Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Antioxidants (Basel) ; 13(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061902

RESUMO

Vitis vinifera L. is a natural source of bioactive compounds that is already used for cosmeceutical and nutraceutical approaches. However, their phytochemical and antioxidant properties, although studied, have not been fully explored. We aimed to characterize V. vinifera L. cv. Falanghina seed extracts in different polarity solvents (hexane, ethyl acetate, ethanol, and a mixture of acetone-water) for their phytochemical contents, including the total phenolic compound content (TPC), free radical scavenging capacities, and antioxidant ability on HepG2 cells. We directly profiled the functional quality of V. vinifera seed extracts against H2O2-induced oxidative stress in HepG2 cells, focusing on mitochondrial functions. The content of bioactive compounds was characterized by LC-MS. To assess the cytocompatibility of the extracts, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted. Results showed that extraction with ethyl acetate (18.12 mg GAE·g-1) and ethanol solvents (18.07 mg GAE·g-1), through Soxhlet, and with an acetone-water mixture (14.17 mg GAE·g-1), through maceration, yielded extracts rich in (poly)phenols, with good scavenging and antioxidant activity (98.32 I% for ethanol solvents and 96.31 I% for acetone-water mixture). The antioxidant effect of polyphenols is at least partially due to their capacity to maintain mitochondrial biogenesis and mitophagy, which elevates mitochondrial efficiency, resulting in diminished ROS production, hence re-establishing the mitochondrial quality control. These findings highlight the valorization of Vitis by-products to improve food functional characteristics.

2.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592878

RESUMO

The aim of this study was to provide a chemical profile and determine the antioxidant and antimicrobial activity of the essential oil (EO) and lipid extracts of Thymus serpyllum L. herbal dust obtained via conventional (hydrodistillation (HD) and Soxhlet extraction (SOX)) and novel extraction techniques (supercritical fluid extraction (SFE)). In addition, a comparative analysis of the chemical profiles of the obtained EO and extracts was carried out, as well as the determination of antioxidant, antibacterial and antifungal activity of the lipid extracts. According to the aforementioned antioxidant and antimicrobial activities and the monoterpene yield and selectivity, SFE provided significant advantages compared to the traditional techniques. In addition, SFE extracts could be considered to have great potential in terms of their utilization in the pharmaceutical and cosmetic industries, as well as appropriate replacements for synthetic additives in the food industry.

3.
Sci Total Environ ; 917: 170372, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280603

RESUMO

In this study, recovery of phenolic substances with Soxhlet extraction, (SE) ultrasound-assisted extraction (UAS), and supercritical CO2 (SC-CO2) extraction methods from chemical sludge obtained with chemical precipitation (FeCl3/PACS, Ca(OH)2/PACS, perlite/PACS, FeCl3/cationic polyelectrolyte) of lemon processing wastewater was investigated. The effect of used coagulants/flocculants and pH on COD and total phenolic substance content (TPC) removal was researched. Recovered phenolic substance profiles were also determined with HPLC-DAD. Additionally, response surface methodology was used to determine optimum treatment conditions. ANOVA analysis showed that pH is a more important variable than coagulant/flocculant doses for all chemical precipitation experimental sets. The highest removal efficiencies for COD and TPC was obtained in FeCl3/PACS (COD: 72.0 %, TPC: 93.7 %). Optimum dose values were determined as pH: 4, FeCl3: 3000 mg/L, PACS: 400 mg/L for FeCl3/PACS, pH: 6.5, Ca(OH)2: 1500 mg/L, PACS: 300 mg/L for Ca(OH)2/PACS, pH: 5.5, PACS: 7000 mg/L, perlite: 50 g/L for perlite/PACS, pH: 4.5, FeCl3: 500 mg/L, polyelectrolyte: 4 mg/L for FeCl3/polyelectrolyte. TPC removal efficiencies were determined as 55 %, 35 %, 57 % and 58 % in these conditions, respectively. Maximum TPC in extracts was determined as 39.03 mg GAE/g extract, 8.81 mg GAE/g extract, and 4.34 mg GAE/g extract for SE, UAS, and SC-CO2, respectively. TPC recovery efficiencies (RTPC) for all chemical sludge were SE > UAS > SC-CO2. Additionally, the TPC profile has shown a difference depending on the extraction method. According to the results of this study, it was concluded that the coagulation-flocculation process may be a suitable alternative for fruit juice processing industry wastewater in terms of both reducing environmental pollution and recovering polyphenolics from formed sludge. Consequently, this study presented a different perspective on the recovery from wastes with valuable substance recovery from chemical sludge.


