Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Cureus ; 16(5): e61270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947613

RESUMO

BACKGROUND: With COVID-19 becoming a common disease, primary care facilities such as clinics are required to efficiently triage patients at high risk of severe illness within the constraints of limited medical resources. However, existing COVID-19 severity risk scores require detailed medical history assessments, such as evaluating the severity of pneumonia via chest CT and accounting for past and comorbid conditions. Therefore, they may not be suitable for practical use in clinical settings with limited medical resources, including personnel and equipment. PURPOSE:  The goal is to identify key variables that predict the need for oxygen therapy in COVID-19 patients and develop a simplified clinical risk score based solely on vital signs to predict oxygen requirements. PATIENTS AND METHODS: A retrospective observational study of 584 outpatients with COVID-19 confirmed by polymerase chain reaction test visited Sasebo Chuo Hospital between April 28, 2022, and August 18, 2022. Analyses were conducted after adjustment for background factors of age and sex with propensity score matching. We used the Fisher test for nominal variables and the Kruskal-Wallis test for continuous variables. RESULTS: After adjusting for age and sex, several factors significantly correlated with the need for oxygen within seven days including body temperature (p < 0.001), respiratory rate (p = 0.007), SpO2 (p < 0.001), and the detection of pneumonia on CT scans (p = 0.032). The area under the receiver-operating characteristic curve for the risk score based on these vital signs and CT was 0.947 (95% confidence interval: 0.911-0.982). The risk score based solely on vital signs was 0.937 (0.900-0.974), demonstrating the ability to predict oxygen administration with no significant differences. CONCLUSIONS: Body temperature, advanced age, increased respiratory rate, decreased SpO2, and the presence of pneumonia on CT scans were significant predictors of oxygen need within seven days among the study participants. The risk score, based solely on vital signs, effectively and simply assesses the likelihood of requiring oxygen therapy within seven days with high accuracy. The risk score, which utilizes only age and vital signs and does not require a detailed patient history or CT scans, could streamline hospital referral processes for admissions.

2.
J Clin Med ; 13(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892993

RESUMO

Background/Objectives: During the COVID-19 pandemic and the burden on hospital resources, the rapid categorization of high-risk COVID-19 patients became essential, and lung ultrasound (LUS) emerged as an alternative to chest computed tomography, offering speed, non-ionizing, repeatable, and bedside assessments. Various LUS score systems have been used, yet there is no consensus on an optimal severity cut-off. We assessed the performance of a 12-zone LUS score to identify adult COVID-19 patients with severe lung involvement using oxygen saturation (SpO2)/fractional inspired oxygen (FiO2) ratio as a reference standard to define the best cut-off for predicting adverse outcomes. Methods: We conducted a single-centre prospective study (August 2020-April 2021) at Hospital del Mar, Barcelona, Spain. Upon admission to the general ward or intensive care unit (ICU), clinicians performed LUS in adult patients with confirmed COVID-19 pneumonia. Severe lung involvement was defined as a SpO2/FiO2 ratio <315. The LUS score ranged from 0 to 36 based on the aeration patterns. Results: 248 patients were included. The admission LUS score showed moderate performance in identifying a SpO2/FiO2 ratio <315 (area under the ROC curve: 0.71; 95%CI 0.64-0.77). After adjustment for COVID-19 risk factors, an admission LUS score ≥17 was associated with an increased risk of in-hospital death (OR 5.31; 95%CI: 1.38-20.4), ICU admission (OR 3.50; 95%CI: 1.37-8.94) and need for IMV (OR 3.31; 95%CI: 1.19-9.13). Conclusions: Although the admission LUS score had limited performance in identifying severe lung involvement, a cut-off ≥17 score was associated with an increased risk of adverse outcomes. and could play a role in the rapid categorization of COVID-19 pneumonia patients, anticipating the need for advanced care.

3.
JMIR Form Res ; 8: e54256, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838332

RESUMO

BACKGROUND: Over recent years, technological advances in wearables have allowed for continuous home monitoring of heart rate and oxygen saturation. These devices have primarily been used for sports and general wellness and may not be suitable for medical decision-making, especially in saturations below 90% and in patients with dark skin color. Wearable clinical-grade saturation of peripheral oxygen (SpO2) monitoring can be of great value to patients with chronic diseases, enabling them and their clinicians to better manage their condition with reliable real-time and trend data. OBJECTIVE: This study aimed to determine the SpO2 accuracy of a wearable ring pulse oximeter compared with arterial oxygen saturation (SaO2) in a controlled hypoxia study based on the International Organization for Standardization (ISO) 80601-2-61:2019 standard over the range of 70%-100% SaO2 in volunteers with a broad range of skin color (Fitzpatrick I to VI) during nonmotion conditions. In parallel, accuracy was compared with a calibrated clinical-grade reference pulse oximeter (Masimo Radical-7). Acceptable medical device accuracy was defined as a maximum of 4% root mean square error (RMSE) per the ISO 80601-2-61 standard and a maximum of 3.5% RMSE per the US Food and Drug Administration guidance. METHODS: We performed a single-center, blinded hypoxia study of the test device in 11 healthy volunteers at the Hypoxia Research Laboratory, University of California at San Francisco, under the direction of Philip Bickler, MD, PhD, and John Feiner, MD. Each volunteer was connected to a breathing apparatus for the administration of a hypoxic gas mixture. To facilitate frequent blood gas sampling, a radial arterial cannula was placed on either wrist of each participant. One test device was placed on the index finger and another test device was placed on the fingertip. SaO2 analysis was performed using an ABL-90 multi-wavelength oximeter. RESULTS: For the 11 participants included in the analysis, there were 236, 258, and 313 SaO2-SpO2 data pairs for the test device placed on the finger, the test device placed on the fingertip, and the reference device, respectively. The RMSE of the test device for all participants was 2.1% for either finger or fingertip placement, while the Masimo Radical-7 reference pulse oximeter RMSE was 2.8%, exceeding the standard (4% or less) and the Food and Drug Administration guidance (3.5% or less). Accuracy of SaO2-SpO2 paired data from the 4 participants with dark skin in the study was separately analyzed for both test device placements and the reference device. The test and reference devices exceeded the minimum accuracy requirements for a medical device with RMSE at 1.8% (finger) and 1.6% (fingertip) and for the reference device at 2.9%. CONCLUSIONS: The wearable ring meets an acceptable standard of accuracy for clinical-grade SpO2 under nonmotion conditions without regard to skin color. TRIAL REGISTRATION: ClinicalTrials.gov NCT05920278; https://clinicaltrials.gov/study/NCT05920278.

4.
Med. intensiva (Madr., Ed. impr.) ; 48(5): 272-281, mayo.-2024. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-ADZ-391

RESUMO

El síndrome de dificultad respiratoria aguda (SDRA), inicialmente descrito en 1967, se caracteriza por insuficiencia respiratoria aguda con hipoxemia profunda, disminución de la distensibilidad pulmonar e infiltrados bilaterales en la Rx de tórax. En 2012 la definición de Berlín estableció tres categorías con base en la hipoxemia (SDRA leve, moderado y grave), precisando aspectos temporales y permitiendo el diagnóstico con ventilación no invasiva. La pandemia de COVID-19 llevó a reconsiderar la definición, enfocándose en el monitoreo continuo de la oxigenación y la oxigenoterapia de alto flujo. En 2021 se propuso una nueva definición global de SDRA, basada en la definición de Berlín, pero incluyendo una categoría para pacientes no intubados, permitiendo el uso de saturación periférica de oxígeno medida con oximetría de pulso/fracción inspirada de oxígeno (SpO2/FiO2) y la ecografía pulmonar para el diagnóstico, y sin ningún requerimiento de soporte especial de la oxigenación en regiones con recursos limitados. Aunque persisten debates, la evolución continua busca adaptarse a las necesidades clínicas y epidemiológicas, y personalizar tratamientos. (AU)


Acute respiratory distress syndrome (ARDS), first described in 1967, is characterized by acute respiratory failure causing profound hypoxemia, decreased pulmonary compliance, and bilateral CXR infiltrates. After several descriptions, the Berlin definition was adopted in 2012, which established three categories of severity according to hypoxemia (mild, moderate and severe), specified temporal aspects for diagnosis, and incorporated the use of non-invasive ventilation. The COVID-19 pandemic led to changes in ARDS management, focusing on continuous monitoring of oxygenation and on utilization of high-flow oxygen therapy and lung ultrasound. In 2021, a New Global Definition based on the Berlin definition of ARDS was proposed, which included a category for non-intubated patients, considered the use of SpO2, and established no particular requirement for oxygenation support in regions with limited resources. Although debates persist, the continuous evolution seeks to adapt to clinical and epidemiological needs, and to the search of personalized treatments. (AU)


Assuntos
Humanos , Síndrome do Desconforto Respiratório do Recém-Nascido , Edema Pulmonar , Respiração Artificial , Hipóxia
5.
Med Intensiva (Engl Ed) ; 48(5): 272-281, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38644108

RESUMO

Acute respiratory distress syndrome (ARDS), first described in 1967, is characterized by acute respiratory failure causing profound hypoxemia, decreased pulmonary compliance, and bilateral CXR infiltrates. After several descriptions, the Berlin definition was adopted in 2012, which established three categories of severity according to hypoxemia (mild, moderate and severe), specified temporal aspects for diagnosis, and incorporated the use of non-invasive ventilation. The COVID-19 pandemic led to changes in ARDS management, focusing on continuous monitoring of oxygenation and on utilization of high-flow oxygen therapy and lung ultrasound. In 2021, a New Global Definition based on the Berlin definition of ARDS was proposed, which included a category for non-intubated patients, considered the use of SpO2, and established no particular requirement for oxygenation support in regions with limited resources. Although debates persist, the continuous evolution seeks to adapt to clinical and epidemiological needs, and to the search of personalized treatments.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/epidemiologia , COVID-19/complicações , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Recursos em Saúde , Oxigenoterapia , Terminologia como Assunto , Hipóxia/etiologia , Hipóxia/terapia
6.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667198

RESUMO

Wearable health devices (WHDs) are rapidly gaining ground in the biomedical field due to their ability to monitor the individual physiological state in everyday life scenarios, while providing a comfortable wear experience. This study introduces a novel wearable biomedical device capable of synchronously acquiring electrocardiographic (ECG), photoplethysmographic (PPG), galvanic skin response (GSR) and motion signals. The device has been specifically designed to be worn on a finger, enabling the acquisition of all biosignals directly on the fingertips, offering the significant advantage of being very comfortable and easy to be employed by the users. The simultaneous acquisition of different biosignals allows the extraction of important physiological indices, such as heart rate (HR) and its variability (HRV), pulse arrival time (PAT), GSR level, blood oxygenation level (SpO2), and respiratory rate, as well as motion detection, enabling the assessment of physiological states, together with the detection of potential physical and mental stress conditions. Preliminary measurements have been conducted on healthy subjects using a measurement protocol consisting of resting states (i.e., SUPINE and SIT) alternated with physiological stress conditions (i.e., STAND and WALK). Statistical analyses have been carried out among the distributions of the physiological indices extracted in time, frequency, and information domains, evaluated under different physiological conditions. The results of our analyses demonstrate the capability of the device to detect changes between rest and stress conditions, thereby encouraging its use for assessing individuals' physiological state. Furthermore, the possibility of performing synchronous acquisitions of PPG and ECG signals has allowed us to compare HRV and pulse rate variability (PRV) indices, so as to corroborate the reliability of PRV analysis under stationary physical conditions. Finally, the study confirms the already known limitations of wearable devices during physical activities, suggesting the use of algorithms for motion artifact correction.


Assuntos
Eletrocardiografia , Dedos , Resposta Galvânica da Pele , Frequência Cardíaca , Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Processamento de Sinais Assistido por Computador , Masculino , Adulto , Feminino
7.
J Thorac Dis ; 16(3): 1854-1865, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38617788

RESUMO

Background: Mask-wearing caused significant reductions in coronavirus disease 2019 (COVID-19) transmission. We aimed to determine whether face mask-wearing during exercise caused reductions in peripheral oxygen saturation (SpO2) and whether it affected secondary physiological measures [end-tidal carbon dioxide (EtCO2), respiratory rate (RR), heart rate (HR), expired breath temperature (EBT)]. Subjective measurements included ratings of perceived exertion (RPE), ratings of perceived breathlessness (RPB), and symptomology. Methods: A randomised cross-over trial examined no mask (NM), surgical mask (SM) and a buff mask (BM). Thirty participants (30-45 years) cycled at 60% power output for 30 min in three exercise sessions, 24 h apart, within 6 days. Each session recorded all measures at resting baseline (T0), 9 min (T1), 18 min (T2), and 27 min (T3). Dependent statistical tests determined significant differences between masks and time-points. Results: SpO2 decreased for SM and BM between T0 compared to T1, T2 and T3 (all P<0.005). BM caused significant reductions at T1 and T2 compared to NM (P<0.001 and P=0.018). Significant changes in EtCO2 and EBT occurred throughout exercise and between exercise stages for all mask conditions (P<0.001). As expected for moderate intensity exercise, RR and HR were significantly higher during exercise compared to T0 (P<0.001). RPB significantly increased for each condition at each time point (P<0.001). RPE was not significant between mask conditions at any exercise stage. Conclusions: SM and BM caused a mild but sustained reduction in SpO2 at commencement of exercise, which did not worsen throughout short (<30 min) moderate intensity exercise. Level of perception was similar, suggesting healthy people can wear masks during moderate exercise and activities of daily living.

8.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585762

RESUMO

Background: Recent studies showed that Black patients more often have falsely normal oxygen saturation on pulse oximetry compared to White patients. However, whether the racial differences in occult hypoxemia are mediated by other clinical differences is unknown. Methods: We conducted a retrospective case-control study utilizing two large ICU databases (eICU and MIMIC-IV). We defined occult hypoxemia as oxygen saturation on pulse oximetry within 92-98% despite oxygen saturation on arterial blood gas below 90%. We assessed associations of commonly measured clinical factors with occult hypoxemia using multivariable logistic regression and conducted mediation analysis of the racial effect. Results: Among 24,641 patients, there were 1,855 occult hypoxemia cases and 23,786 controls. In both datasets, Black patients were more likely to have occult hypoxemia (unadjusted odds ratio 1.66 [95%-CI: 1.41-1.95] in eICU and 2.00 [95%-CI: 1.22-3.14] in MIMIC-IV). In multivariable models, higher respiratory rate, PaCO2 and creatinine as well as lower hemoglobin were associated with increased odds of occult hypoxemia. Differences in the commonly measured clinical markers accounted for 9.2% and 44.4% of the racial effect on occult hypoxemia in eICU and MIMIC-IV, respectively. Conclusion: Clinical differences, in addition to skin tone, might mediate some of the racial differences in occult hypoxemia.

9.
Front Neurol ; 15: 1344000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533418

RESUMO

Objective: This study aimed to evaluate the SpO2 (transcutaneous oxygen saturation) -mortality link in elderly T2DM (diabetes mellitus type 2) patients with cerebral infarction and identify their optimal SpO2 range. Methods: In this investigation, we employed a comprehensive approach. Initially, we screened the MIMIC-IV database, identifying elderly T2DM patients with cerebral infarction, utilizing specific ICD-9 and ICD-10 codes. We then harnessed the power of restricted cubic splines to craft a visual representation of the correlation between SpO2 and 1-year mortality. To enhance our analysis, we harnessed Cox multivariate regression, allowing us to compute adjusted hazard ratios (HR) accompanied by 95% confidence intervals (CIs). Additionally, we crafted Cumulative Mortality Curve analyses, augmenting our study by engaging in rigorous subgroup analyses, stratifying our observations based on pertinent covariates. Results: In this study, 448 elderly T2DM patients with cerebral infarction were included. Within 1-year post-discharge, 161 patients (35.94%) succumbed. Employing Restricted Cubic Spline analysis, a statistically significant U-shaped non-linear relationship between admission ICU SpO2 levels and 1-year mortality was observed (P-value < 0.05). Further analysis indicated that both low and high SpO2 levels increased the mortality risk. Cox multivariate regression analysis, adjusting for potential confounding factors, confirmed the association of low (≤94.5%) and high SpO2 levels (96.5-98.5%) with elevated 1-year mortality risk, particularly notably high SpO2 levels (>98.5%) [HR = 2.06, 95% CI: 1.29-3.29, P-value = 0.002]. The cumulative mortality curves revealed the following SpO2 subgroups from high to low cumulative mortality at the 365th day: normal levels (94.5% < SpO2 ≤ 96.5%), low levels (SpO2 ≤ 94.5%), high levels (96.5% < SpO2 ≤ 98.5%), and notably high levels (>98.5%). Subgroup analysis demonstrated no significant interaction between SpO2 and grouping variables, including Sex, Age, Congestive heart failure, Temperature, and ICU length of stay (LOS-ICU; P-values for interaction were >0.05). Conclusions: Striking an optimal balance is paramount, as fixating solely on lower SpO2 limits or neglecting high SpO2 levels may contribute to increased mortality rates. To mitigate mortality risk in elderly T2DM patients with cerebral infarction, we recommend maintaining SpO2 levels within the range of 94.5-96.5%.

