Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Reprod Biol Endocrinol ; 22(1): 87, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049033

RESUMO

BACKGROUND: Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS: We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS: As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS: In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.


Assuntos
Resposta ao Choque Térmico , RNA Interferente Pequeno , Espermátides , Espermatócitos , Testículo , Animais , Masculino , Espermátides/metabolismo , Espermatócitos/metabolismo , RNA Interferente Pequeno/genética , Ratos , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Testículo/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Estágio Paquíteno/genética , Ratos Sprague-Dawley , RNA de Interação com Piwi
2.
Ultrastruct Pathol ; 48(1): 42-55, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38085153

RESUMO

Recent advancements in nanotechnology has opened up enormous possibilities in diverse sectors such as industries, agriculture, environmental remediation, electronics, medicine and varied industries. Among metal oxide nanoparticles zinc oxide nanoparticles has gained considerable attention due to their fascinating physiochemical properties. Rapid growth in the use of zinc oxide nanoparticles (ZnONPs) in daily household products, food and feed additives, biological products, medicine, as antimicrobial agents, electronics and agriculture, creates serious toxic potential risks of these engineered nanoparticles on living organisms. The aim of present study was to assess the effects of synthesized chemical ZnONPs and green ZnONPs on testicular tissue of Capra hircus (goat) in vitro. The reproductive stress was analyzed by ultrastructural damage, change in frequency of apoptotic cells and alteration in steroidogenic enzyme activity. The transmission electron micrographs of testicular cells after treatment with chemical and green ZnONPs at three doses (10 µg/ml, 20 µg/ml and 30 µg/ml) for exposure duration 4 h and 8 h illustrated that chemical nanoparticles induced more alterations, identified as ruptured nuclear membrane, condensation and margination of chromatin material in somatic cells and germ cells in the seminiferous tubules, presence of apoptotic bodies in nucleus of spermatocytes and spermatids, reduction in number of cell organelles, vacuolization and hyalinization of cytoplasm. Maximum damage was observed after treatment of testicular tissues with 30 µg/ml of chemical ZnONPs for 8 h exposure duration. However, the green ZnONPs were found to be less toxic as evidenced by few apoptotic characteristics in testicular cells. The results of fluorescence assay by acridine orange staining showed significant increase in the percentage of apoptotic cells in chemical treated groups as compared to green and control groups. Decreased enzyme activity of 3ß-Hydroxysteroid dehydrogenase and 17ß-Hydroxysteroid dehydrogenase was assayed in chemical ZnONPs than green ZnONPs treated groups. Our results confirm that chemical ZnONPs are significantly more toxic in comparison to green ZnONPs and adversely affects the male fertility.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Masculino , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Testículo , Cabras , Nanopartículas/toxicidade , Nanopartículas/química , Nanopartículas Metálicas/toxicidade
3.
Cell Calcium ; 117: 102820, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979343

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream protein kinases, including CaMKI, CaMKIV, PKB/Akt, and AMPK; thus, regulates various Ca2+-dependent physiological and pathophysiological pathways. Further, CaMKKß/2 in mammalian species comprises multiple alternatively spliced variants; however, their functional differences or redundancy remain unclear. In this study, we aimed to characterize mouse CaMKKß/2 splice variants (CaMKKß-3 and ß-3x). RT-PCR analyses revealed that mouse CaMKKß-1, consisting of 17 exons, was predominantly expressed in the brain; whereas, mouse CaMKKß-3 and ß-3x, lacking exon 16 and exons 14/16, respectively, were primarily expressed in peripheral tissues. At the protein level, the CaMKKß-3 or ß-3x variants showed high expression levels in mouse cerebrum and testes. This was consistent with the localization of CaMKKß-3/-3x in spermatids in seminiferous tubules, but not the localization of CaMKKß-1. We also observed the co-localization of CaMKKß-3/-3x with a target kinase, CaMKIV, in elongating spermatids. Biochemical characterization further revealed that CaMKKß-3 exhibited Ca2+/CaM-induced kinase activity similar to CaMKKß-1. Conversely, we noted that CaMKKß-3x impaired Ca2+/CaM-binding ability, but exhibited significantly weak autonomous activity (approximately 500-fold lower than CaMKKß-1 or ß-3) due to the absence of C-terminal of the catalytic domain and a putative residue (Ile478) responsible for the kinase autoinhibition. Nevertheless, CaMKKß-3x showed the ability to phosphorylate downstream kinases, including CaMKIα, CaMKIV, and AMPKα in transfected cells comparable to CaMKKß-1 and ß-3. Collectively, CaMKKß-3/-3x were identified as functionally active and could be bona fide CaMKIV-kinases in testes involved in the activation of the CaMKIV cascade in spermatids, resulting in the regulation of spermiogenesis.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Espermátides , Masculino , Camundongos , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Espermátides/metabolismo , Fosforilação , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
4.
Biology (Basel) ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759575