Assuntos
Óxido de Alumínio , Cloretos , Compostos Férricos , Esgotos , Dióxido de Silício , Águas Residuárias , Esgotos/química , Frutas , Dióxido de Carbono , Polieletrólitos , Eliminação de Resíduos Líquidos/métodos , Precipitação Química , Floculação , Extratos Vegetais
4.
Wei Sheng Yan Jiu ; 52(6): 907-911, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38115654

RESUMO

OBJECTIVE: Comparative analysis of two method for determining fat and analysis of fatty acid content in tea samples. METHODS: The content of freefatand total fat in tea was determined by Soxhlet extraction method and acid hydrolysis method, and the content of fatty acids were determined by gas chromatography. The composition and content of fatty acids in 21 tea samples from 5 regions were analyzed. RESULTS: The freefat content of tea determined by Soxhlet extraction method was significantly lower than that determined by acid hydrolysis method. The totalfat content in tea determined by acid hydrolysis method was consistent with the total amount of fatty acids determined by gas chromatography, and their content conformed to the logical relationshipsimultaneously. The totalfat content in tea ranged from 0.6 to 4.1 g/100 g, which in green tea, white tea, yellow tea, and black tea were 2.2, 1.8, 1.6 and 0.6 g/100 g, respectively. The content of free fat in tea was less than 58%, with 42%-80% of the fat existing in a bound form. The fatty acids in tea were mainly unsaturated fatty acids, accounting for 67.52%-99.03% of the total fatty acids. There were differences in the composition of fatty acids in different types of tea, with the proportion of unsaturated fatty acids in yellow tea accounting for 98.84% of the total fatty acids, which was significantly higher than that of green tea, white tea, and black tea. The fatty acids with high content in green tea(except Tang chi xiaolan tea, Bawangjian green tea and Liuxi yuye tea)were α-linoleic acid, linoleic acid, and palmitic acid. CONCLUSION: Theacid hydrolysis method is more suitable for the determination of fat in tea samples. The composition and content of fat and fatty acids in tea vary depending onfactors such as the type of tea and the degree of fermentation.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Chá/química , Ácidos Linoleicos
5.
3D Print Addit Manuf ; 10(5): 1110-1121, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37873063

RESUMO

Additive manufacturing of polymers is gaining momentum in health care industries by providing rapid 3D printing of customizable designs. Yet, little is explored about the cytotoxicity of leachable toxins that the 3D printing process introduced into the final product. We studied three printable materials, which have various mechanical properties and are widely used in stereolithography 3D printing. We evaluated the cytotoxicity of these materials through exposing two fibroblast cell lines (human and mouse derived) to the 3D-printed parts, using overlay indirect contact assays. All the 3D-printed parts were measured toxic to the cells in a leachable manner, with flexible materials more toxic than rigid materials. Furthermore, we attempted to reduce the toxicity of the 3D-printed material by employing three treatment methods (further curing, passivation coating, and Soxhlet solvent extraction). The Soxhlet solvent extraction method was the most effective in removing the leachable toxins, resulting in the eradication of the material's toxicity. Passivation coating and further curing showed moderate and little detoxification, respectively. Additionally, mechanical testing of the materials treated with extraction methods revealed no significant impacts on its mechanical performances. As leachable toxins are broadly present in 3D-printed polymers, our cytotoxicity evaluation and reduction methods could aid in extending the selections of biocompatible materials and pave the way for the translational use of 3D printing.

6.
Food Sci Nutr ; 11(8): 4688-4699, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576032

RESUMO

Marine fish are high in essential omega-3 fatty acids, which are important for human health. This study evaluated the effects of four extraction methods (soxhlet extraction, SE; wet rendering, WR; acid silage, AS; microwave-assisted extraction, MAE) on the oil yield, physicochemical properties, fatty acid profile, and nutritional quality index (NQI) of pangus fish oil. The oil yield ranged from 13.50% to 21.80%, with MAE having the highest yield. Furthermore, MAE oil has the lowest free fatty acid (0.70%), peroxides (2.08 Meq/kg), and saponification (287.27 mg/g KOH) value. There were no significant differences (p > .05) in the refractive index and melting point of oils among extraction techniques. A total of 25 fatty acids were identified. However, the maximum PUFA, MUFA, and SFA recovery was observed in the SE (19.15 mg/100 g), MAE (7.99 mg/100 g), and AS (17.33 mg/100 g), respectively. In terms of NQI, SE had higher PUFA/SFA, HH, and LA/ALA ratios, while AS had higher EPA + DHA, n-3/n-6, AI, TI, and FLQ indices. Furthermore, the MAE approach yielded better ratios of n-3/n-6 and HPI index, whereas the WR method yielded a higher AI index. Therefore, MAE would be the most efficient method for extracting pangus fish oil by considering both technical feasibility and quality indices including extraction yield, best physical properties, oxidative stability, and fatty acid contents.

7.
Chemosphere ; 338: 139623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487986

RESUMO

This work presents an integrated approach for the extraction of lipids from marine macroalgae using RSM optimization and thermo-kinetic analysis. The lipids were extracted from marine macroalgal biomass using a Soxhlet extractor. The Soxhlet extraction parameters, including temperature (60-80 °C), solvent-to-algae ratio (3:1-7:1), algal particle size (0.05-0.25 mm), and extraction time (60-180 min), were optimized using RSM to achieve the maximum possible lipid extraction yield from marine macroalgae. The highest lipid extraction yield of 12.76% was obtained using the optimized conditions, which included an extraction temperature of 72 °C, a solvent-to-algae ratio of 5:1, an algal particle size of 0.16 mm, and an extraction time of 134 min. The kinetic analysis revealed an activation energy of 52.79 kJ mol-1 for the Soxhlet extraction process. The thermodynamic analysis of the Soxhlet extraction process demonstrated the following results: ΔH = 49.98 kJ mol-1, ΔS = -128.24 J K-1 mol-1, and ΔG = 93.98 kJ mol-1. The GC-MS analysis confirmed that the extracted algal lipids exhibited a composition of 14.20% palmitic acid, 4.89% stearic acid, and 76.97% oleic acid. The physiochemical analysis ensured that the extracted algal lipids possess excellent qualities, making them desirable for sustainable biofuel production.


Assuntos
Alga Marinha , Cinética , Temperatura , Termodinâmica , Solventes , Lipídeos/análise
8.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048999

RESUMO

A fundamental issue of waste management and the rail transport industry is the problem of utilizing used railroad ties. Wooden railroad ties are treated with a preservative, usually creosote. Due to their high toxicity, railroad ties are considered hazardous waste and must be utilized under various directives. It is proposed to utilize the troublesome waste by using the pyrolysis and torrefaction process. The research proves that the thermal method is effective for disposing of this type of waste. Torrefaction up to 250 °C gives high efficiency of impregnation removal, while pyrolysis up to 400 °C completely neutralizes waste. A series of experiments were conducted for various final pyrolysis temperatures to determine a minimum temperature for which the obtained solid products are free from creosote. Extraction with the use of the Soxhlet technique was performed for the raw materials and the obtained solid products-chars. The oil content for liquid fraction was also examined for each sample. As a result of the thermal treatment of the waste, fuel with combustion parameters better than wood was obtained. For a high final temperature of the process, the calorific value of char is close to that of hard coal.

9.
BMC Complement Med Ther ; 23(1): 85, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934252

RESUMO

BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical. AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p < 0.06, p = 0.00003) of lag phase for 6 h after the treatment with increased concentration. Based on the GC-MS analysis, 88 phytochemicals consist of fatty acids, esters, alkanes, phenols, fatty alcohols, sesquiterpenoids and macrocycle that possibly contributed to the antimicrobial properties were identified, 32 of which were previously characterized for their antimicrobial, antioxidant, and anti-inflammatory activities. CONCLUSION: Ethyl acetate crude extract was better than the other investigated solvents. The root and stem of C. alata showed significant antimicrobial efficacy against S. aureus in this study. The remaining 56 out of 88 phytochemicals of the plant should be intensively studied for more medicinal uses.