10.
Artif Intell Med ; 150: 102808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553148

RESUMO

The most prevalent sleep-disordered breathing condition is Obstructive Sleep Apnea (OSA), which has been linked to various health consequences, including cardiovascular disease (CVD) and even sudden death. Therefore, early detection of OSA can effectively help patients prevent the diseases induced by it. However, many existing methods have low accuracy in detecting hypopnea events or even ignore them altogether. According to the guidelines provided by the American Academy of Sleep Medicine (AASM), two modal signals, namely nasal pressure airflow and pulse oxygen saturation (SpO2), offer significant advantages in detecting OSA, particularly hypopnea events. Inspired by this notion, we propose a bimodal feature fusion CNN model that primarily comprises of a dual-branch CNN module and a feature fusion module for the classification of 10-second-long segments of nasal pressure airflow and SpO2. Additionally, an Efficient Channel Attention mechanism (ECA) is incorporated into the second module to adaptively weight feature map of each channel for improving classification accuracy. Furthermore, we design an OSA Severity Assessment Framework (OSAF) to aid physicians in effectively diagnosing OSA severity. The performance of both the bimodal feature fusion CNN model and OSAF is demonstrated to be excellent through per-segment and per-patient experimental results, based on the evaluation of our method using two real-world datasets consisting of polysomnography (PSG) recordings from 450 subjects.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/diagnóstico , Oximetria , Polissonografia , Redes Neurais de Computação
11.
Appl Physiol Nutr Metab ; 49(5): 659-666, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301228

RESUMO

We sought to assess the effects of repeated cold-water immersions (CWI) on respiratory, metabolic, and sympathoadrenal responses to graded exercise in hypoxia. Sixteen (2 female) participants (age: 21.2 ± 1.3 years; body fat: 12.3 ± 7.7%; body surface area 1.87 ± 0.16 m2, VO2peak: 48.7 ± 7.9 mL/kg/min) underwent 6 CWI in 12.0 ± 1.2 °C. Each CWI was 5 min, twice daily, separated by ≥4 h, for three consecutive days, during which metabolic data were collected. The day before and after the repeated CWI intervention, participants ran in normobaric hypoxia (FIO2 = 0.135) for 4 min at 25%, 40%, 60%, and 75% of their sea level peak oxygen consumption (VO2peak). CWI had no effect on VO2 (p > 0.05), but reduced the VE (CWI #1: 27.1 ± 17.8 versus CWI #6: 19.9 ± 12.1 L/min) (p < 0.01), VT (CWI #1: 1.3 ± 0.4 vs CWI #6: 1.1 ± 0.4 L) (p < 0.01), and VE:VO2 (CWI #1: 53.5 ± 24.1 vs CWI #6: 41.6 ± 20.5) (p < 0.01) during subsequent CWI. Further, post exercise plasma epinephrine was lower after CWI compared to before (103.3 ± 43.1; 73.4 ± 34.6 pg/mL) (p = 0.03), with no change in pre-exercising values (75.4 ± 30.7; 72.5 ± 25.9 pg/mL). While these changes were noteworthy, it is important to acknowledge there were no changes in pulmonary (VE, VT, and VE:VO2) or metabolic (VO2, SmO2, and SpO2) variables across multiple hypoxic exercise workloads following repeated CWI. CWI habituated participants to cold water, but this did not lead to adaptations during exercise in normobaric hypoxia.


