Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Methods Cell Biol ; 188: 73-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880529

RESUMO

Neuropathic pain, defined as the most terrible of all tortures, which a nerve wound may inflict, is a common chronic painful condition caused by gradual damage or dysfunction of the somatosensory nervous system. As with many chronic diseases, neuropathic pain has a profound economic and emotional impact worldwide and represents a major public health issue from a treatment standpoint. This condition involves multiple sensory symptoms including impaired transmission and perception of noxious stimuli, burning, shooting, spontaneous pain, mechanical or thermal allodynia and hyperalgesia. Current pharmacological options for the treatment of neuropathic pain are limited, ineffective and have unacceptable side effects. In this framework, a deeper understanding of the pathophysiology and molecular mechanisms associated with neuropathic pain is key to the development of promising new therapeutical approaches. For this purpose, a plethora of experimental models that mimic common clinical features of human neuropathic pain have been characterized in rodents, with the spinal nerve ligation (SNL) model being one of the most widely used. In this chapter, we provide a detailed surgical procedure of the SNL model used to induce neuropathic pain in rats and mice. We further describe the behavioral approaches used for stimulus-evoked and spontaneous pain assessment in rodents. Finally, we demonstrate that our SNL model induces multiple pain behaviors in rats and mice.


Assuntos
Modelos Animais de Doenças , Neuralgia , Nervos Espinhais , Animais , Neuralgia/patologia , Neuralgia/fisiopatologia , Neuralgia/etiologia , Ligadura/métodos , Ligadura/efeitos adversos , Ratos , Camundongos , Hiperalgesia/fisiopatologia , Medição da Dor/métodos , Masculino
2.
Neurosci Biobehav Rev ; : 105761, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852847

RESUMO

The development of new analgesics for neuropathic pain treatment is crucial. The failure of promising drugs in clinical trials may be related to the over-reliance on reflex-based responses (evoked pain) in preclinical drug testing, which may not fully represent clinical neuropathic pain, characterized by spontaneous non-evoked pain (NEP). Hence, strategies for assessing NEP in preclinical studies emerged. This systematic review identified 443 articles evaluating NEP in neuropathic pain models (mainly traumatic nerve injuries in male rodents). An exponential growth in NEP evaluation was observed, which was assessed using 48 different tests classified in 12 NEP-related outcomes: anxiety, exploration/locomotion, paw lifting, depression, conditioned place preference, gait, autotomy, wellbeing, facial grooming, cognitive impairment, facial pain expressions and vocalizations. Although most of these outcomes showed clear limitations, our analysis suggests that conditioning-associated outcomes, pain-related comorbidities, and gait evaluation may be the most effective strategies. Moreover, a minimal part of the studies evaluated standard analgesics. The greater emphasis on evaluating NEP aligning with clinical pain symptoms may enhance analgesic drug development, improving clinical translation.

3.
Brain Behav Immun ; 119: 408-415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636564

RESUMO

Vestibulodynia is a complex pain disorder characterized by chronic discomfort in the vulvar region, often accompanied by tactile allodynia and spontaneous pain. In patients a depressive behaviour is also observed. In this study, we have used a model of vestibulodynia induced by complete Freund's adjuvant (CFA) focusing our investigation on the spinal cord neurons and microglia. We investigated tactile allodynia, spontaneous pain, and depressive-like behavior as key behavioral markers of vestibulodynia. In addition, we conducted in vivo electrophysiological recordings to provide, for the first time to our knowledge, the characterization of the spinal sacral neuronal activity in the L6-S1 dorsal horn of the spinal cord. Furthermore, we examined microglia activation in the L6-S1 dorsal horn using immunofluorescence, unveiling hypertrophic phenotypes indicative of neuroinflammation in the spinal cord. This represents a novel insight into the role of microglia in vestibulodynia pathology. To address the therapeutic aspect, we employed pharmacological interventions using GABApentin, amitriptyline, and PeaPol. Remarkably, all three drugs, also used in clinic, showed efficacy in alleviating tactile allodynia and depressive-like behavior. Concurrently, we also observed a normalization of the altered neuronal firing and a reduction of microglia hypertrophic phenotypes. In conclusion, our study provides a comprehensive understanding of the CFA-induced model of vestibulodynia, encompassing behavioral, neurophysiological and neuroinflammatory aspects. These data pave the way to investigate spinal cord first pain plasticity in vestibulodynia.


Assuntos
Modelos Animais de Doenças , Adjuvante de Freund , Hiperalgesia , Microglia , Neurônios , Medula Espinal , Vulvodinia , Animais , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Camundongos , Hiperalgesia/fisiopatologia , Hiperalgesia/metabolismo , Vulvodinia/fisiopatologia , Vulvodinia/metabolismo , Feminino , Microglia/metabolismo , Neurônios/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Gabapentina/farmacologia , Amitriptilina/farmacologia , Depressão/fisiopatologia , Depressão/metabolismo , Camundongos Endogâmicos C57BL
4.
Front Mol Neurosci ; 17: 1356453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450042

RESUMO

Introduction: Pain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a "black box", where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations. Method: We focused on observing neural activity patterns in the primary somatosensory cortex (S1) of mice using two-photon calcium imaging after injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons. We extracted features related to the ratio of up and down-regulated cells in calcium activity and the correlation level of activity between cells as input data for the ML model. The ML model was validated using a Leave-One-Subject-Out Cross-Validation approach to distinguish between non-pain, pain, and drug-induced analgesic states. Results and discussion: The ML model was designed to classify data into three distinct categories: non-pain, pain, and drug-induced analgesic states. Its versatility was demonstrated by successfully classifying different states across various pain models, including inflammatory and neuropathic pain, as well as confirming its utility in identifying the analgesic effects of drugs like ketoprofen, morphine, and the efficacy of magnolin, a candidate analgesic compound. In conclusion, our ML model surpasses the limitations of previous DL approaches by leveraging manually extracted features. This not only clarifies the decision-making process of the ML model but also yields insights into neuronal activity patterns associated with pain, facilitating preclinical studies of analgesics with higher potential for clinical translation.

5.
Inflamm Res ; 73(4): 669-691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483556

RESUMO

OBJECTIVE AND DESIGN: Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS: We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS: Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1ß up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1ß had this effect only on young and aged neurons, respectively. CONCLUSION: Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.


Assuntos
Canais Iônicos Sensíveis a Ácido , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Dor , Animais , Feminino , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/farmacologia , Analgésicos/uso terapêutico , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
6.
BBA Adv ; 3: 100081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082260

RESUMO

• Spared nerve injury (SNI) altered the action potential (AP) output of lamina I spino-parabrachial neurons (SPNs) without affecting their resting potential or membrane resistance. • In one-third of SPNs, high-threshold dorsal root stimulation elicited persistent AP firing which was never observed in cells from naïve animals. • 38% of SPNs from SNI rats showed spontaneous persistent AP firing. • After SNI low- and high-output SPNs were no longer nociceptive-specific as part of them responded with APs to low-threshold stimulation. • These SNI-induced changes of SPN output might represent cellular mechanisms for neuropathy-associated allodynia, hyperalgesia, and spontaneous pain.

7.
Exp Neurol ; 363: 114367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858281

RESUMO

Spinal cord injury (SCI) results in severe motor and sensory dysfunction with no effective therapy. Spinal cord debris (sp) from injured spinal cord evokes secondary SCI continuously. We and other researchers have previously clarified that it is mainly bone marrow derived macrophages (BMDMs) infiltrating in the lesion epicenter to clear sp, rather than local microglia. Unfortunately, the pro-inflammatory phenotype of these infiltrating BMDMs is predominant which impairs wound healing. Hydralazine, as a potent vasodilator and scavenger of acrolein, has protective effects in many diseases. Hydralazine is also confirmed to promote motor function and hypersensitivity in SCI rats through scavenging acrolein. However, few studies have explored the effects of hydralazine on immunomodulation, as well as spontaneous pain and emotional response, the important syndromes in clinical patients. It remains unclear whether hydralazine affects infiltrating BMDMs after SCI. In this study, we targeted BMDMs to explore the influence of hydralazine on immune cells in a mouse model of SCI, and also investigated the contribution of polarized BMDMs to hydralazine-induced neurological function recovery after SCI in male mice. The adult male mice underwent T10 spinal cord compression. The results showed that in addition to improving motor function and hypersensitivity, hydralazine relieved SCI-induced spontaneous pain and emotional response, which is a newly discovered function of hydralazine. Hydralazine inhibited the recruitments of pro-inflammatory BMDMs and educated infiltrated BMDMs to a more reparative phenotype involving in multiple biological processes associated with SCI pathology, including immune/inflammation response, neurogenesis, lipid metabolism, oxidative stress, fibrosis formation, and angiogenesis, etc. As an overall effect, hydralazine-treated BMDMs loaden with sp partially rescued neurological function after SCI. It is concluded that hydralazine plays an immunomodulation role of educating pro-inflammatory BMDMs to a more reparative phenotype; and hydralazine-educated BMDMs contribute to hydralazine-induced improvement of neurological function in SCI mice, which provides support for drug and cell treatment options for SCI therapy.