Assuntos
Anti-Infecciosos , Cassia , Staphylococcus aureus , Cassia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Celulite (Flegmão) , Ágar , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Folhas de Planta/química , Solventes/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise
10.
BMC Plant Biol ; 23(1): 162, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964494

RESUMO

BACKGROUND: Terminalia ivorensis (TI) is used in West African ethnomedicine for the treatment of conditions including ulcers, malaria and wounds. Despite its widespread use, the phytochemical profile of TI remains largely undetermined. This research investigated the effects of extraction method, season, and storage conditions on the phytochemical composition of TI to contribute towards understanding the potential benefits. METHODS: TI bark was collected in September 2014, September 2018 and February 2018 during the rainy or dry seasons in Eastern Region, Ghana. Samples were extracted sequentially with organic solvents (petroleum ether, chloroform, ethyl acetate and ethanol) or using water (traditional). Metabolites were identified by liquid chromatography-mass spectrometry/mass spectrometry and compared statistically by ANOVA. RESULTS: A total of 82 different phytochemicals were identified across all samples. A greater yield of the major phytochemicals (44%, p < 0.05) was obtained by water as compared with organic extraction. There was also a higher concentration of metabolites present in cold (63%, p < 0.05) compared with hot water extraction. A significantly (p < 0.05) higher number of phytochemicals were identified from TI collected in the dry (85%) compared to the rainy season (69%). TI bark stored for four years retained 84% of the major phytochemicals. CONCLUSION: This work provides important information on composition and how this is modified by growing conditions, storage and method of extraction informing progress on the development of TI as a prophylactic formulation or medicine.


Assuntos
Extratos Vegetais , Terminalia , Extratos Vegetais/química , Terminalia/química , Estações do Ano , Compostos Fitoquímicos/análise , Solventes/química , Água
11.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772010

RESUMO

The increasing volume of plastics from waste electric and electronic equipment (WEEE) nowadays is of major concern since the various toxic compounds that are formed during their handling enhance the difficulties in recycling them. To overcome these problems, this work examines solvent extraction as a pretreatment method, prior to thermochemical recycling by pyrolysis. The aim is to remove bromine from some polymeric blends, with a composition that simulates WEEE, in the presence of tetrabromobisphenol A (TBBPA). Various solvents-isopropanol, ethanol and butanol-as well as several extraction times, were investigated in order to find the optimal choice. Before and after the pretreatment, blends were analysed by X-ray fluorescence (XRF) to estimate the total bromine content. Blends were pyrolyzed before and after the soxhlet extraction in order to evaluate the derived products. FTIR measurements of the polymeric blends before and after the soxhlet extraction showed that their structure was maintained. From the results obtained, it was indicated that the reduction of bromine was achieved in all cases tested and it was ~34% for blend I and ~46% and 42% for blend II when applying a 6 h soxhlet with isopropanol and ethanol, respectively. When using butanol bromine was completely eliminated, since the reduction reached almost 100%. The latter finding is of great importance, since the complete removal of bromine enables the recycling of pure plastics. Therefore, the main contribution of this work to the advancement of knowledge lies in the use of a solvent (i.e., butanol) which is environmentally friendly and with a high dissolving capacity in brominated compounds, which can be used in a pretreatment stage of plastic wastes before it is recycled by pyrolysis.

12.
Foods ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38231740

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.

13.
J Food Sci ; 87(11): 4917-4929, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36300586

RESUMO

Brocade orange (Citrus sinensis L. Osbeck) peels (BOPs) are rich in a variety of phenols with multiple and strong bioactivities. This study sought to utilize a response surface methodology to optimize the parameters of accelerated solvent extraction (ASE) to obtain phenolic extracts from BOPs. Total phenolic and flavonoid content (TPC and TFC), profiles, and antioxidant activities of extracts for free, esterified-, and glycosylated-bound phenols from ASE were compared with those derived from Soxhlet extraction (SE) (80°C, 6 h) and heat-reflux extraction (HRE) (80°C, 3 h). Maximum practical TPC and TFC under optimal ASE conditions (15 min, 108°C, 82 bar, and three cycles) were determined to be 32.82 mg gallic acid equivalents/dry weight (DW) and 10.25 mg rutin equivalents/DW, respectively. The profiles, contents, and corresponding bioactivities of the extracts significantly depended on extraction method, particularly with regard to phenolic fraction. Generally, ASE and HRE were associated with higher levels of extraction efficiency and higher quality targeted bioactive compounds with stronger antioxidant activity. More importantly, ASE represents a simple, efficient, and time-saving technique for the extraction of phenols. Furthermore, the finding that different phenolic fractions contain variable profiles and contents of phenols is useful for efforts to obtain targeted individual bioactive ingredients and make better use of biomass residues.


Assuntos
Citrus sinensis , Citrus sinensis/química , Extratos Vegetais/química , Fenóis/química , Antioxidantes/química , Flavonoides
14.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35883882

RESUMO

The present study investigated the cyto-genotoxic and antigenotoxic effects of four different extracts of Equisetum arvense L. (common name: field horsetail) on human lymphocytes. Specifically, Soxhlet's prepared extracts from E. arvense L., using different solvents (S1: methanol (MeOH)-, S2: ethanol (EtOH)-, S3: water-, and S4: ethanol/water (EtOH-W)-) were analyzed for (a) their total phenolic and flavonoid content (TPC and TFC, respectively), (b) their antioxidant activity (AA), via the DPPH, FRAP and ABTS assays, and (c) their cyto-genotoxic and/or protective efficiency against the mutagenic agent mitomycin C, via the Cytokinesis Block MicroNucleus assay. All extracts showed increased TPC, TFC, and AA values in almost all cases. S1, S3 and S4 demonstrated no cytotoxic potential, whereas S2 was cytotoxic only at the highest concentrations. Genotoxicity was not observed in the tested extracts. The highest antigenotoxic activity was observed for EtOH-W (S4) extract, which was found to be rich in flavonoids, flavonoid-O-glycosides, phytosterols, phenolic and fatty acids as well as in minerals and mainly in K, Ca, Mg, Si and P, as assessed by using various mass spectrometry techniques. Those findings confirm that E. arvense L. extracts could be valuable candidates for medicinal applications and pharmaceutical products, thus alleviating the effects of more conventional drugs.

15.
Heliyon ; 8(4): e09250, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35450388

RESUMO

Traditional fossil fuels are our primary source of energy, but due to the rapidly increasing human population and their never-ending demands is diminishing the petroleum reserves quickly as they are in a limited stock inside the earth and the pollution caused by fossil fuels is a matter of great concern, so we need an alternative safe, clean & green source of fuel. Biodiesel is attracting everyone's eyes as an alternative and renewable energy. In this study, feedstock was prepared, and the oil was extracted from Thevetia peruviana seeds and transesterified. The transesterified biodiesel oil's physical and chemical properties were determined and compared with the universal standard values. The GC-MS and FTIR were used to determine fatty acids and esters present in the transesterified biodiesel oil. The novelty in this study is that the use of this novel method which produces an outstanding quality of Biodiesel oil, the methods employed in the analysis and determination of physicochemical properties and the chemical structure of the Thevetia Peruviana Biodiesel Oil and comparing these properties to check its usability as Biodiesel and the new type of non-edible oilseeds (Yellow Oleander) seeds used as a source of the biodiesel oil.

16.
Biomolecules ; 13(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671387

RESUMO

The seafood industry is often left out of the food waste discussion, but this sector is no exception, as it generates large amounts of various by-products. This study aimed to explore the potential of the microwave-assisted extraction (MAE) technique to obtain high-quality oil from fish by-products. The independent variables, which were time (1-30 min), microwave power (50-1000 W), and solid/liquid ratio (70-120 g/L) were combined in a 20-run experimental design coupled with the response surface methodology (RSM) for process optimization. The obtained oil yield values were fitted to a quadratic equation to build the theoretical models, which were statistically validated based on statistical criteria and used to predict the optimal MAE condition. The oil yields were significantly affected by the three independent variables through linear, quadratic, and/or interactive effects. Compared to a conventional Soxhlet extraction (SE), the optimal MAE conditions allowed between 60 and 100% of oil to be recovered in less than 19 min and with less solvent consumption. The fatty acid profiles of the oils obtained through SE and optimized MAE were characterized by gas chromatography with flame ionizing detection (GC-FID) after a derivatization process. These oils were constituted mainly of health, beneficial unsaturated fatty acids, such as oleic, docosahexaenoic (DHA), linoleic, and eicosapentaenoic (EPA) acids, which were not affected (p > 0.05) by the extraction methods. Interestingly, the oils obtained through MAE showed the best microbial growth inhibition results may have been due to thermolabile compounds, preserved via this unconventional non-thermal method. The oils also exhibited anti-inflammatory effects via nitric oxide production inhibition and cytotoxic potential especially, against breast and gastric adenocarcinoma cells. However, the threshold of toxicity should be further investigated. Overall, this work emerges as a future-oriented approach to upcycling fish by-products into high-quality oils that can be used in the formulation of pet food and other products.