Assuntos
Temperatura Baixa , Exercício Físico , Hipóxia , Imersão , Consumo de Oxigênio , Humanos , Feminino , Hipóxia/fisiopatologia , Masculino , Adulto Jovem , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Adaptação Fisiológica/fisiologia , Epinefrina/sangue , Água , Aclimatação/fisiologia , Adulto
12.
Bioengineering (Basel) ; 11(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391599

RESUMO

Video-based peripheral oxygen saturation (SpO2) estimation, utilizing solely RGB cameras, offers a non-contact approach to measuring blood oxygen levels. Previous studies set a stable and unchanging environment as the premise for non-contact blood oxygen estimation. Additionally, they utilized a small amount of labeled data for system training and learning. However, it is challenging to train optimal model parameters with a small dataset. The accuracy of blood oxygen detection is easily affected by ambient light and subject movement. To address these issues, this paper proposes a contrastive learning spatiotemporal attention network (CL-SPO2Net), an innovative semi-supervised network for video-based SpO2 estimation. Spatiotemporal similarities in remote photoplethysmography (rPPG) signals were found in video segments containing facial or hand regions. Subsequently, integrating deep neural networks with machine learning expertise enabled the estimation of SpO2. The method had good feasibility in the case of small-scale labeled datasets, with the mean absolute error between the camera and the reference pulse oximeter of 0.85% in the stable environment, 1.13% with lighting fluctuations, and 1.20% in the facial rotation situation.

13.
Neurosurg Rev ; 47(1): 45, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217753

RESUMO

BACKGROUND: Concerns about the adverse effects of excessive oxygen have grown over the years. This study investigated the relationship between high oxygen saturation and short-term prognosis of patients with spontaneous intracerebral hemorrhage (sICH) after liberal use of oxygen. METHODS: This retrospective cohort study collected data from the Medical Information Mart for Intensive Care III (MIMIC-III) database (ICU cohort) and a tertiary stroke center (general ward cohort). The data on pulse oximetry-derived oxygen saturation (SpO2) during the first 24 h in ICU and general wards were respectively extracted. RESULTS: Overall, 1117 and 372 patients were included in the ICU and general ward cohort, respectively. Among the patients from the ICU cohort, a spoon-shaped association was observed between minimum SpO2 and the risk of in-hospital mortality (non-linear P<0.0001). In comparison with minimum SpO2 of 93-97%, the minimum SpO2>97% was associated with a significantly higher risk of in-hospital mortality after adjustment for confounders. Sensitivity analysis conducted using propensity score matching did not change this significance. The same spoon-shaped association between minimum SpO2 and the risk of in-hospital mortality was also detected for the general ward cohort. In comparison with the group with 95-97% SpO2, the group with SpO2>97% showed a stronger association with, but non-significant risk for, in-hospital mortality after adjustment for confounders. The time-weighted average SpO2>97% was associated significantly with in-hospital mortality in both cohorts. CONCLUSION: Higher SpO2 (especially a minimum SpO2>97%) was unrewarding after liberal use of oxygen among patients with sICH and might even be potentially detrimental.


Assuntos
Saturação de Oxigênio , Oxigênio , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Prognóstico , Hemorragia Cerebral/cirurgia
14.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257528

RESUMO

Blood oxygen saturation (SpO2) is an essential indicator of a patient's general condition. However, conventional measurement methods have some issues such as time delay and interference by ambient light. Improved measurement methods must be developed, and there are no reports on intraoral measurements of SpO2 using wearable devices. Therefore, we aimed to establish an intraoral SpO2 measurement method for the first time. Twelve healthy adults participated in this study. The following steps were taken: (1) to identify the optimal measurement location, mid-perfusion index (PI) values were measured at six places on the mucosa of the maxilla, (2) to validate the optimal measurement pressure, PI values were obtained at different pressures, and (3) using the proposed mouthpiece device, SpO2 values in the oral cavity and on the finger were analyzed during breath-holding. The highest PI values were observed in the palatal gingiva of the maxillary canine teeth, with high PI values at pressures ranging from 0.3 to 0.8 N. In addition, changes in SpO2 were detected approximately 7 s faster in the oral cavity than those on the finger, which is attributed to their proximity to the heart. This study demonstrates the advantage of the oral cavity for acquiring biological information using a novel device.