Assuntos
Acroleína , Traumatismos da Medula Espinal , Ratos , Camundongos , Masculino , Animais , Acroleína/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Macrófagos/metabolismo , Hidralazina/farmacologia , Hidralazina/uso terapêutico , Hidralazina/metabolismo , Medula Espinal/patologia , Dor/metabolismo
8.
Brain Sci ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979200

RESUMO

Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.

9.
Ginecol. obstet. Méx ; 91(11): 833-839, ene. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1557833

RESUMO

Resumen ANTECEDENTES: La endometriosis de la pared abdominal implica la coexistencia de tejido endometrial en la superficie peritoneal parietal; la incidencia reportada es de 0.03 a 3.5%. Su causa aún no está debidamente esclarecida. CASO CLÍNICO: Paciente de 35 años, con antecedentes ginecoobstétricos de: tres embarazos, tres cesáreas, última cinco años previos a la intervención, en la que se practicó una histerectomía obstétrica indicada por sangrado transoperatorio. El padecimiento actual se inició 24 horas previas a su ingreso a Urgencias, con dolor espontáneo en la fosa iliaca derecha, de difícil relación con los ciclos menstruales debido al antecedente quirúrgico, acompañado de aumento de volumen y náuseas. En la exploración inicial se identificaron dos masas intraabdominales que se confirmaron en la tomografía computada, situadas por encima de la aponeurosis. Se procedió a la intervención quirúrgica para extirpación de ambas masas. El estudio histopatológico reportó: tumores compatibles con endometriosis. CONCLUSIÓN: La endometriosis es un padecimiento con alta prevalencia en el mundo, no así en su ubicación en la pared abdominal. A pesar de que aún no se conoce con certeza su causa, se sabe que la inoculación directa (muchas veces debida a un procedimiento ginecológico quirúrgico) y la proliferación celular tienen participación relevante en su origen.


Abstract BACKGROUND: Abdominal wall endometriosis is the coexistence of endometrial tissue on the parietal peritoneal surface with a reported incidence of 0.03 to 3.5%. Its cause is not well understood. CLINICAL CASE: 35-year-old female patient with a gyneco-obstetric history of: three pregnancies, three cesarean sections, last five years prior to surgery, in which an obstetric hysterectomy was performed, indicated by transoperative bleeding. The current presentation began 24 hours before her admission to the emergency department with spontaneous pain in the right iliac fossa, difficult to relate to menstrual cycles due to her surgical history, accompanied by increased volume and nausea. Initial examination revealed two intra-abdominal masses, confirmed by computed tomography, located above the aponeurosis. Surgery was performed to remove both masses. Histopathologic examination revealed tumors compatible with endometriosis. CONCLUSION: Endometriosis is a very common disease in the world, but not in the abdominal wall. Although its cause is still not known with certainty, it is known that direct inoculation (often due to gynecologic surgery) and cell proliferation play a relevant role in its origin.

10.
J Pain Res ; 15: 3179-3187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258759

RESUMO

Background: Clinical data on cancer-induced pain (CIP) demonstrate widespread changes in sensory function. It is characterized in humans not only by stimulus-invoked pain, but also by spontaneous pain. In our previous studies in an animal model of CIP, we observed changes in intrinsic membrane properties and excitability of dorsal root ganglion (DRG) sensory neurons corresponding to mechanical allodynia and hyperalgesia, of which abnormal activities of Aß-fiber sensory neurons are consistent in a rat model of peripheral neuropathic pain (NEP). Objective: To investigate whether there are related peripheral neural mechanisms between the CIP and NEP models of spontaneous pain, we compared the electrophysiological properties of DRG sensory neurons at 2-3 weeks after CIP and NEP model induction. Methods: CIP models were induced with metastasis tumour-1 rat breast cancer cells implanted into the distal epiphysis of the femur. NEP models were induced with a polyethylene cuff implanted around the sciatic nerve. Spontaneous pain in animals is measured by spontaneous foot lifting (SFL). After measurement of SFL, the animals were prepared for electrophysiological recordings of spontaneous activity (SA) in DRG neurons in vivo. Results: Our data showed that SFL and SA occurred in both models. The proportion of SFL and SA of C-fiber sensory neurons in CIP was more significantly increased than in NEP models. There was no difference in duration of SFL and the rate of SA between the two models. The duration of SFL is related to the rate of SA in C-fiber in both models. Conclusion: Thus, SFL may result from SA activity in C-fiber neurons in CIP and NEP rats. The differences and similarities in spontaneous pain between CIP and NEP rats is related to the proportion and rate of SA in C-fibers, respectively.

11.
Neurobiol Pain ; 12: 100100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051490

RESUMO

Chronic migraine is characterised by persistent headaches for >15 days per month; the intensity of the pain is fluctuating over time. Here, we explored the dynamic interplay of connectivity patterns between regions known to be related to pain processing and their relation to the ongoing dynamic pain experience. We recorded EEG from 80 sessions (20 chronic migraine patients in 4 separate sessions of 25 min). The patients were asked to continuously rate the intensity of their endogenous headache. On different time-windows, a dynamic causal model (DCM) of cross spectral responses was inverted to estimate connectivity strengths. For each patient and session, the evolving dynamics of effective connectivity were related to pain intensities and to pain intensity changes by using a Bayesian linear model. Hierarchical Bayesian modelling was further used to examine which connectivity-pain relations are consistent across sessions and across patients. The results reflect the multi-facetted clinical picture of the disease. Across all sessions, each patient with chronic migraine exhibited a distinct pattern of pain intensity-related cortical connectivity. The diversity of the individual findings are accompanied by inconsistent relations between the connectivity parameters and pain intensity or pain intensity changes at group level. This suggests a rejection of the idea of a common neuronal core problem for chronic migraine.

12.
Biomedicines ; 10(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35884938

RESUMO

The primary somatosensory cortex (S1) plays a key role in the discrimination of somatic sensations. Among subdivisions in S1, the dysgranular zone of rodent S1 (S1DZ) is homologous to Brodmann's area 3a of primate S1, which is involved in the processing of noxious signals from the body. However, molecular changes in this region and their role in the pathological pain state have never been studied. In this study, we identified molecular alteration of the S1DZ in a rat model of neuropathic pain induced by right L5 spinal nerve ligation (SNL) surgery and investigated its functional role in pain symptoms. Brain images acquired from SNL group and control group in our previous study were analyzed, and behaviors were measured using the von Frey test, acetone test, and conditioned place preference test. We found that metabotropic glutamate receptor 5 (mGluR5) levels were significantly upregulated in the S1DZ contralateral to the nerve injury in the SNL group compared to the sham group. Pharmacological deactivation of mGluR5 in S1DZ ameliorated symptoms of neuropathic allodynia, which was shown by a significant increase in the mechanical paw withdrawal threshold and a decrease in the behavioral response to cold stimuli. We further confirmed that this treatment induced relief from the tonic-aversive state of chronic neuropathic pain, as a place preference memory associated with the treatment-paired chamber was formed in rats with neuropathic pain. Our data provide evidence that mGluR5 in the S1DZ is involved in the manifestation of abnormal pain sensations in the neuropathic pain state.

13.
J Pers Med ; 12(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35743636

RESUMO

Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS, that automatically crops mouse face images, predicts action unit scores and total scores on the MGS, and finally infers whether pain exists. We then compared the performance of DeepMGS with that of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70-90% in identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83) highly correlated with that of an experienced human scorer in total MGS scores. In classifying pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images. These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice, implying its potential application for predicting other painful conditions from facial images.

14.
Front Mol Neurosci ; 15: 913990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769334

RESUMO

The voltage-gated sodium channel Nav1.7 is encoded by SCN9A gene and plays a critical role in pain sensitivity. Several SCN9A gain-of-function (GOF) mutations have been found in patients with small fiber neuropathy (SFN) having chronic pain, including the R185H mutation. However, for most of these variants, their involvement in pain phenotype still needs to be experimentally elucidated. In order to delineate the impact of R185H mutation on pain sensitivity, we have established the Scn9a R185H mutant mouse model using the CRISPR/Cas9 technology. The Scn9a R185H mutant mice show no cellular alteration in the dorsal root ganglia (DRG) containing cell bodies of sensory neurons and no alteration of growth or global health state. Heterozygous and homozygous animals of both sexes were investigated for pain sensitivity. The mutant mice were more sensitive than the wild-type mice in the tail flick and hot plate tests, acetone, and von Frey tests for sensitivity to heat, cold, and touch, respectively, although with sexual dimorphic effects. The newly developed bioinformatic pipeline, Gdaphen is based on general linear model (GLM) and random forest (RF) classifiers as well as a multifactor analysis of mixed data and shows the qualitative and quantitative variables contributing the most to the pain phenotype. Using Gdaphen, tail flick, Hargreaves, hot plate, acetone, cold plate, and von Frey tests, sex and genotype were found to be contributing most to the pain phenotype. Importantly, the mutant animals displayed spontaneous pain as assessed in the conditioned place preference (CPP) assay. Altogether, our results indicate that Scn9a R185H mice show a pain phenotype, suggesting that the SCN9A R185H mutation identified in patients with SFN having chronic pain contributes to their symptoms. Therefore, we provide genetic evidence for the fact that this mutation in Nav1.7 channel plays an important role in nociception and in the pain experienced by patients with SFN who have this mutation. These findings should aid in exploring further pain treatments based on the Nav1.7 channel.

15.
Neurosci Lett ; 778: 136615, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367570

RESUMO

BACKGROUND: Optimal neuropathic pain (NeP) therapy has still not been established despite great efforts to develop new strategies for NeP analgesia. One possible target might be calcitonin gene-related peptide (CGRP). This is because the expression of CGRP and its receptors in the dorsal horn of the spinal cord might be associated with the persistence of pain symptoms including symptoms of NeP. We previously developed αCGRP knockout mice, and we aimed in this study to clarify the roles of CGRP in NeP by partial sciatic nerve ligation (PSNL) using the knockout mice. METHODS: PSNL was performed in αCGRP knockout mice and wild-type (WT) mice, and spontaneous pain behavior and mechanical and thermal hyperalgesia were evaluated after PSNL. CGRP immunoreactivity (IR) was also observed in the superficial dorsal horn and deep dorsal horn of L4 to L5 segments of the spinal cord in WT mice after PSNL. RESULTS: Spontaneous pain behavior and mechanical and thermal hyperalgesia after PSNL were not different between αCGRP knockout mice and WT mice throughout the observation period. The expression of CGRP-IR was not different between the PSNL model and the sham operation model at 1 day and 7 days after surgery. CONCLUSION: The results suggest that the involvement of αCGRP may differ depending on the type and site of nerve injury, and clinical indications for anti-CGRP treatment of NeP should be carefully based on various pathophysiological conditions of NeP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Neuralgia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Hiperalgesia/metabolismo , Ligadura/efeitos adversos , Camundongos , Camundongos Knockout , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
16.
J Pain ; 23(8): 1343-1357, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292377

RESUMO

Neuropathic pain in rodents can be driven by ectopic spontaneous activity (SA) generated by sensory neurons in dorsal root ganglia (DRG). The recent demonstration that SA in dissociated human DRG neurons is associated with reported neuropathic pain in patients enables a detailed comparison of pain-linked electrophysiological alterations driving SA in human DRG neurons to alterations that distinguish SA in nociceptors from SA in low-threshold mechanoreceptors (LTMRs) in rodent neuropathy models. Analysis of recordings from dissociated somata of patient-derived DRG neurons showed that SA and corresponding pain in both sexes were significantly associated with the three functional electrophysiological alterations sufficient to generate SA in the absence of extrinsic depolarizing inputs. These include enhancement of depolarizing spontaneous fluctuations of membrane potential (DSFs), which were analyzed quantitatively for the first time in human DRG neurons. The functional alterations were indistinguishable from SA-driving alterations reported for nociceptors in rodent chronic pain models. Irregular, low-frequency DSFs in human DRG neurons closely resemble DSFs described in rodent nociceptors while differing substantially from the high-frequency sinusoidal oscillations described in rodent LTMRs. These findings suggest that conserved physiological mechanisms of SA in human nociceptor somata can drive neuropathic pain despite documented cellular differences between human and rodent DRG neurons. PERSPECTIVE: Electrophysiological alterations in human sensory neurons associated with patient-reported neuropathic pain include all three of the functional alterations that logically can promote spontaneous activity. The similarity of distinctively altered spontaneous depolarizations in human DRG neurons and rodent nociceptors suggests that spontaneously active human nociceptors can persistently promote neuropathic pain in patients.


Assuntos
Neuralgia , Nociceptores , Potenciais de Ação/fisiologia , Animais , Feminino , Gânglios Espinais/fisiologia , Humanos , Masculino , Nociceptores/fisiologia , Roedores , Células Receptoras Sensoriais
17.
J World Fed Orthod ; 11(3): 75-82, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35110003

RESUMO

BACKGROUND: This study evaluated the analgesic effects of low-level laser therapy (LLLT) and paracetamol-caffeine in controlling orthodontic pain induced by elastomeric separators, as well as changes in oral health-related quality of life (OHRQoL). METHODS: A total of 54 patients (22 male, 32 female; mean age [standard deviation]: 21.68 [±2.77]) participated in the study. Elastomeric separators were placed mesially and distally to the first molars in the upper and lower dental arches. The first group (n = 18) received a single dose of aluminum gallium arsenide (GaAlAs) laser irradiation (808 nm; 350 milliwatts; 3.5 joule/point) with a placebo medication. The laser beam was applied buccally and lingually at the center of the first molar roots and the adjacent teeth (2nd molar and 2nd premolar) in both the upper and lower dental arches bilaterally. The second group (n = 18) received paracetamol-caffeine tablets (3 times daily for the first couple of days after separator insertion, and as needed for the rest of the week), with a placebo light-emitting diode (LED) light; patients in the third group (n = 18) were exposed to the 2 placebo procedures. An 11-point numeric rating scale was used to assess spontaneous and chewing pain perception immediately and at 1 hour, 24 hour, 48 hours, and 1 week after separator placement. The short version of the oral health impact profile (OHIP-14) was used to evaluate OHRQoL at 48 hours and at 1 week after separator placement. RESULTS: Pain perception reached its peak at 24 hours after separator placement (median values: 3, 3, 6.5 for spontaneous pain, and 6, 6, 8 for chewing pain in the LLLT, drug, and control groups, respectively). LLLT relieved the induced pain more than did the placebo procedures (P = 0.002 for spontaneous pain, P = 0.012 for chewing pain). Orthodontic separators worsened patients' OHRQoL scores during the entire week, especially at 48 hours after placement (median OHIP-14 score: 21, 25, 24 in the LLLT, drug, and control groups, respectively). In comparison with the control group, LLLT slightly increased the "physical pain" domain score (P = 0.015) and the "psychological disability" domain score of the scale (P = 0.010) after 48 hours, as well as the "psychological disability" domain score 1 week after separator placement. CONCLUSIONS: The pain levels were similar in the laser and drug groups. The LLLT group had decreased pain, compared with the placebo group. Paracetamol-caffeine and LLLT were unable to enhance the overall OHRQoL.


Assuntos
Terapia com Luz de Baixa Intensidade , Má Oclusão Classe I de Angle , Acetaminofen/uso terapêutico , Cafeína/uso terapêutico , Feminino , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Dor/tratamento farmacológico , Dor/etiologia , Medição da Dor/métodos , Qualidade de Vida
18.
Pflugers Arch ; 474(4): 387-396, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088129

RESUMO

Many patients experience positive symptoms after traumatic nerve injury. Despite the increasing number of experimental studies in models of peripheral neuropathy and the knowledge acquired, most of these patients lack an effective treatment for their chronic pain. One possible explanation might be that most of the preclinical studies focused on the development of mechanical or thermal allodynia/hyperalgesia, neglecting that most of the patients with peripheral neuropathies complain mostly about spontaneous forms of pains. Here, we summarize the aberrant electrophysiological behavior of peripheral nerve fibers recorded in experimental models, the underlying pathophysiological mechanisms, and their relationship with the symptoms reported by patients. Upon nerve section, axotomized but also intact fibers develop ectopic spontaneous activity. Most interestingly, a proportion of axotomized fibers might present receptive fields in the skin far beyond the site of damage, indicative of a functional cross talk between neuromatose and intact fibers. All these features can be linked with some of the symptoms that neuropathic patients experience. Furthermore, we spotlight the consequence of primary afferents with different patterns of spontaneous discharge on the neural code and its relationship with chronic pain states. With this article, readers will be able to understand the pathophysiological mechanisms that might underlie some of the symptoms that experience neuropathic patients, with a special focus on spontaneous pain.


Assuntos
Dor Crônica , Doenças do Sistema Nervoso Periférico , Humanos , Hiperalgesia , Nervos Periféricos
19.
Acta Neuropathol Commun ; 10(1): 11, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093182

RESUMO

Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A3 adenosine receptor (AR) subtype (A3AR) agonist, MRS5980, to prevent and reverse cisplatin-induced neurotoxicities. MRS5980 prevented cisplatin-induced cognitive impairment (decreased executive function and impaired spatial and working memory), sensorimotor deficits, and neuropathic pain (mechanical allodynia and spontaneous pain) in both sexes. At the structural level, MRS5980 prevented the cisplatin-induced reduction in markers of synaptic integrity. In-situ hybridization detected Adora3 mRNA in neurons, microglia, astrocytes and oligodendrocytes. RNAseq analysis identified 164 genes, including genes related to mitochondrial function, of which expression was changed by cisplatin and normalized by MRS5980. Consistently, MRS5980 prevented cisplatin-induced mitochondrial dysfunction and decreased signs of oxidative stress. Transcriptomic analysis showed that the A3AR agonist upregulates genes related to repair pathways including NOTCH1 signaling and chromatin modification in the cortex of cisplatin-treated mice. Importantly, A3AR agonist administration after completion of cisplatin treatment resolved cognitive impairment, neuropathy and sensorimotor deficits. Our results highlight the efficacy of a selective A3AR agonist to prevent and reverse cisplatin-induced neurotoxicities via preventing brain mitochondrial damage and activating repair pathways. An A3AR agonist is already in cancer, clinical trials and our results demonstrate management of neurotoxic side effects of chemotherapy as an additional therapeutic benefit.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Cisplatino/efeitos adversos , Receptor A3 de Adenosina/metabolismo , Memória Espacial/efeitos dos fármacos , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Animais , Feminino , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dor/metabolismo
20.
Neuron ; 110(2): 209-220.e6, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34752775

RESUMO

Spontaneous pain refers to pain occurring without external stimuli. It is a primary complaint in chronic pain conditions and remains difficult to treat. Moreover, the mechanisms underlying spontaneous pain remain poorly understood. Here we employed in vivo imaging of dorsal root ganglion (DRG) neurons and discovered a distinct form of abnormal spontaneous activity following peripheral nerve injury: clusters of adjacent DRG neurons firing synchronously and sporadically. The level of cluster firing correlated directly with nerve injury-induced spontaneous pain behaviors. Furthermore, we demonstrated that cluster firing is triggered by activity of sympathetic nerves, which sprout into DRGs after injury, and identified norepinephrine as a key neurotransmitter mediating this unique firing. Chemogenetic and pharmacological manipulations of sympathetic activity and norepinephrine receptors suggest that they are necessary and sufficient for DRG cluster firing and spontaneous pain behavior. Therefore, blocking sympathetically mediated cluster firing may be a new paradigm for treating spontaneous pain.


Assuntos
Gânglios Espinais , Nervos Espinhais , Gânglios Espinais/fisiologia , Humanos , Dor , Células Receptoras Sensoriais , Nervos Espinhais/lesões , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...