Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.511
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 167-177, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39089125

RESUMO

The rational design of high-performance electrocatalysts is essential for promoting the industrialization of electrocatalytic water-splitting technology. Herein, phosphorus and sulfur co-doped nickel molybdate with rich-oxygen vacancies (P, S-NiMoO4) was prepared as an efficient bifunctional self-supporting water-splitting catalyst from the perspective of enhancing the conductivity and optimizing the electronic configurations. The incorporation of P, S and oxygen vacancies greatly enhances the conductivity and charge-transfer efficiency of NiMoO4. Additionally, P and S can serve as proton carriers and electron acceptors to enhance the catalytic activity by accelerating proton activation and high-valent metal generation in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As expected, P, S-NiMoO4 demonstrates efficient bifunctional catalytic activity with an overpotential of only 31/206 mV at 10 mA cm-2 for HER/OER in 1 M KOH. Meantime, the electrolyzer assembled with P, S-NiMoO4 as electrodes requires a voltage of only 1.55 V to achieve a water-splitting current density of 50 mA cm-2 along with good stability over 110 h. This work puts forward a novel approach based on elemental doping and vacancy engineering for the design of effective and enduring catalysts for water splitting.

2.
Nanotechnology ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089288

RESUMO

A key challenge in the field of plexcitonic quantum devices is the fabrication of solid-state, device-friendly plexcitonic nanostructures using inexpensive and scalable techniques. Lithography-free, bottom-up nanofabrication methods have remained relatively unexplored within the context plexcitonic coupling. In this work, a plexcitonic system consisting of thermally dewetted plasmonic gold nanoislands (AuNI) coated with a thin film of J-aggregates was investigated. Control over nanoisland size and morphology allowed for a range of plasmon resonances with variable detuning from the exciton. The extinction spectra of the hybrid AuNI/J-aggregate films display clear splitting into upper and lower hybrid resonances, while the dispersion curve shows anti-crossing behavior with an estimated Rabi splitting of 180 eV at zero detuning. As a proof of concept for quantum sensing, the AuNI/J-aggregate hybrid was demonstrated to behave as a plexcitonic sensor for hydrochloric acid vapor analyte. This work highlights the possibility of using thermally dewetted nanoparticles as a platform for high-quality, tunable, cost-effective, and scalable plexcitonic nanostructures for sensing devices and beyond.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39087733

RESUMO

Development of high-performing catalytic materials for selective and mild chemical transformations through adhering to the principles of sustainability remains a central focus in modern chemistry. Herein, we report the template-free assembly of a thermochemically robust covalent organic polymer (COP: 1) from 2,2'-bipyridine-5,5'-dicarbonyl dichloride and 2,4,6-tris(4-aminophenyl)triazine as [2 + 3] structural motifs. The two-dimensional (2D) layered architecture contains carboxamide functionality, delocalized π-cloud, and free pyridyl-N site-decked pores. Such trifunctionalization benefits this polymeric network exhibiting tandem alcohol oxidation-Knoevenagel condensation. In contrast to common metal-based catalysts, 1 represents a one of a kind metal-free alcohol oxidation reaction via extended π-cloud delocalization-mediated free radical pathway, as comprehensively supported from diverse control experiments. In addition to reasonable recyclability and broad substrate scope, the mild reaction condition underscores its applicability in benign synthesis of valuable product benzylidene malononitrile. Integration of 2,2'-bipyridyl units in this 2D COP favors anchoring non-noble metal ions to devise 1-M (M: Ni2+/ Co2+) that demonstrate outstanding electrochemical oxygen evolution reaction in alkaline media with high chronoamperometric stability. Electrochemical parameters of both 1-Co and 1-Ni outperform some benchmark, commercial, as well as a majority of contemporary OER catalysts. Specifically, the overpotential and Tafel slope (280 mV, 58 mV/dec) for 1-Ni is better than 1-Co (360 mV, 78 mV/dec) because of increased charge accumulation as well as a higher number of active sites compared to the former. In addition, the turnover frequency of 1-Ni is found to be 6 times higher than that of 1-Co and ranks among top-tier water oxidation catalysts. The results provide valuable insights in the field of metal-free tandem catalysis as well as promising electrochemical water splitting at the interface of task-specific functionality fuelling in polymeric organic networks.

4.
Small ; : e2404379, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096073

RESUMO

Surface reconstruction plays a pivotal role in enhancing the activity of the oxygen evolution reaction (OER), particularly in terms of the structural transformation from metal oxides to (oxy)hydroxides. Herein, a novel (oxy)hydroxide (FeCoNiCuMoOOH) with high entropy is developed by the electrochemical reconstitution of corresponding oxide (FeCoNiCuMoOx). Significantly, the FeCoNiCuMoOOH exhibits much higher OER electrocatalytic activity and durability with an overpotential as low as 201 mV at a current density of 10 mA cm-2, and with a Tafel slope of 39.4 mV dec-1. The FeCoNiCuMoOOH/NF presents high stability when testing under a constant current at 100 mA cm-2 within 1000 h. The surface reconstruction is a process of dissolution-reprecipitation of Cu and Mo species and co-hydroxylation of five metal species, which ultimately leads to the formation of FeCoNiCuMoOOH from FeCoNiCuMoOx. This study holds great significance in the realm of designing high-entropy (oxy)hydroxides catalysts with exceptional activity and stability for OER.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39092459

RESUMO

A Pt skin effect, i.e., an enrichment of Pt within the first 1-2 nm from the surface, is observed in as-prepared electrodeposited Ni-rich Ni-Pt thin films. This effect, revealed by Rutherford backscattering (RBS), is present for both dense thin films and mesoporous thin films synthesized by micelle-assisted electrodeposition from a chloride-based electrolyte. Due to the Pt skin effect, the Ni-rich thin films show excellent stability at the hydrogen evolution reaction (HER) in acidic media, during which a gradient in the Pt/Ni ratio is established along the thickness of the thin films, while the activity at the HER remains unaffected by this structural change. Further characterization by elastic recoil detection with He ions analysis shows that hydrogen profiles are similar to those of Pt: a surface hydrogen peak coincides with the Pt skin, and a gradient in hydrogen concentration is established during HER in acidic media, together with a considerable uptake in hydrogen. A comparative study shows that in alkaline media, hydrogen evolution has little to no effect on the structural properties of the thin films, even for much longer times of exposure. The mesoporous thin films, in addition to their higher efficiency at HER compared to dense thin films, also show lower internal stress, as determined by Rietveld refinement of grazing incidence X-ray diffraction patterns. The latter also reveal a fully single-phase and nanocrystalline structure for all thin films with varying Ni contents.

6.
Small ; : e2404552, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106240

RESUMO

Oxygen evolution reaction is the essential anodic reaction for water splitting. Designing tunable electronic structures to overcome its slow kinetics is an effective strategy. Herein, the molecular ammonium iron sulfate dodecahydrate is employed as the precursor to synthesize the C, N, S triatomic co-doped Fe(Al)OOH on Ni foam (C,N,S-Fe(Al)OOH-NF) with asymmetric electronic structure. Both in situ oxygen vacancies and their special electronic configuration enable the electron transfer between the d-p orbitals and get the increase of OER activity. Density functional theory calculation further indicates the effect of electronic structure on catalytic activity and stability at the oxygen vacancies. In alkaline solution, the catalyst C,N,S-Fe(Al)OOH-NF shows good catalytic activity and stability for water splitting. For OER, the overpotential of 10 mA cm-2 is 264 mV, the tafel slope is 46.4 mV dec-1, the HER overpotential of 10 mA cm-2 is 188 mV, the tafel slope is 59.3 mV dec-1. The stability of the catalyst can maintain ≈100 h. This work has extraordinary implications for understanding the mechanistic relationship between electronic structure and catalytic activity for designing friendly metal (oxy)hydroxide catalysts.

7.
J Colloid Interface Sci ; 677(Pt A): 491-501, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106774

RESUMO

The single atom catalysts (SACs) show immense promise as catalytic materials. By doping the single atoms (SAs) of precious metals onto substrates, the atomic utilization of these metals can be maximized, thereby reducing catalyst costs. The electronic structure of precious metal SAs is significantly influenced by compositions of doped substrates. Therefore, optimizing the electronic structure through appropriate doping of substrates can further enhance catalytic activity. Here, Pt single atoms (Pt SAs) are doped onto transition metal sulfide substrate NiS2 (Pt SAs-NiS2) and phosphide substrate Ni2P (Pt SAs-Ni2P) to design and prepare catalysts. Compared to the Pt SAs-NiS2 catalyst, the Pt SAs-Ni2P catalyst exhibits better hydrogen evolution catalytic performance and stability. Under 1 M KOH conditions, the hydrogen evolution mass activity current density of the Pt SAs-Ni2P catalyst reaches 0.225 A mgPt-1 at 50 mV, which is 33 times higher than that of commercial Pt/C catalysts. It requires only 44.9 mV to achieve a current density of 10 mA cm-2. In contrast, for the Pt SAs-NiS2 catalyst, the hydrogen evolution mass activity current density is 0.178 A mgPt-1, requiring 77.8 mV to achieve a current density of 10 mA cm-2. Theoretical calculations indicate that in Pt SAs-Ni2P, the interaction between Pt SAs and the Ni2P substrate causes the Pt d-band center to shift downward, enhancing the H2O desorption and providing optimal H binding sites. Additionally, the hollow octahedral morphology of Ni2P provides a larger surface area, exposing more reactive sites and improving reaction kinetics. This study presents an effective pathway for preparing high-performance hydrogen evolution electrocatalysts by selecting appropriate doped substrates to control the electronic structure of Pt SAs.

8.
Small ; : e2404786, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105378

RESUMO

Optimizing the electronic structure of electrocatalysts is of particular importance to enhance the intrinsic activity of active sites in water/seawater. Herein, a series of medium-entropy metal oxides of X(NiMo)O2/NF (X = Mn, Fe, Co, Cu and Zn) is designed via a rapid carbothermal shocking method. Among them, the optimized medium-entropy metal oxide (FeNiMo)O2/NF delivered remarkable HER performance, where the overpotentials as low as 110 and 141 mV are realized at 1000 mA cm-2 (@60 °C) in water and seawater. Meanwhile, medium-entropy metal oxide (FeNiMo)O2/NF only required overpotentials of as low as 330 and 380 mV to drive 1000 mA cm-2 for OER in water and seawater (@60 °C). Theoretical calculations showed that the multiple-metal synergistic effect in medium-entropy metal oxides can effectively enhance the d-p orbital hybridization of Mo─O bond, reduce the energy barrier of H* adsorbed at the Mo sites. Meanwhile, Fe sites in medium-entropy metal oxide can act as the real OER active center, resulting in a good bifunctional activity. In all, this work provides a feasible strategy for the development of highly active and stable medium-entropy metal oxide electrocatalysts for ampere-level water/seawater splitting.

9.
Small ; : e2404438, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101630

RESUMO

Hematite (α-Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC-WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α-Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal-organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2-substitution of different organic functional groups (─H, ─Br, ─NO2 and ─NH2). The α-Fe2O3 photoanode loaded with FeNi-NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm-2) at 1.23 VRHE, which is 2.33 times that of the pure α-Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α-Fe2O3 photoanodes. The ─NH2 group as an electron-donor group can effectively regulate the electron distribution and band structure of α-Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC-WS performance of α-Fe2O3 photoanode.

10.
J Comput Chem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970347

RESUMO

In this study, nanocomposites of g-C3N4/MN4 (where M is Mn, Fe and Co) have been designed using advanced density functional theory (DFT) calculations. A comprehensive analysis was conducted on the geometry, electronic, optical properties, work function, charge transfer interaction and adhesion energy of the g-C3N4/MN4 heterostructures and concluded that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions exhibit higher photocatalytic performance than individual units. The better photocatalytic activity can be attributed mainly by two facts; (i) the visible light absorption of both g-C3N4/FeN4 and g-C3N4/CoN4 interfaces are higher compared to its isolated analogs and (ii) a significant enhancement of band gap energy in g-C3N4/FeN4 and g-C3N4/CoN4 heterostructures limited the electron-hole recombination significantly. The potential of the g-C3N4/MN4 heterojunctions as a photocatalyst for the water splitting reaction was assessed by examining its band alignment for water splitting reaction. Importantly, while the electronic and magnetic properties of MN4 systems were studied, this is the first example of inclusion of MN4 on graphene-based material (g-C3N4) for studying the photocatalytic activity. The state of the art DFT calculations emphasis that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions are half metallic photocatalysts, which is limited till date.

11.
Small ; : e2403908, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970558

RESUMO

Hydrogen is a fuel of the future that has the potential to replace conventional fossil fuels in several applications. The quickest and most effective method of producing pure hydrogen with no carbon emissions is water electrolysis. Developing highly active electrocatalysts is crucial due to the slow kinetics of oxygen and hydrogen evolution, which limit the usage of precious metals in water splitting. Interfacial engineering of heterostructures has sparked widespread interest in improving charge transfer efficiency and optimizing adsorption/desorption energetics. The emergence of a built-in-electric field between RuO2 and MgFe-LDH improves the catalytic efficiency toward water splitting reaction. However, LDH-based materials suffer from poor conductivity, necessitating the design of 1D materials by integration of RuO2/ MgFe-LDH to enhance catalytic properties through large surface areas and high electronic conductivity. Experimental results demonstrate lower overpotentials (273 and 122 mV at 10 mA cm-2) and remarkable stability (60 h) for the RuO2/MgFe-LDH/Fiber heterostructure in OER (1 m KOH) and HER (0.5 m H2SO4) reactions. Density functional theory (DFT) unveils a synergistic mechanism at the RuO2/MgFe-LDH interface, leading to enhanced catalytic activity in OER and improved adsorption energy for hydrogen atoms, thereby facilitating HER catalysis.

12.
Small ; : e2403176, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949041

RESUMO

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

13.
Small ; : e2403600, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949410

RESUMO

BiVO4-based photoanode is one of the most promising photoanodes for photoelectrocatalytic water splitting. However, the serious problem of interface charge recombination limits its further development. Here, a Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi photoanode is constructed with double hole transport layer and an energy level gradient to achieve an effective photo-generated holes extraction and accumulation at the surface electrocatalyst. The conjugated polycarbazole framework CPF-TCzB is used as hole transport layer to eliminate the charge recombination center between Mo:BiVO4 and NiCoBi electrocatalyst and realize the extraction and storage of photo-generated hole; NiOx nanoparticles are further inserted between Mo:BiVO4 and CPF-TCzB to form a gradient energy level, eliminating the energy level barrier and optimizing band alignment. As a result, Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi achieves a much higher photocurrent densities of 3.14 mA cm-2 than that of Mo:BiVO4 (0.42 mA cm-2) at 0.6 V versus RHE. This work provides an specific way to adjust the band structure of BiVO4-based photoanodes and realize efficient hole extraction and storage for PEC water splitting.

14.
Small ; : e2401273, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958069

RESUMO

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

15.
J Colloid Interface Sci ; 675: 302-312, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972118

RESUMO

Electrocatalytic water splitting produces green and pollution-free hydrogen as a clean energy carrier, which can effectively alleviate energy crisis. In this paper, bimetallic and selenium doped cobalt molybdate (Se-CoMoO4) nanosheets with rough surface are resoundingly prepared. The multihole Se-CoMoO4 nanosheets display ultrathin and rectangular architecture with the dimensions of âˆ¼ 3.5 µm and 700 nm for length and width, respectively. The Se-CoMoO4 electrocatalyst shows remarkable water electrolysis activity and stability. The overpotentials of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are 270 and 63.3 mV at 10 mA cm-2, along with low Tafel slopes of 51.6 and 62.0 mV dec-1. Furthermore, the Se-CoMoO4 couple electrolyzer merely requires a cell voltage of 1.48 V to achieve 10 mA cm-2 current density and presents no apparent attenuation for 30 h. This investigation declares that the hybridization of transition bimetallic oxide with nonmetallic adulteration can afford a tactic for the preparation of bifunctional non-precious metal-based electrocatalysts.

16.
J Colloid Interface Sci ; 675: 379-390, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972125

RESUMO

Nowadays, the inherent re-stacking nature and weak d-p hybridization orbital interactions within MXene remains significant challenges in the field of electrocatalytic water splitting, leading to unsatisfactory electrocatalytic activity and cycling stability. Herein, this work aims to address these challenges and improve electrocatalytic performance by utilizing cobalt nanoparticles intercalation coupled with enhanced π-donation effect. Specifically, cobalt nanoparticles are integrated into V2C MXene nanosheets to mitigate the re-stacking issue. Meanwhile, a notable charge redistribution from cobalt to vanadium elevates orbital levels, reduces π*-antibonding orbital occupancy and alleviates Jahn-Teller distortion. Doping with tellurium induces localized electric field rearrangement resulting from the changes in electron cloud density. As a result, Co-V2C MXene-Te acquires desirable activity for hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 80.8 mV and 287.7 mV, respectively, at the current density of -10 mA cm-2 and 10 mA cm-2. The overall water splitting device achieves an impressive low cell voltage requirement of 1.51 V to obtain 10 mA cm-2. Overall, this work could offer a promising solution when facing the re-stacking issue and weak d-p hybridization orbital interactions of MXene, furnishing a high-performance electrocatalyst with favorable electrocatalytic activity and cycling stability.

17.
Res Synth Methods ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965066

RESUMO

The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be reliably used as a clinical guidance. Among the existing methods for detecting inconsistency, two commonly used models are the design-by-treatment interaction model and the side-splitting models. While the original side-splitting model was initially estimated using a Bayesian approach, in this context, we employ the frequentist approach. In this paper, we review these two types of models comprehensively as well as explore their relationship by treating the data structure of network meta-analysis as missing data and parameterizing the potential complete data for each model. Through both analytical and numerical studies, we verify that the side-splitting models are specific instances of the design-by-treatment interaction model, incorporating additional assumptions or under certain data structure. Moreover, the design-by-treatment interaction model exhibits robust performance across different data structures on inconsistency detection compared to the side-splitting models. Finally, as a practical guidance for inconsistency detection, we recommend utilizing the design-by-treatment interaction model when there is a lack of information about the potential location of inconsistency. By contrast, the side-splitting models can serve as a supplementary method especially when the number of studies in each design is small, enabling a comprehensive assessment of inconsistency from both global and local perspectives.

18.
J Colloid Interface Sci ; 677(Pt A): 90-98, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39083895

RESUMO

The recombination of photogenerated electron-hole pairs of the photoanode seriously impairs the application of bismuth vanadate (BiVO4) in photoelectrochemical water splitting. To address this issue, we prepared a Yb:BiVO4/Co3O4/FeOOH composite photoanode by employing drop-casting and soaking methods to attach Co3O4/FeOOH cocatalysts to the surface of ytterbium-doped BiVO4. The prepared Yb:BiVO4/Co3O4/FeOOH photoanode demonstrates a high photocurrent density of 4.89 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), which is 5.1 times that of bare BiVO4 (0.95 mA cm-2). Detailed characterization and testing demonstrated that Yb doping narrows the band gap and significantly enhances the carrier density. Furthermore, Co3O4 serves as a hole transfer layer to expedite hole migration and diminish recombination, while FeOOH offers additional active sites and minimizes surface trap states, thus boosting stability. The synergistic effects of Yb doping and Co3O4/FeOOH cocatalyst significantly improved the reaction kinetics and overall performance of PEC water oxidation. This work provides a strategy for designing efficient photoanodes for PEC water oxidation.

19.
Small ; : e2404285, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073246

RESUMO

The solar-driven overall water splitting (2H2O→2H2 + O2) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O2, such as hydrogen peroxide (H2O2, 2H2O→H2 + H2O2). Compared with overall water splitting, this approach is more kinetically feasible and generates more high-value products of H2 and H2O2. In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H2O2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.

20.
Small ; : e2405080, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073300

RESUMO

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...