Assuntos
Dedos , Boca , Adulto , Humanos , Extremidade Superior , Suspensão da Respiração , Gengiva
15.
J Sport Rehabil ; 33(2): 99-105, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176399

RESUMO

CONTEXT: Flossing is still a relatively new technique that has yielded varied results in the research literature; therefore, it requires further investigation. Previous research has shown that thigh tissue flossing might improve performance in countermovement jump, sprint time, maximum voluntary contraction, and rate of force development. DESIGN: The present study aims to investigate the effect of the floss band on performance during the Wingate test (30-WAT), muscle oxygen saturation (SpO2), and total hemoglobin in vastus lateralis. METHODS: Twenty-two students of physical education and sport (11 men and 11 women) were randomly selected to complete either the Wingate test with the application of a floss band in warm-up or the Wingate test without the use of a floss band, followed by the alternative 24 hours apart. RESULTS: Throughout the testing, the floss band did not affect performance values during the Wingate test (relative peak power, relative average power, and fatigue index). However, there was a medium to large effect difference during 1 minute prior to 30-WAT (PRE), during the 30-WAT, and 10-minute recovery (REC) in values of SpO2 and total hemoglobin. Use of floss band displayed a higher SpO2 during PRE, 30-WAT, and REC by ∼13.55%, d < 2; ∼19.06%, d = 0.89; and ∼8.55%, d = 0.59, respectively. CONCLUSION: Collectively, these findings indicate that the application of thigh flossing during warm-up has no effect on 30-WAT performance; however, SpO2 was significantly increased in all stages of testing. This could lead to potential improvement in repeated anaerobic exercise due to increased blood flow. Increased muscle oxygen saturation can also lead to improved tissue healing as oxygen supply is essential for tissue repair, wound healing, and pain management.


Assuntos
Teste de Esforço , Esportes , Masculino , Humanos , Feminino , Anaerobiose , Músculo Quadríceps/fisiologia , Hemoglobinas/metabolismo
16.
Crit Care Nurs Clin North Am ; 36(1): 69-98, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296377

RESUMO

Oxygen (O2) is a drug frequently used in newborn care. Adverse effects of hypoxia are well known but the damaging effects of excess oxygen administration and oxidative stress have only been studied in the last 2 decades. Many negative effects have been described, including retinopathy of prematurity . Noninvasive pulse oximetry (SpO2) is useful to detect hypoxemia but requires careful evaluation and understanding of the frequently changing relationship between O2 and hemoglobin to prevent hyperoxemia. Intention to treat SpO2 ranges should be individualized for every newborn receiving supplemental O2, according to gestational age, post-natal age, and clinical condition.


Assuntos
Saturação de Oxigênio , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/prevenção & controle , Recém-Nascido Prematuro , Oxigênio/efeitos adversos , Oximetria , Hipóxia/induzido quimicamente
17.
Med Biol Eng Comput ; 62(3): 829-842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052880

RESUMO

Sleep apnea is probably the most common respiratory disorder; respiration and blood oxygen saturation (SpO2) are major concerns in sleep apnea and are also the two main parameters checked by polysomnography (PSG, the gold standard for diagnosing sleep apnea). In this study, we used a simple, non-invasive monitoring system based on photoplethysmography (PPG) to continuously monitor SpO2 and heart rate (HR) for individuals at home. Various breathing experiments were conducted to investigate the relationship between SpO2, HR, and apnea under different conditions, where two techniques (empirical formula and customized formula) for calculating SpO2 and two methods (resting HR and instantaneous HR) for assessing HR were compared. Various adaptive filters were implemented to compare the effectiveness in removing motion artifacts (MAs) during the tests. This study fills the gap in the literature by comparing the performance of different adaptive filters on estimating SpO2 and HR during apnea. The results showed that up-down finger motion introduced more MA than left-right motion, and the errors in SpO2 estimation were increased as the frequency of movement was increased; due to the low sampling frequency features of these tests, the insertion of adaptive filter increased the noise in the data instead of eliminating the MA for SpO2 estimation; the normal least mean squares (NLMS) filter is more effective in removing MA in HR estimation than other filters.


Assuntos
Artefatos , Síndromes da Apneia do Sono , Humanos , Polissonografia , Algoritmos , Movimento (Física) , Oximetria , Fotopletismografia/métodos
18.
J Infect Chemother ; 30(5): 406-416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37984540

