RESUMO
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
RESUMO
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Assuntos
Bacillus subtilis , Reparo do DNA , Mutagênese , Reparo do DNA/genética , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Estresse Fisiológico/genética , Dano ao DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/genética , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimentoRESUMO
Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE: Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.
Assuntos
Streptomyces , Animais , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Estágios do Ciclo de Vida , Esporos Bacterianos , Proteínas de Bactérias/metabolismoRESUMO
Abstract The in vitro sporulation of Didymella bryoniae is of great importance for studies that require pure inoculum and in large quantities. Thus, the objectives of this study were to identify the best condition for D. bryoniae sporulation combining different light spectra (UV-A or UV-B light, white light, and continuous dark), with distinct culture media (PDA, V8, ML, and PDAB) and, to evaluate fungus' survivability stored at -20°C over time. The fungus samples were only able to sporulate when subjected to the UV-B light treatment, regardless of the culture medium. The highest appearance of spores conidium type was observed in the PDAB medium, and the lowest production occurred in the ML medium. Reproductive structures, such as perithecia and pycnidia, were observed in all culture media. However, there was considerable variation in the amount of each structure between the different culture media. The ML and V8 media showed a greater number of perithecia and the PDA and PDAB media presented a greater proportion of pycnidia compared to perithecia. The storage duration at -20°C did not affect mycelial growth or mycelial growth rate. In conclusion, the UV-B light is essential for D. bryoniae in vitro sporulation. Moreover, the culture medium composition influences the type of fungal structure produced, as well as spores' size and quantity. Freezing at -20°C is an efficient technique that can be used to store D. bryoniae for at least five months without loss of viability.
Resumo A esporulação de Didymella bryoniae in vitro é de grande importância para estudos que requerem inóculo puro e em grandes quantidades. Assim, os objetivos deste estudo foram identificar a melhor condição para esporulação de D. bryoniae combinando diferentes espectros de luz (luz UV-A ou UV-B, luz branca e escuro contínuo) com distintos meios de cultura (PDA, V8, ML e PDAB) e, avaliar a sobrevivência do fungo armazenado a -20°C ao longo do tempo. As amostras de fungo só esporularam quando submetidas ao tratamento com luz UV-B, independentemente do meio de cultura. Maior aparecimento de esporos do tipo conídio foi observado no meio PDAB, e a menor produção ocorreu no meio ML. Estruturas reprodutivas, como peritécios e picnídeos, foram observadas em todos os meios de cultura. No entanto, houve uma variação considerável na quantidade de cada estrutura entre os diferentes meios de cultura. Os meios ML e V8 apresentaram maior número de peritécios e os meios PDA e PDAB apresentaram maior proporção de picnídeos em relação aos peritécios. A duração do armazenamento a -20°C não afetou o crescimento micelial ou a taxa de crescimento micelial. Em conclusão, a luz UV-B é essencial para a esporulação de D. bryoniae in vitro. Além disso, a composição do meio de cultura influencia o tipo de estrutura fúngica produzida, bem como o tamanho e a quantidade dos esporos. O congelamento a -20°C é uma técnica eficiente que pode ser usada para armazenar D. bryoniae por pelo menos cinco meses sem perda de viabilidade
Assuntos
Ascomicetos , Esporos Fúngicos , Temperatura , MicélioRESUMO
Abstract The in vitro sporulation of Didymella bryoniae is of great importance for studies that require pure inoculum and in large quantities. Thus, the objectives of this study were to identify the best condition for D. bryoniae sporulation combining different light spectra (UV-A or UV-B light, white light, and continuous dark), with distinct culture media (PDA, V8, ML, and PDAB) and, to evaluate fungus survivability stored at -20°C over time. The fungus samples were only able to sporulate when subjected to the UV-B light treatment, regardless of the culture medium. The highest appearance of spores conidium type was observed in the PDAB medium, and the lowest production occurred in the ML medium. Reproductive structures, such as perithecia and pycnidia, were observed in all culture media. However, there was considerable variation in the amount of each structure between the different culture media. The ML and V8 media showed a greater number of perithecia and the PDA and PDAB media presented a greater proportion of pycnidia compared to perithecia. The storage duration at -20°C did not affect mycelial growth or mycelial growth rate. In conclusion, the UV-B light is essential for D. bryoniae in vitro sporulation. Moreover, the culture medium composition influences the type of fungal structure produced, as well as spores size and quantity. Freezing at -20°C is an efficient technique that can be used to store D. bryoniae for at least five months without loss of viability.