RESUMO

The process by which spermatogonial stem cells (SSCs) continuously go through mitosis, meiosis, and differentiation to produce gametes that transmit genetic information is known as spermatogenesis. Recapitulation of spermatogenesis in vitro is hindered by the challenge of collecting spermatogonial stem cells under long-term in vitro culture conditions. Coilia nasus is a commercially valuable anadromous migrant fish found in the Yangtze River in China. In the past few decades, exploitation and a deteriorating ecological environment have nearly caused the extinction of C. nasus's natural resources. In the present study, we established a stable spermatogonial stem cell line (CnSSC) from the gonadal tissue of the endangered species C. nasus. The cell line continued to proliferate and maintain stable cell morphology, a normal diploid karyotype, and gene expression patterns after more than one year of cell culture (>80 passages). Additionally, CnSSC cells could successfully differentiate into sperm cells through a coculture system. Therefore, the establishment of endangered species spermatogonial stem cell lines is a model for studying spermatogenesis in vitro and a feasible way to preserve germplasm resources.

5.
Biol Reprod ; 109(3): 340-355, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37399121

RESUMO

ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility. Mutant testes demonstrated minimal transcriptome changes; however, ribosome association of many transcripts was reduced, suggesting ADAD1 may be required for their translational activation. Further, immunofluorescence of proteins encoded by select transcripts showed delayed protein accumulation. Additional analyses demonstrated impaired subcellular localization of multiple proteins, suggesting protein transport is also abnormal in Adad1 mutants. To clarify the mechanism giving rise to this, the manchette, a protein transport microtubule network, and the LINC (linker of nucleoskeleton and cytoskeleton) complex, which connects the manchette to the nuclear lamin, were assessed across spermatid development. Proteins of both displayed delayed translation and/or localization in mutant spermatids implicating ADAD1 in their regulation, even in the absence of altered ribosome association. Finally, ADAD1's impact on the NPC (nuclear pore complex), a regulator of both the manchette and the LINC complex, was examined. Reduced ribosome association of NPC encoding transcripts and reduced NPC protein abundance along with abnormal localization in Adad1 mutants confirmed ADAD1's impact on translation is required for a NPC in post-meiotic germ cells. Together, these studies lead to a model whereby ADAD1's influence on nuclear transport leads to deregulation of the LINC complex and the manchette, ultimately generating the range of physiological defects observed in the Adad1 phenotype.


Assuntos
Poro Nuclear , Espermátides , Camundongos , Animais , Masculino , Espermátides/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Transporte/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo
6.
Development ; 150(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283046

RESUMO

In mammals, a near complete resetting of DNA methylation (DNAme) is observed during germline establishment. This wave of epigenetic reprogramming is sensitive to the environment, which could impair the establishment of an optimal state of the gamete epigenome, hence proper embryo development. Yet, we lack a comprehensive understanding of DNAme dynamics during spermatogenesis, especially in rats, the model of choice for toxicological studies. Using a combination of cell sorting and DNA methyl-seq capture, we generated a stage-specific mapping of DNAme in nine populations of differentiating germ cells from perinatal life to spermiogenesis. DNAme was found to reach its lowest level at gestational day 18, the last demethylated coding regions being associated with negative regulation of cell movement. The following de novo DNAme displayed three different kinetics with common and distinct genomic enrichments, suggesting a non-random process. DNAme variations were also detected at key steps of chromatin remodeling during spermiogenesis, revealing potential sensitivity. These methylome datasets for coding sequences during normal spermatogenesis in rat provide an essential reference for studying epigenetic-related effects of disease or environmental factors on the male germline.


Assuntos
Metilação de DNA , Células Germinativas , Masculino , Gravidez , Feminino , Ratos , Animais , Metilação de DNA/genética , Espermatogênese/genética , DNA , Epigenoma , Mamíferos/genética
7.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174664

RESUMO

Studies on the gene regulation of spermatogenesis are of unusual significance for maintaining male reproduction and treating male infertility. Here, we have demonstrated, for the first time, that a loss of ZBTB40 function leads to abnormalities in the morphological and phenotypic characteristics of mouse spermatocytes and spermatids as well as male infertility. We revealed that Zbtb40 was expressed in spermatocytes of mouse testes, and it was co-localized with γH2AX in mouse secondary spermatocytes. Interestingly, spermatocytes of Zbtb40 knockout mice had longer telomeres, compromised double-strand break (DSB) repair in the sex chromosome, and a higher apoptosis ratio compared to wild-type (WT) mice. The testis weight, testicular volume, and cauda epididymis body weight of the Zbtb40+/- male mice were significantly lower than in WT mice. Mating tests indicated that Zbtb40+/- male mice were able to mate normally, but they failed to produce any pups. Notably, sperm of Zbtb40+/- mice showed flagellum deformities and abnormal acrosome biogenesis. Furthermore, a ZBTB40 mutation was associated with non-obstructive azoospermia. Our results implicate that ZBTB40 deficiency leads to morphological and phenotypic abnormalities of spermatocytes and spermatids and causes male infertility. This study thus offers a new genetic mechanism regulating mammalian spermatogenesis and provides a novel target for gene therapy in male infertility.


Assuntos
Proteínas de Ligação a DNA , Infertilidade Masculina , Espermatócitos , Animais , Humanos , Masculino , Camundongos , Infertilidade Masculina/genética , Camundongos Knockout , Sêmen , Espermatozoides , Testículo , Proteínas de Ligação a DNA/genética
8.
Wiad Lek ; 76(2): 292-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010164

RESUMO

OBJECTIVE: The aim: To de!ne regularities of testicular construction of the rats' offspring at 1-90 days of postnatal life after the introduction of female sex hormones to pregnant rats during the second and third periods of pregnancy. PATIENTS AND METHODS: Materials and methods: The study was conducted on the testes of white laboratory rats' offspring during three months of life. Pregnant rats were exposed to intravaginal injection of Utrozhestan during the second and third periods of pregnancy. histological methods were used. Analysis of the obtained results was conducted by means of statistical methods with the use of computer license program «Statistica for Windows 13¼ (StatSoft Inc., # JPZ804I382130ARCN10-J). RESULTS: Results: Administration of female sex hormones to pregnant female rats leads to a reducing of the relative area, occupied by the convoluted seminiferous tubules with lumen, and increasing in relative area, occupied by extracellular matrix, starting from the 30th and up to the 90th observation day in the offsprings' testes. During the third month after birth, in experimental group a decreasing of the testicles' spermatids differentiation degree is determined. CONCLUSION: Conclusions: During the study, the following results and conclusions were obtained: decreasing of the relative area, occupied by convoluted seminiferous tubules, increasing in relative area, occupied by extracellular matrix, also decreasing Leydig cells relative amount and a delaying of spermatid differentiation process after exposing to female sex hormones during pregnancy, especially during third period, can lead to disruption of spermatogenesis and spermiogenesis in the future.


Assuntos
Túbulos Seminíferos , Testículo , Gravidez , Masculino , Feminino , Humanos , Espermatogênese , Hormônios , Hormônios Esteroides Gonadais
9.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899892

RESUMO

GRTH/DDX25 is a testis-specific DEAD-box family of RNA helicase, which plays an essential role in spermatogenesis and male fertility. There are two forms of GRTH, a 56 kDa non-phosphorylated form and a 61 kDa phosphorylated form (pGRTH). GRTH-KO and GRTH Knock-In (KI) mice with R242H mutation (lack pGRTH) are sterile with a spermatogenic arrest at step 8 of spermiogenesis due to failure of round spermatids (RS) to elongate. We performed mRNA-seq and miRNA-seq analysis on RS of WT, KI, and KO to identify crucial microRNAs (miRNAs) and mRNAs during RS development by establishing a miRNA-mRNA network. We identified increased levels of miRNAs such as miR146, miR122a, miR26a, miR27a, miR150, miR196a, and miR328 that are relevant to spermatogenesis. mRNA-miRNA target analysis on these DE-miRNAs and DE-mRNAs revealed miRNA target genes involved in ubiquitination process (Ube2k, Rnf138, Spata3), RS differentiation, and chromatin remodeling/compaction (Tnp1/2, Prm1/2/3, Tssk3/6), reversible protein phosphorylation (Pim1, Hipk1, Csnk1g2, Prkcq, Ppp2r5a), and acrosome stability (Pdzd8). Post-transcriptional and translational regulation of some of these germ-cell-specific mRNAs by miRNA-regulated translation arrest and/or decay may lead to spermatogenic arrest in KO and KI mice. Our studies demonstrate the importance of pGRTH in the chromatin compaction and remodeling process, which mediates the differentiation of RS into elongated spermatids through miRNA-mRNA interactions.


Assuntos
MicroRNAs , Espermátides , Camundongos , Masculino , Animais , Espermátides/metabolismo , RNA Mensageiro/genética , MicroRNAs/metabolismo , RNA Helicases DEAD-box/metabolismo , Espermatogênese/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
J Biol Chem ; 299(4): 103058, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841478

RESUMO

In rodents, sphingomyelins (SMs) species with very-long-chain polyunsaturated fatty acid (VLCPUFA) are required for normal spermatogenesis. Data on the expression of enzymes with roles in their biosynthesis and turnover during germ cell differentiation and on possible effects on such expression of testosterone (Tes), known to promote this biological process, were lacking. Here we quantified, in isolated pachytene spermatocytes (PtS), round spermatids (RS), and later spermatids (LS), the mRNA levels from genes encoding ceramide (Cer), glucosylceramide (GlcCer), and SM synthases (Cers3, Gcs, Sms1, and Sms2) and sphingomyelinases (aSmase, nSmase) and assessed products of their activity in cells in culture using nitrobenzoxadiazole (NBD)-labeled substrates and [3H]palmitate as precursor. Transcript levels from Cers3 and Gcs were maximal in PtS. While mRNA levels from Sms1 increased with differentiation in the direction PtS→RS→LS, those from Sms2 increased between PtS and RS but decreased in LS. In turn, the nSmase transcript increased in the PtS→RS→LS order. During incubations with NBD-Cer, spermatocytes produced more GlcCer and SM than did spermatids. In total germ cells cultured for up to 25 h with NBD-SM, not only abundant NBD-Cer but also NBD-GlcCer were formed, demonstrating SM→Cer turnover and Cer recycling. After 20 h with [3H]palmitate, PtS produced [3H]SM and RS formed [3H]SM and [3H]Cer, all containing VLCPUFA, and Tes increased their labeling. In total germ cells, Tes augmented in 5 h the expression of genes with roles in VLCPUFA synthesis, decreased the mRNA from Sms2, and increased that from nSmase. Thus, Tes enhanced or accelerated the metabolic changes occurring to VLCPUFA-SM during germ cell differentiation.


Assuntos
Espermatogênese , Espermatozoides , Esfingomielinas , Testosterona , Animais , Masculino , Ratos , Ceramidas/metabolismo , Espermátides/metabolismo , Esfingomielinas/metabolismo , Testosterona/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo
11.
Exp Gerontol ; 173: 112086, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626969

RESUMO

The effects of aging on the reproductive health of men and the consequences for their offspring are becoming more widely recognized. Correlative epidemiological studies examining paternal age and offspring health suggest there are more frequent occurrences of genetic disorders in the children of older fathers. Given the genetic basis for paternal age-related disorders, we aim to characterize gene expression in developing germ cells. Round spermatids (RS) were collected from young (mean = 5.3 months) and aged (mean = 19.5 months) Brown Norway rats, representative of humans aged 20-30 years and 55+ years, respectively. Gene expression data were obtained by mRNA sequencing (n = 5), and were analysed for differential expression. Sequencing data display 211 upregulated and 9 downregulated transcripts in RS of aged rats, compared to young (log2FC >1, p < 0.05). Transcripts with increased expression are involved in several processes including sperm motility/morphology, sperm-egg binding, capacitation, and epigenetic inheritance. In addition, there are numerous dysregulated transcripts that regulate germ cell epigenetic marks and Sertoli-germ cell binding and communication. These results show an overall increase in RS gene expression with age, with spermatogenic functions being perturbed. Taken together, these findings help identify the genetic origin of the fertility, germ cell niche, and epigenetic effects observed with advanced paternal aging.


Assuntos
Sêmen , Espermátides , Masculino , Ratos , Humanos , Animais , Espermátides/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Espermatogênese/genética , Ratos Endogâmicos BN , Envelhecimento/genética , Envelhecimento/metabolismo , Expressão Gênica
12.
Biology (Basel) ; 11(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36101428

RESUMO

Coilia nasus is an important economic anadromous migratory fish of the Yangtze River in China. In recent years, overfishing and the deterioration of the ecological environment almost led to the extinction of the wild resources of C.nasus. Thus, there is an urgent need to protect this endangered fish. Recently, cell lines derived from fish have proven a promising tool for studying important aspects of aquaculture. In this study, a stable C. nasus gonadal somatic cell line (CnCSC) was established and characterized. After over one year of cell culture (>80 passages), this cell line kept stable growth. RT-PCR results revealed that the CnGSC expressed some somatic cell markers such as clu, fshr, hsd3ß, and sox9b instead of germ cell markers like dazl, piwi, and vasa. The strong phagocytic activity of CnGSC suggested that it contained a large number of Sertoli cells. Interestingly, CnGSC could induce medaka spermatogonial cells (SG3) to differentiate into elongated spermatids while co-cultured together. In conclusion, we established a C. nasus gonadal somatic cell line capable of sperm induction in vitro. This research provides scientific evidence for the long-term culture of a gonadal cell line from farmed fish, which would lay the foundation for exploring the regulatory mechanisms between germ cells and somatic cells in fish.

13.
Front Genet ; 13: 969985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046238

RESUMO

[This corrects the article DOI: 10.3389/fgene.2022.832677.].

14.
Reprod Biomed Online ; 45(2): 211-218, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534395

RESUMO

Spermatozoa can be recovered in half of patients with non-obstructive azoospermia (NOA) via testicular sperm extraction (TESE) or microTESE. Intracytoplasmic sperm injection (ICSI) with the recovered spermatozoa has been established at IVF clinics to help these patients. Those who fail to achieve spermatozoa in testicular samples usually turn to donor spermatozoa or adoption. Instead of spermatozoa, only round spermatids are present in testicular biopsy in some NOA patients, a form of globozoospermia. Of these men, those who are unwilling to use donor spermatozoa still have the option to have their own biological child. In recent years, round spermatid injection (ROSI) has been developed as a potential option, with about 100 healthy babies born. However, the outcomes have so far been poor, with low pregnancy rates. One reason for this could be oocyte activation deficiency (OAD). Different from regular ICSI, round spermatids after ROSI do not induce calcium oscillation, which is critical for later oocyte activation and embryo development. Therefore, optimal assisted oocyte activation (AOA) stimulation is needed to mimic the physiological events. So far, a number of methods have been examined, including vigorous cytoplasm aspiration, calcium chloride injection, calcium ionophore treatment and electroporation. Over 100 healthy babies have been born, with no developmental or physiological abnormalities compared with regular children or those born from IVF and ICSI procedures, although some studies have found epigenetic modification. More recent studies have shown that electroporation for AOA has more credits than those tested so far. The overall positive outcome of ROSI is still poor and unstable, so it has not become a routine procedure in IVF clinics. Success rates would be improved with further optimization of AOA to enable patients to have their own genetic offspring.


Assuntos
Sêmen , Espermátides , Azoospermia , Feminino , Humanos , Masculino , Oócitos , Gravidez , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides
15.
Front Genet ; 13: 832677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368708

RESUMO

Spermatogenesis, an efficient and complex system in male germline development, requires a series of elaborately regulated genetic events in which diploid spermatogonia differentiate into haploid spermatozoa. N6-methyladenosine (m6A) is an important epigenetic RNA modification that occurs during spermatogenesis. ALKBH5 is an m6A eraser and knocking out Alkbh5 increases the level of total m6A methylation and causes male infertility. In this study, comprehensive analyses of MeRIP-seq and RNA-seq data revealed differences between wild-type (WT) and Alkbh5 knockout (KO) mice. In pachytene spermatocytes (PA), 8,151 m6A peaks associated with 9,959 genes were tested from WT and 10,856 m6A peaks associated with 10,016 genes were tested from KO mice. In the round spermatids (RO), 10,271 m6A peaks associated with 10,109 genes were tested from WT mice and 9,559 m6A peaks associated with 10,138 genes were tested from KO mice. The peaks were mainly concentrated in the coding region and the stop codon of the GGAC motif. In addition, enrichment analysis showed significant m6A methylation genes in related pathways in spermatogenesis. Furthermore, we conducted joint analyses of the m6A methylome and RNA transcription, suggesting an m6A regulatory mechanism of gene expression. Finally, seven differentially expressed mRNAs from RNA-seq data in both PA and RO were verified using qPCR. Overall, our study provides new information on m6A modification changes between WT and KO in PA and RO, and may provide new insights into the molecular mechanisms of m6A modification in germ cell development and spermatogenesis.

16.
Int J Biol Macromol ; 209(Pt A): 542-551, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413326

RESUMO

Integrins are transmembrane receptors expressed in all nucleated mammalian cells, critically involved in cell-matrix adhesion and cell-cell interactions that modulate many signalling cascades. It is assumed that integrins also provide essential functions of the reproductive system. In this study, we describe the detailed localization and distribution of αV integrin in the plasma membrane of bull sperm head and tail. Integrin αV was observed in the area of forming acrosome in developing sperm since the stage of round spermatids and persists in the acrosome during epididymal maturation and ejaculation till the acrosomal exocytosis. We detected CD9 and CD81 tetraspanins as the potential partners of αV integrin. Their similar staining pattern in testicular tissue suggested the involvement of these molecules in the tetraspanin web of "testisomes". Moreover, the complex of αV with ß1 and ß3 integrin subunits cannot be excluded at least in sperm. The presented findings contribute to understanding the mutual action of integrins and tetraspanins during sperm development and maturation.


Assuntos
Integrina alfaV , Espermatozoides , Reação Acrossômica , Animais , Bovinos , Células Germinativas/metabolismo , Integrina alfaV/metabolismo , Integrinas/metabolismo , Masculino , Mamíferos/metabolismo , Espermatozoides/metabolismo
17.
Reprod Sci ; 29(3): 857-882, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015293

RESUMO

Gene expression during spermatogenesis undergoes significant changes due to a demanding sequence of mitosis, meiosis, and differentiation. We investigated the contribution of H3 histone modifications to gene regulation in the round spermatids. Round spermatids were purified from rat testes using centrifugal elutriation and Percoll density-gradient centrifugation. After enzymatic chromatin shearing, immuno-precipitation using antibodies against histone marks H3k4me3 and H3K9me3 was undertaken. The immunoprecipitated DNA fragments were subjected to massive parallel sequencing. Gene expression in round spermatids and sperm was analyzed by transcriptome sequencing using next-generation sequencing methods. ChIP-seq analysis showed significant peak enrichment in H3K4me3 marks in active chromatin regions and H3K9me3 peak enrichment in repressive regions. We found 53 genes which showed overlapping peak enrichment in both H3K4me3 and H3K9me3 marks. Some of the top H3K4me3-enriched genes were involved in sperm tail formation (Odf1, Odf3, Odf4, Oaz3, Ccdc42, Ccdc63, and Ccdc181), chromatin condensation (Dync1h1, Dynll1, and Kdm3a), and sperm functions such as acrosome reaction (Acrbp and Fabp9), energy generation (Gapdhs), and signaling for motility (Tssk1b, Tssk2, and Tssk4). Transcriptome sequencing in round spermatids found 64% transcripts of the H3K4me3-enriched genes at high levels and of about 25% of H3K9me3-enriched genes at very low levels. Transcriptome sequencing in sperm found that more than 99% of the ChIP-seq corresponding transcripts were also present in sperm. H3K4me3 enrichment in the round spermatids correlates significantly with gene expression and H3K9me3 correlates with gene silencing that contribute to sperm differentiation and setting the RNA payloads of sperm.


Assuntos
Perfilação da Expressão Gênica , Histonas/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Animais , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ratos , Ratos Sprague-Dawley
18.
F S Sci ; 2(4): 365-375, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34970648

RESUMO

OBJECTIVE: To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells. DESIGN: Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection. SETTING: Multiple academic laboratory settings. PATIENTS: Not applicable. INTERVENTIONS: Intracytoplasmic sperm(atid) injection of in vitro-derived spermatids from nhpESCs into rhesus macaque oocytes. MAIN OUTCOME MEASURES: Differentiation into spermatogenic cell lineages was measured through multiple assessments including ribonucleic acid sequencing and immunocytochemistry for various spermatogenic markers. In vitro spermatids were assessed for their ability to fertilize oocytes by intracytoplasmic sperm(atid) injection by assessing early fertilization events such as spermatid deoxyribonucleic acid decondensation and pronucleus formation/apposition. Preimplantation embryo development from the one-cell zygote stage to the blastocyst stage was also assessed. RESULTS: Nonhuman primate embryonic stem cells can be differentiated into advanced germ cell lineages, including haploid rSLCs. These rSLCs undergo deoxyribonucleic acid decondensation and pronucleus formation/apposition when microinjected into rhesus macaque mature oocytes, which, after artificial activation and coinjection of ten-eleven translocation 3 protein, undergo embryonic divisions with approximately 12% developing successfully into expanded blastocysts. CONCLUSIONS: This work demonstrates that rSLCs, generated in vitro from primate pluripotent stem cells, mimic many of the capabilities of in vivo round spermatids and perform events essential for preimplantation development. To our knowledge, this work represents, for the first time, that functional spermatid-like cells can be derived in vitro from primate pluripotent stem cells.


Assuntos
Injeções de Esperma Intracitoplásmicas , Espermátides , Animais , Blastocisto , DNA , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Feminino , Fertilização , Humanos , Macaca mulatta , Masculino , Gravidez
19.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948301

RESUMO

MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Maturação do Esperma/fisiologia , Espermatócitos/metabolismo , Testículo/metabolismo
20.
Reprod Biol Endocrinol ; 19(1): 144, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526015

RESUMO

In mammals, germline development undergoes dramatic morphological and molecular changes and is epigenetically subject to intricate yet exquisite regulation. Which epigenetic players and how they participate in the germline developmental process are not fully characterized. Spin1 is a multifunctional epigenetic protein reader that has been shown to recognize H3 "K4me3-R8me2a" histone marks, and more recently the non-canonical bivalent H3 "K4me3-K9me3/2" marks as well. As a robust Spin1-interacting cofactor, Spindoc has been identified to enhance the binding of Spin1 to its substrate histone marks, thereby modulating the downstream signaling; However, the physiological role of Spindoc in germline development is unknown. We generated two Spindoc knockout mouse models through CRISPR/Cas9 strategy, which revealed that Spindoc is specifically required for haploid spermatid development, but not essential for meiotic divisions in spermatocytes. This study unveiled a new epigenetic player that participates in haploid germline development.


Assuntos
Proteínas Correpressoras , Espermátides/fisiologia , Espermatogênese/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Divisão Celular/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Haploidia , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...