RESUMO

INTRODUCTION: In treating acute hypoxemic respiratory failure (AHRF) caused by coronavirus disease 2019 (COVID-19), clinicians choose respiratory therapies such as low-flow nasal cannula oxygenation, high-flow nasal cannula oxygenation, or mechanical ventilation after assessment of the patient's condition. Chest computed tomography (CT) imaging contributes significantly to diagnosing COVID-19 pneumonia. However, the costs and potential harm to patients from radiation exposure need to be considered. This study was performed to predict the quantitative extent of COVID-19 acute lung injury using clinical indicators such as an oxygenation index and blood test results. METHODS: We analyzed data from 192 patients with COVID-19 AHRF. Multiple logistic regression was used to determine correlations between the lung infiltration volume (LIV) and other pathophysiological or biochemical laboratory parameters. RESULTS: Among 13 clinical parameters, we identified the oxygen saturation/fraction of inspired oxygen ratio (SF ratio) and serum lactate dehydrogenase (LD) concentration as factors associated with the LIV. In the binary classification of an LIV of ≥20 % or not and with the borderline LD = 2.2 × [SF ratio]-182.4, the accuracy, precision, diagnostic odds ratio, and area under the summary receiver operating characteristic curve were 0.828, 0.818, 23.400, and 0.870, respectively. CONCLUSIONS: These data suggest that acute lung injury due to COVID-19 pneumonia can be estimated using the SF ratio and LD concentration without a CT scan. These findings may provide significant clinical benefit by allowing clinicians to predict acute lung injury levels using simple, minimally invasive assessment of oxygenation capacity and biochemical blood tests.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Pneumonia , Insuficiência Respiratória , Humanos , COVID-19/diagnóstico por imagem , Oxigênio , SARS-CoV-2 , Saturação de Oxigênio , Tomografia Computadorizada por Raios X , Lactato Desidrogenases , Estudos Retrospectivos
19.
Digit Health ; 9: 20552076231211550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936958

RESUMO

Objective: Sleep apnea is a common sleep disorder affecting a significant portion of the population, but many apnea patients remain undiagnosed because existing clinical tests are invasive and expensive. This study aimed to develop a method for easy sleep apnea screening. Methods: Three supervised machine learning algorithms, including logistic regression, support vector machine, and light gradient boosting machine, were applied to develop apnea screening models at two apnea-hypopnea index cutoff thresholds: ≥ 5 and ≥ 30 events/hours. The SpO2 recordings of the Sleep Heart Health Study database (N = 5786) were used for model training, validation, and test. Multiscale entropy analysis was performed to derive a set of multiscale attention entropy features from the SpO2 recordings. Demographic features including age, sex, body mass index, and blood pressure were also used. The dependency among the multiscale attention entropy features were handled with the independent component analysis. Results: For cutoff ≥ 5/hours, logistic regression model achieved the highest Matthew's correlation coefficient (0.402) and area under the curve (0.747), and reasonably good sensitivity (75.38%), specificity (74.02%), and positive predictive value (92.94%). For cutoff ≥ 30/hours, support vector machine model achieved the highest Matthew's correlation coefficient (0.545) and area under the curve (0.823), and good sensitivity (82.00%), specificity (82.69%), and negative predictive value (95.53%). Conclusions: Our models achieved better performance than existing methods and have the potential to be integrated with home-use pulse oximeters.

20.
Artif Intell Med ; 145: 102685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37925216

RESUMO

Reflectance-based photoplethysmogram (PPG) sensors provide flexible options of measuring sites for blood oxygen saturation (SpO2) measurement. But they are mostly limited by accuracy, especially when applied to different subjects, due to the diverse human characteristics (skin colors, hair density, etc.) and usage conditions of different sensor settings. This study addresses the estimation of SpO2 at non-standard measuring sites employing reflectance-based sensors. It proposes an automated construction of subject inclusion-exclusion criteria for SpO2 measuring devices, using a combination of unsupervised clustering, supervised regression, and model explanations. This is perhaps among the first adaptation of SHAP to explain the clusters gleaned from unsupervised learning methods. As a wellness application case study, we developed a pillow-based wearable device to collect reflectance PPGs from both the brachiocephalic and carotid arteries around the neck. The experiment was conducted on 33 subjects, each under totally 80 different sensor settings. The proposed approach addressed the variations of humans and devices, as well as the heterogeneous mapping between signals and SpO2 values. It identified effective device settings and characteristics of their applicable subject groups (i.e., subject inclusion-exclusion criteria). Overall, it reduced the root mean squared error (RMSE) by 16%, compared to an empirical formula and a plain SpO2 estimation model.


Assuntos
Oxigênio , Fotopletismografia , Humanos , Fotopletismografia/métodos , Oximetria/métodos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...