Assuntos
Óleos de Peixe , Eliminação de Resíduos , Alimentos , Micro-Ondas , Ácidos Graxos/análise
17.
Nat Prod Res ; 36(16): 4193-4199, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34455879

RESUMO

The present research aims to give an added value to the chain production of Cannabis sativa L plant, taking advantage of the non-psychoactive residual biomass (stems and leaves). Total phenolic content (TPC) and total antioxidant capacity (TAC) were analysed. A factorial design 23 was carried out using extraction time (T), Particle size (PS), and solid-solvent ratio (SS) as factors. The extractions were made with ethanol at 96% as solvent. The maximum concentration of TPC found was 1264.61 mg GA/g DW at 6:250 g/mL, 8 h, and 109.28 µm for SS, T and PS, respectively. Similarly, the maximum TAC obtained was 0.467 mM Trolox equivalent, at 8 h, 6:250 g/mL and 109.28 µm for T, SS and PS, respectively. Additionally, the presence of oil was found in some samples of cannabis extracts for which FITR was performed, obtaining the presence of C-OH bonds associated with alcohols, phenols and possible cannabinoids.


Assuntos
Antioxidantes , Cannabis , Antioxidantes/química , Biomassa , Fenóis/análise , Extratos Vegetais/química , Solventes/química
18.
Nat Prod Res ; 36(3): 868-873, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32787584

RESUMO

SARS-CoV-2 (or COVID-19) has become a global risk and scientists are attempting to investigate antiviral vaccine. Berberis are important plants due to the presence of bioactive phytochemicals, especially berberine from the protoberberine group of benzylisoquinoline and recent studies have shown its potential in treating COVID-19. B. lycium Royle growing in subtropical regions of Asia had wide applications in Indian system of medicine. Rapid determination and novel optimisation method for berberine extraction has been developed by Soxhlet extraction utilising central composite design-response surface methodology (CCD-RSM). Berberine was detected by high-performance liquid chromatography (HPLC), and the highest yield (13.39%) was obtained by maintaining optimal extraction conditions i.e., extraction time (7.28 hrs), ethyl alcohol (52.21%) and solvent to sample ratio (21.78 v/w). Investigation of two geographic regions (Ramnagar and Srinagar) showed high berberine content in lower altitude. This novel optimisation technique has placed berberine as a potential candidate for developing pharmaceutical products for human health care.


Assuntos
Berberina , Berberis , COVID-19 , Lycium , Cromatografia Líquida de Alta Pressão , Humanos , Extratos Vegetais , Controle de Qualidade , SARS-CoV-2
19.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948437

RESUMO

Extraction of lipids from biological tissues is a crucial step in lipid analysis. The selection of appropriate solvent is the most critical factor in the efficient extraction of lipids. A mixture of polar (to disrupt the protein-lipid complexes) and nonpolar (to dissolve the neutral lipids) solvents are precisely selected to extract lipids efficiently. In addition, the disintegration of complex and rigid cell-wall of plants, fungi, and microalgal cells by various mechanical, chemical, and enzymatic treatments facilitate the solvent penetration and extraction of lipids. This review discusses the chloroform/methanol-based classical lipid extraction methods and modern modifications of these methods in terms of using healthy and environmentally safe solvents and rapid single-step extraction. At the same time, some adaptations were made to recover the specific lipids. In addition, the high throughput lipid extraction methodologies used for liquid chromatography-mass spectrometry (LC-MS)-based plant and animal lipidomics were discussed. The advantages and disadvantages of various pretreatments and extraction methods were also illustrated. Moreover, the emerging green solvents-based lipid extraction method, including supercritical CO2 extraction (SCE), is also discussed.


Assuntos
Parede Celular/química , Lipidômica/métodos , Lipídeos/isolamento & purificação , Solventes/química , Animais , Clorofórmio/química , Cromatografia Líquida , Química Verde , Espectrometria de Massas , Metanol/química
20.
ChemistryOpen ; 10(11): 1123-1128, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34738733

RESUMO

Removing the template from the pores after the polycondensation of the silica precursor is a necessary step in the synthesis of mesoporous silica materials. In our previous work, we developed a method for the efficient and spatially controlled functionalization of SBA-15. First, the silanol groups on the particle surface and in the pore entrances were passivated. After extraction of the template, a pretreatment step in N2 converted the silanol groups to the single and geminal state. Afterwards, an azide functionality was introduced exclusively into the mesopores. This ensured that the catalyst could afterwards be immobilized unambiguously in the mesopores. The mechanical stability of a material functionalized in such a spatially controlled manner is studied and compared to other template removal methods. Even though several studies investigated the influence of the calcination temperature, the presence or the absence of oxygen during the template removal, the specific conditions used during the herein reported selective functionalization procedure have not been covered yet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA