Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt B): 313-324, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245021

RESUMO

The water pollution caused by the abuse of antibiotics has significant harmful effects on the environment and human health. The photo-Fenton process is currently the most effective method for removing antibiotics from water, but it encounters challenges such as inadequate response to visible light, low yield and utilization of photogenerated electrons, and slow electron transport. In this study, spin state regulation was introduced into the photo-Fenton process, and the spin state of Co3+ was regulated through Ce displacement doping. The intermediate-spin state Ce-LaCoO3 could degrade 91.6 % of tetracycline within 120 min in the photo-Fenton system, which is 15.2 % higher than that of low-spin state LaCoO3. The improved degradation effect is attributed to the reasons that Ce-LaCoO3 in the intermediate-spin state have lower band gap, better charge transfer ability, and stronger adsorption capacity of H2O2, which can accelerate the redox cycle of Co2+/Co3+ and promote the generation of ·OH. This study presents a unique strategy for synthesizing efficient photo-Fenton materials to treat antibiotic wastewater effectively.

2.
Small ; 20(33): e2311848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38556630

RESUMO

Designing biomimetic nanomaterials with peroxidase (POD)-like activity at neutral pH remains a significant challenge. An S-doping strategy is developed to afford an iron single-atom nanomaterial (Fe1@CN-S) with high POD-like activity under neutral conditions. To the best of knowledge, there is the first example on the achievement of excellent POD-like activity under neutral conditions by regulating the active site structure. S-doping not only promotes the dissociation of the N─H bond in 3,3″,5,5″-tetramethylbenzidine (TMB), but also facilitates the desorption of OH* by the transformation of iron species' spin states from middle-spin (MS FeII) to low-spin (LS FeII). Meanwhile, LS FeII sites typically have more unfilled d orbitals, thereby exhibiting stronger interactions with H2O2 than MS FeII, which can enhance POD-like activity. Finally, a one-pot visual detection of glucose at pH 7 is performed, demonstrating the best selectivity and sensitivity than previous reports.

3.
Angew Chem Int Ed Engl ; 63(8): e202318967, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38153676

RESUMO

Lithium-mediated electrochemical nitrogen reduction reaction (Li-NRR) completely eschews the competitive hydrogen evolution reaction (HER) occurred in aqueous system, whereas the continuous deposition of lithium readily blocks the active sites and further reduces the reaction kinetics. Herein, we propose an innovative in situ Li migration strategy to realize that Li substitutes Mn sites in λ-MnO2 instead of evolving into the dead Li. Comprehensive characterizations corroborate that the intercalation of Li+ at high voltage breaks the structural integrity of MnO6 octahedron and further triggers unique Jahn-Teller distortions, which promotes the spin state regulation of Mn sites to generate the ameliorative eg orbital configuration and accelerates N≡N bond cleavage via eg -σ and eg -π* interaction. To this end, the resulted cationic disordered LiMnO4 delivers the recorded highest NH3 yield rate of 220 µg h-1 cm-2 and a Faradaic efficiency (FE) 83.80 % in organic electrolyte.

4.
Adv Mater ; 35(41): e2304022, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358536

RESUMO

Electrochemical oxygen evolution reaction (OER) kinetics are heavily correlated with hybridization of the transition metal d-orbital and oxygen intermediate p-orbital, which dictates the barriers of intermediate adsorption/desorption on the active sites of catalysts. Herein, a strategy is developed involving strain engineering and coordination regulation to enhance the hybridization of Ni 3d and O 2p orbitals, and the as-synthesized Ni-2,6-naphthalenedicarboxylic acid metal-organic framework (DD-Ni-NDA) nanosheets deliver a low OER overpotential of 260 mV to reach 10 mA cm-2 . By integrating an alkaline anion exchange membrane electrolyzer and Pt/C electrode, 200 and 500 mA cm-2 current densities are reached with cell voltages of 1.6 and 2.1 V, respectively. When loaded on a BiVO4 photoanode, the nanosheet enables highly active solar-driven water oxygen. Structural characterizations together with theoretical calculations reveal that the spin state of the centre Ni atoms is regulated by the tensile strain and unsaturated coordination defects in DD-Ni-NDA, and such spin regulation facilitates spin-dependent charge transfer of the OER. Molecular orbital hybridization analysis reveals the mechanism of OH* and OOH* adsorption energy regulation by changes in the DD-Ni-NDA spin state, which provides a deeper understanding of the electronic structure design of catalysts for the OER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA