean yield by regulating photosynthetic efficiency.

5.
Methods Mol Biol ; 2615: 293-314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807800

RESUMO

Impaired mitochondrial DNA (mtDNA) maintenance, due to, e.g., defects in the replication machinery or an insufficient dNTP supply, underlies a number of mitochondrial disorders. The normal process of mtDNA replication leads to the incorporation of multiple single ribonucleotides (rNMPs) per mtDNA molecule. Given that embedded rNMPs alter the stability and properties of the DNA, they may have consequences for mtDNA maintenance and thereby for mitochondrial disease. They also serve as a readout of the intramitochondrial NTP/dNTP ratios. In this chapter, we describe a method for the determination of mtDNA rNMP content using alkaline gel electrophoresis and Southern blotting. This procedure is suited for the analysis of mtDNA in total genomic DNA preparations as well as in purified form. Moreover, it can be performed using equipment found in most biomedical laboratories, allows the simultaneous analysis of 10-20 samples depending on the gel system employed, and can be modified for the analysis of other mtDNA modifications.


Assuntos
DNA Mitocondrial , Ribonucleotídeos , DNA Mitocondrial/genética , Ribonucleotídeos/metabolismo , Mitocôndrias/metabolismo , Nucleotídeos , Replicação do DNA
6.
Bio Protoc ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36561117

RESUMO

Genetic transformation is a powerful method for the investigation of gene function and improvement of crop plants. The transgenes copy number in the transgenic line is involved in gene expression level and phenotypes. Additionally, identification of transgene zygosity is important for quantitative assessment of phenotype and for tracking the inheritance of transgenes in progeny generations. Several methods have been developed for estimating the transgene copy number, including southern blot assay and quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization, although convincing and reliable, is a time-consuming method through which the examination of the copy number is challenging in species with large genomes like wheat plants. Although qPCR is potentially simpler to perform, its results lack accuracy and precision, especially to distinguish between one and two copy events in transgenic plants with large genomes. The droplet digital PCR (ddPCR)-based method for investigation of transgenes copy number has been widely used in an array of crops. In this method, the specific primers to amplify target transgenes and reference genes are used as a single duplexed reaction, which is divided into tens of thousands of nanodroplets. The copy number in independent transgenic lines is determined by detection and quantification of droplets using sequence-specific fluorescently labeled probes. This method offers superior accuracy and reliability with a low cost and scalability as other PCR techniques in the investigation of transgenes copy number. This protocol was validated in: Mol Plant (2021), DOI: 10.1016/j.molp.2021.03.022 Graphical abstract Flow chart for the ddPCR protocol.

7.
Biochem Mol Biol Educ ; 50(4): 373-380, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791664

RESUMO

Southern blot analysis is an important molecular biology technique for identifying a specific sequence in DNA samples. Although it is no longer used extensively in recent years, the steps and underlying principles of Southern blot are applicable to modern biology. High sensitivity and limited background are keys to successful Southern blots, whereas obtaining good quality and quantity of genomic DNA as starting materials and detecting a single/low copy target sequence in the genome can be challenging. To ensure student success in performing the technique for the first time, a modified "plasmid-to-plasmid" Southern blot was implemented to confirm the presence of grape nucleotide-binding site (nbs) sequences in cloned plasmids like those described previously. The plasmid DNA and a control plasmid, pSCA7 (T1-T3-W6) containing a known grape nbs sequence, were digested with restriction enzymes, followed by agarose gel electrophoresis. The DNA band corresponding to the nbs sequence of the pSCA7 (T1-T3-W6) was extracted from the gel for PCR digoxigenin (DIG) probe synthesis. At the same time, the cloned plasmid DNA and its digested DNA fragments were blotted from the gel onto nylon membranes to be hybridized with the DIG probe followed by the detection for nbs sequences. Students successfully performed Southern blots to confirm the presence of nbs sequences in their cloned plasmids and wrote up the results following the format of scientific research papers. They learned the principles and applications of Southern blot and gained hands-on experience with associated techniques.


Assuntos
DNA , Nucleotídeos , Sítios de Ligação , Southern Blotting , Humanos , Plasmídeos/genética
8.
Hepatol Int ; 16(2): 306-315, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35298777

RESUMO

BACKGROUND AND AIMS: The formation of an intranuclear pool of covalently closed circular DNA (cccDNA) in the liver is the main cause of persistent hepatitis B virus (HBV) infection. Here, we established highly sensitive and specific methods to detect cccDNA based on CRISPR-Cas13a technology. METHODS: We used plasmid-safe ATP-dependent DNase (PSAD) enzymes and HindIII to digest loose circle rcDNA and double-stranded linear DNA, amplify specific HBV cccDNA fragments by rolling circle amplification (RCA) and PCR, and detect the target gene using CRISPR-Cas13a technology. The CRISPR-Cas13a-based assay for the detection of cccDNA was further clinically validated using HBV-related liver tissues, plasma, whole blood and peripheral blood mononuclear cells (PBMCs). RESULTS: Based on the sample pretreatment step, the amplification step and the detection step, we established a new CRISPR-Cas13a-based assay for the detection of cccDNA. After the amplification of RCA and PCR, 1 copy/µl HBV cccDNA could be detected by CRISPR/Cas13-assisted fluorescence readout. We used ddPCR, qPCR, RCA-qPCR, PCR-CRISPR and RCA-PCR-CRISPR methods to detect 20, 4, 18, 14 and 29 positive samples in liver tissue samples from 40 HBV-related patients, respectively. HBV cccDNA was almost completely undetected in the 20 blood samples of HBV patients (including plasma, whole blood and PBMCs) by the above 5 methods. CONCLUSIONS: We developed a novel CRISPR-based assay for the highly sensitive and specific detection of HBV cccDNA, presenting a promising alternative for accurate detection of HBV infection, antiviral therapy evaluation and treatment guidance.


Assuntos
Hepatite B Crônica , Hepatite B , Sistemas CRISPR-Cas , DNA Circular/genética , DNA Viral/análise , DNA Viral/genética , Hepatite B/diagnóstico , Vírus da Hepatite B/genética , Humanos , Leucócitos Mononucleares , Reação em Cadeia da Polimerase em Tempo Real/métodos
9.
GM Crops Food ; 12(1): 449-458, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878358

RESUMO

Resveratrol is synthesized by the catalysis of resveratrol synthases (RS) in a limited number of higher plants. Resveratrol shows potential health-promoting properties, including as an antioxidant and in preventing cardiovascular diseases. Recently, resveratrol-enriched rice has been produced as a novel source of resveratrol. This study aimed to investigate the major agronomic characteristics of resveratrol-enriched rice, Iksan526 (I526) and compared them with those of a nontransgenic and commercial rice variety, Dongjin (DJ). Transgene (RS) integration was confirmed using Southern blot analysis, and homologous recombination was achieved after digestion with the SacI restriction enzyme. The phenotypic traits of I526 grown in Iksan were similar to those grown in Milyang but not similar to those grown in Suwon. In Suwon, I526 had slightly earlier heading dates [i.e., number of days from sowing to heading) and shorter culm lengths. When I526 was treated with 0.4% Basta in the seedling stage, no significant difference was observed among all the agronomic traits compared with nontreated I526; particularly, the culm length, panicle length, number of panicles per hill, 1,000 grain weight of brown rice, and brown rice yield of the Basta-treated rice were similar to those of the nontreated I526, regardless of their cultivation region. The resveratrol content of I526 grown in Suwon and Milyang was increased by 18% and 37%, respectively, than that of I526 grown in the Iksan area. Therefore, DJ and I526 are not significantly different in terms of major agronomic traits depending on variety/year and variety/cultivation region. The results indicated that I526 has the potential to become a commercialized variety in the near future.


Assuntos
Oryza , Grão Comestível , Oryza/genética , Fenótipo , Resveratrol , Plântula
10.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830369

RESUMO

It is vital to develop high-throughput methods to determine transgene copy numbers initially and zygosity during subsequent breeding. In this study, the target sequence of the previously reported endogenous reference gene hmg was analyzed using 633 maize inbred lines, and two SNPs were observed. These SNPs significantly increased the PCR efficiency, while the newly developed hmg gene assay (hmg-taq-F2/R2) excluding these SNPs reduced the efficiency into normal ranges. The TaqMan amplification efficiency of bar and hmg with newly developed primers was calculated as 0.993 and 1.000, respectively. The inter-assay coefficient of variation (CV) values for the bar and hmg genes varied from 1.18 to 2.94%. The copy numbers of the transgene bar using new TaqMan assays were identical to those using dPCR. Significantly, the precision of one repetition reached 96.7% of that of three repetitions of single-copy plants analyzed by simple random sampling, and the actual accuracy reached 95.8%, confirmed by T1 and T2 progeny. With the high-throughput DNA extraction and automated data analysis procedures developed in this study, nearly 2700 samples could be analyzed within eight hours by two persons. The combined results suggested that the new hmg gene assay developed here could be a universal maize reference gene system, and the new assay has high throughput and high accuracy for large-scale screening of maize varieties around the world.


Assuntos
Variações do Número de Cópias de DNA/genética , Plantas Geneticamente Modificadas/genética , Transgenes/genética , Zea mays/genética , Primers do DNA , Dosagem de Genes/genética , Melhoramento Vegetal
11.
Curr Protoc ; 1(9): e235, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34496149

RESUMO

Human papillomaviruses (HPVs) cause persistent infections in stratified cutaneous and mucosal epithelia. In these infections, the viral DNA replicates as low-copy-number, extrachromosomal, double-stranded-DNA circular plasmids in the nucleus of the dividing basal cells. When the infected cells begin the process of differentiation, the viral DNA amplifies to a high copy number and virions are assembled in the superficial cells. To study HPV DNA replication, our laboratory generates primary keratinocyte cell lines that contain replicating extrachromosomal HPV genomes. Here, we describe protocols to culture human keratinocytes, to transfect viral DNA into cells using electroporation, to determine the efficiency of genome establishment in cells with a colony-forming assay, and to measure the copy number and extrachromosomal status of viral genomes using Southern blotting. These methods can be used to study DNA replication of different oncogenic Alphapapillomavirus HPV types. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Electroporation to transfect keratinocytes with recircularized HPV genomes Alternate Protocol: Use of HPV replicon containing selection marker in keratinocyte transfection Support Protocol 1: Rheinwald-Green method of co-culture of irradiated J2 3T3 feeders and human keratinocytes Support Protocol 2: Recircularization of HPV genomes Basic Protocol 2: Quantitative colony formation assay to measure the efficiency of HPV genome establishment Basic Protocol 3: Southern blot analysis of extrachromosomal viral DNA Support Protocol 3: Hirt extraction of low-molecular-weight DNA Support Protocol 4: Qiagen DNeasy Blood & Tissue DNA extraction Support Protocol 5: Generation of a 32 P-labeled HPV DNA probe.


Assuntos
Alphapapillomavirus , Papillomaviridae , Linhagem Celular , Humanos , Queratinócitos , Papillomaviridae/genética , Replicação Viral
12.
Virol Sin ; 36(6): 1492-1502, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34460066

RESUMO

We have previously reported that bovine papillomavirus type 1 (BPV-1) DNA can replicate its genome and produce infectious virus-like particles in short term virion-infected S. cerevisiae (budding yeast) cultures (Zhao and Frazer 2002, Journal of Virology, 76:3359-64 and 76:12265-73). Here, we report the episomal replications of BPV-1 DNA in long term virion-infected S. cerevisiae culture up to 108 days. Episomal replications of the BPV-1 DNA could be divided into three patterns at three stages, early active replication (day 3-16), middle weak replication (day 23-34/45) and late stable replication (day 45-82). Two-dimensional gel electrophoresis analysis and Southern blot hybridization have revealed further that multiple replication intermediates of BPV-1 DNA including linear form, stranded DNA, monomers and higher oligomers were detected in the virion-infected yeast cells over the time course. Higher oligomers shown as covalently closed circular DNAs (cccDNAs) are the most important replication intermediates that serve as the main nuclear transcription template for producing all viral RNAs in the viral life cycle. In this study, the cccDNAs were generated at the early active replication stage with the highest frequencies and then at late stable replication, but they appeared to be suppressed at the middle weak replication. Our data provided a novel insight that BPV-1 genomic DNA could replicate episomally for the long period and produce the key replication intermediates cccDNAs in S. cerevisiae system.


Assuntos
Papillomavirus Bovino 1 , Papillomavirus Bovino 1/genética , Replicação do DNA , DNA Viral/genética , Saccharomyces cerevisiae/genética , Vírion/genética , Replicação Viral
13.
Genes (Basel) ; 12(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073864

RESUMO

We describe a female with a 72 CGG FMR1 premutation (PM) (CGG 55-199) and family history of fragile X syndrome (FXS), referred for prenatal testing. The proband had a high risk of having an affected pregnancy with a full mutation allele (FM) (CGG > 200), that causes FXS through hypermethylation of the FMR1 promoter. The CGG sizing analysis in this study used AmplideX triplet repeat primed polymerase chain reaction (TP-PCR) and long-range methylation sensitive PCR (mPCR). These methods detected a 73 CGG PM allele in the proband's blood, and a 164 CGG PM allele in her male cultured chorionic villus sample (CVS). In contrast, the Southern blot analysis showed mosaicism for: (i) a PM (71 CGG) and an FM (285-768 CGG) in the proband's blood, and (ii) a PM (165 CGG) and an FM (408-625 CGG) in the male CVS. The FMR1 methylation analysis, using an EpiTYPER system in the proband, showed levels in the range observed for mosaic Turner syndrome. This was confirmed by molecular and cytogenetic karyotyping, identifying 45,X0/46,XX/47,XXX lines. In conclusion, this case highlights the importance of Southern blot in pre- and postnatal testing for presence of an FM, which was not detected using AmplideX TP-PCR or mPCR in the proband and her CVS.


Assuntos
Alelos , Cromossomos Humanos X/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Mosaicismo , Adulto , Amostra da Vilosidade Coriônica/métodos , Feminino , Síndrome do Cromossomo X Frágil/diagnóstico , Testes Genéticos/métodos , Humanos , Gravidez , Expansão das Repetições de Trinucleotídeos
14.
J Genet Eng Biotechnol ; 19(1): 68, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974146

RESUMO

BACKGROUND: Trachyspermum ammi is one of the key medicinal plant species with many beneficial properties. Thymol is the most important substance in the essential oil of this plant. Thymol is a natural monoterpene phenol with high anti-microbial, anti-bacterial, and anti-oxidant properties. Thymol in the latest research has a significant impact on slowing the progression of cancer cells in human. In this research, embryos were employed as convenient explants for the fast and effectual regeneration and transformation of T. ammi. To regenerate this plant, Murashige and Skoog (MS) and Gamborg's B5 (B5) media were supplemented with diverse concentrations of plant growth regulators, such as 6-benzyladenine (BA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and kinetin (kin). Transgenic Trachyspermum ammi plants were also obtained using Agrobacterium-mediated transformation and zygotic embryos explants. Moreover, two Agrobacterium tumefaciens strains (EHA101 and LBA4404) harboring pBI121-TPS2 were utilized for genetic transformation to Trachyspermum ammi. RESULTS: According to the obtained results, the highest plant-regeneration frequency was obtained with B5 medium supplemented with 0.5 mg/l BA and 1 mg/l NAA. The integrated gene was also approved using the PCR reaction and the Southern blot method. Results also showed that the EHA101 strain outperformed another strain in inoculation time (30 s) and co-cultivation period (1 day) (transformation efficiency 19.29%). Furthermore, HPLC method demonstrated that the transformed plants contained a higher thymol level than non-transformed plants. CONCLUSIONS: In this research, a fast protocol was introduced for the regeneration and transformation of Trachyspermum ammi, using zygotic embryo explants in 25-35 days. Our findings confirmed the increase in the thymol in the aerial part of Trachyspermum ammi. We further presented an efficacious technique for enhancing thymol content in Trachyspermum ammi using Agrobacterium-mediated plant transformation system that can be beneficial in genetic transformation and other plant biotechnology techniques.

15.
Biotechnol Prog ; 37(4): e3157, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33896120

RESUMO

Cell lines used for the manufacture of recombinant proteins are expected to arise from a single cell as a control strategy to limit variability and ensure consistent protein production. Health authorities require a minimum of two rounds of limiting dilution cloning or its equivalent to meet the requirement of single cell origin. However, many legacy cell lines may not have been generated with process meeting this criteria potentially impeding the path to commercialization. A general monoclonality assessment strategy was developed based on using the site of plasmid integration for a cell's identity. By comparing the identities of subclones from a master cell bank (MCB) to each other and that of the MCB, a probability of monoclonality was established. Two technologies were used for cell identity, Southern blot and a PCR assay based on plasmid-genome junction sequences identified by splinkerette PCR. Southern blot analysis revealed that subclones may have banding patterns that differ from each other and yet indicate monoclonal origin. Splinkerette PCR identifies cellular sequence flanking the point(s) of plasmid integration. The two assays together provide complimentary data for cell identity that enables proper monoclonality assessment and establishes that the three legacy cell lines investigated are all of clonal origin.


Assuntos
Células Clonais , Linhagem Celular , Reação em Cadeia da Polimerase , Proteínas Recombinantes , Estudos Retrospectivos
16.
Am J Epidemiol ; 190(7): 1406-1413, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33564874

RESUMO

Researchers increasingly wish to test hypotheses concerning the impact of environmental or disease exposures on telomere length (TL), and they use longitudinal study designs to do so. In population studies, TL is usually measured with a quantitative polymerase chain reaction (qPCR)-based method. This method has been validated by calculating its correlation with a gold standard method such as Southern blotting (SB) in cross-sectional data sets. However, in a cross-section, the range of true variation in TL is large, and measurement error is introduced only once. In a longitudinal study, the target variation of interest is small, and measurement error is introduced at both baseline and follow-up. In this paper, we present results from a small data set (n = 20) in which leukocyte TL was measured twice 6.6 years apart by means of both qPCR and SB. The cross-sectional correlations between qPCR and SB were high at both baseline (r = 0.90) and follow-up (r = 0.85), yet their correlation for TL change was poor (r = 0.48). Moreover, the qPCR data but not the SB data showed strong signatures of measurement error. Through simulation, we show that the statistical power gain from performing a longitudinal analysis is much greater for SB than for qPCR. We discuss implications for optimal study design and analysis.


Assuntos
Southern Blotting/estatística & dados numéricos , Correlação de Dados , Leucócitos/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , Telômero , Estudos Transversais , Humanos , Estudos Longitudinais , Reprodutibilidade dos Testes , Projetos de Pesquisa
17.
Clin Chim Acta ; 512: 28-32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33242467

RESUMO

BACKGROUND: Eponyms are commonly used in medicine, but there are no specific studies of the use of eponyms in clinical chemistry. METHODS: Clinical chemistry eponyms were manually collected from books, review articles and journal articles from 1847 through 2020. Eponym usage was examined by searching titles and abstracts in PubMed. Custom Python scripts were used to first permute eponyms into multiple forms, and then to search PubMed using Biopython. The eponyms identified in PubMed were further focused on 2 clinical chemistry journals Clinica Chimica Acta [CCA] and Clinical Chemistry [CCJ]. RESULTS: The manual collection identified >300 eponyms in clinical chemistry. The Biopython search of PubMed identified a subset of 97 unique eponyms in 33,232 articles. PubMed identified 26 eponyms used in 130 CCA articles; whereas a full-text search identified 1187 articles. In comparison, PubMed identified 36 eponyms used in 158 CCJ articles; whereas a full-text CCJ search identified 708 articles. PubMed shows that the journals CCA and CCJ had a peak number of eponym citations in 1977 followed by a steady decline. CONCLUSIONS: Eponyms have been frequently used in clinical chemistry with 97 eponyms in common use in PubMed. Overall, the use of clinical chemistry eponyms appears to be declining.


Assuntos
Química Clínica , Epônimos , Humanos
18.
Methods ; 191: 59-67, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32599056

RESUMO

The widespread availability of recombineered vectors and gene targeted embryonic stem cells from large-scale repositories facilitates the generation of mouse models for functional genetic studies. Southern blotting validates the structure of these targeted alleles produced by homologous recombination, as well as indicating any additional integrations of the vector into the genome. Traditionally this technique employs radioactively-labelled probes; however, there are many laboratories that are restricted in their use of radioactivity. Here, we present a widely applicable protocol for Southern blot analysis using cold probes and alternative procedures employing radioactive probes. Furthermore, the probes are designed to recognise standardised regions of gene-targeting cassettes and so represent universally applicable reagents for assessing allelic integrity.


Assuntos
Radioatividade , Alelos , Animais , Southern Blotting , Marcação de Genes , Vetores Genéticos , Recombinação Homóloga , Camundongos
19.
J Neurol ; 268(3): 1119-1126, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32910249

RESUMO

The ataxias are a group of disorders that manifest with balance, movement, speech and visual problems. They can arise due to dysfunction of the cerebellum, the vestibular system and/or the sensory neurons. Genetic defects are a common cause of chronic ataxia, particularly common are repeat expansions in this group of conditions. Co-occurrence of cerebellar ataxia with neuropathy and vestibular areflexia syndrome has been termed CANVAS. Although CANVAS is a rare syndrome, on discovery of biallelic expansions in the second intron of replication factor C subunit 1 (RFC1) gene, we and others have found the phenotype is broad and RFC1 expansions are a common cause of late-onset progressive ataxia.We aim to provide a review and update on recent developments in CANVAS and populations, where the disorder has been reported. We have also optimised a protocol for RFC1 expansion screening which is described herein and expanded phenotype after analysing late-onset ataxia patients from around the world.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Íntrons/genética , Proteína de Replicação C/genética
20.
Methods Mol Biol ; 2153: 33-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840770

RESUMO

Generation of 3' single-stranded DNA (ssDNA) at the ends of a double-strand break (DSB) is essential to initiate repair by homology-directed mechanisms. Here we describe a Southern blot-based method to visualize the generation of ssDNA at the ends of site-specific DSBs generated in the Saccharomyces cerevisiae genome.


Assuntos
DNA de Cadeia Simples/metabolismo , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Southern Blotting , Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Eletroforese , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...