Resumo A esporulação de Didymella bryoniae in vitro é de grande importância para estudos que requerem inóculo puro e em grandes quantidades. Assim, os objetivos deste estudo foram identificar a melhor condição para esporulação de D. bryoniae combinando diferentes espectros de luz (luz UV-A ou UV-B, luz branca e escuro contínuo) com distintos meios de cultura (PDA, V8, ML e PDAB) e, avaliar a sobrevivência do fungo armazenado a -20°C ao longo do tempo. As amostras de fungo só esporularam quando submetidas ao tratamento com luz UV-B, independentemente do meio de cultura. Maior aparecimento de esporos do tipo conídio foi observado no meio PDAB, e a menor produção ocorreu no meio ML. Estruturas reprodutivas, como peritécios e picnídeos, foram observadas em todos os meios de cultura. No entanto, houve uma variação considerável na quantidade de cada estrutura entre os diferentes meios de cultura. Os meios ML e V8 apresentaram maior número de peritécios e os meios PDA e PDAB apresentaram maior proporção de picnídeos em relação aos peritécios. A duração do armazenamento a -20°C não afetou o crescimento micelial ou a taxa de crescimento micelial. Em conclusão, a luz UV-B é essencial para a esporulação de D. bryoniae in vitro. Além disso, a composição do meio de cultura influencia o tipo de estrutura fúngica produzida, bem como o tamanho e a quantidade dos esporos. O congelamento a -20°C é uma técnica eficiente que pode ser usada para armazenar D. bryoniae por pelo menos cinco meses sem perda de viabilidade
RESUMO
Trichoderma atroviride responds to various environmental stressors through the mitogen-activated protein kinase (MAPK) Tmk3 and MAPK-kinase Pbs2 signaling pathways. In fungi, orthologues to Tmk3 are regulated by a histidine kinase (HK) sensor. However, the role of T. atroviride HKs remains unknown. In this regard, the function of the T. atroviride HK Nik1 was analyzed in response to stressors regulated by Tmk3. The growth of the Δnik1 mutant strains was compromised under hyperosmotic stress; mycelia were less resistant to lysing enzymes than the WT strain, while conidia of Δnik1 were more sensitive to Congo red; however, ∆pbs2 and ∆tmk3 strains showed a more drastic defect in cell wall stability. Light-regulated blu1 and grg2 gene expression was induced upon an osmotic shock through Pbs2-Tmk3 but was independent of Nik1. The encoding chitin synthases chs1 and chs2 genes were downregulated after an osmotic shock in the WT, but chs1 and chs3 expression were enhanced in ∆nik1, ∆pbs2, and ∆tmk3. The vegetative growth and conidiation by light decreased in ∆nik1, although Nik1 was unrequired to activate the light-responsive genes by Tmk3. Altogether, Nik1 regulates responses related to the Pbs2-Tmk3 pathway and suggests the participation of additional HKs to respond to stress.
RESUMO
Resumen Clostridioides difficile es un patógeno esporulado oportunista responsable de diarrea asociada a antibióticos en humanos. C. difficile produce 2 toxinas principales: TcdAy TcdB, además de la toxina binaria (CDT), también asociada a la virulencia. Este estudio buscó caracterizar el aislamiento ALCD3, involucrado en un episodio de recurrencia de una infección nosocomial. La caracterización molecular mostró que dicho aislamiento pertenece al toxinotipo 0/v y el análisis por MLST demostró un perfil alélico adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 y tpi:1, lo cual corresponde al ST293 (MLST clado 1). Durante el crecimiento, el aislamiento ALCD3 mostró un incremento temprano de la tasa de esporulación y valores máximos de formas termorresistentes luego de 2 días de incubación. Tanto la cinética de esporulación como la producción de formas termorresistentes fueron más rápidas en el aislamiento ALCD3 que en la cepa de referencia VPI 10463. La germinación en presencia del germinante natural taurocolato fue más rápida en el aislamiento ALCD3 que en la cepa VPI 10463, lo que indica que aquel comienza la hidrólisis del córtex antes. También, el co-germinante glicina indujo una rápida liberación de ácido dipicolínico en ALCD3. Estos hallazgos indican que el aislamiento ALCD3 es particularmente eficiente en la esporulación y en la germinación. El presente trabajo representa el primer informe de la circulación de C. difficile ST293 en Argentina. La habilidad del aislamiento ALCD3 para producir toxinas y su alta capacidad de esporulación/germinación son características claves compatibles con un alto potencial de diseminación e inducción de infecciones recurrentes.
Abstract Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to tox-inotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resis-tant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.
RESUMO
During a survey of Phytophthora diversity in Panama, fast-growing oomycete isolates were obtained from naturally fallen leaves of an unidentified tree species in a tropical cloud forest. Phylogenetic analyses of sequences from the nuclear ITS, LSU and ßtub loci and the mitochondrial cox1 and cox2 genes revealed that they belong to a new species of a new genus, officially described here as Synchrospora gen. nov., which resided as a basal genus within the Peronosporaceae. The type species S. medusiformis has unique morphological characteristics. The sporangiophores show determinate growth, multifurcating at the end, forming a stunted, candelabra-like apex from which multiple (8 to >100) long, curved pedicels are growing simultaneously in a medusa-like way. The caducous papillate sporangia mature and are shed synchronously. The breeding system is homothallic, hence more inbreeding than outcrossing, with smooth-walled oogonia, plerotic oospores and paragynous antheridia. Optimum and maximum temperatures for growth are 22.5 and 25-27.5 °C, consistent with its natural cloud forest habitat. It is concluded that S. medusiformis as adapted to a lifestyle as a canopy-dwelling leaf pathogen in tropical cloud forests. More oomycete explorations in the canopies of tropical rainforests and cloud forests are needed to elucidate the diversity, host associations and ecological roles of oomycetes and, in particular, S. medusiformis and possibly other Synchrospora taxa in this as yet under-explored habitat.
RESUMO
In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.
Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to toxinotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resistant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.
Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Clostridioides , Argentina/epidemiologia , Tipagem de Sequências Multilocus , Reinfecção , Proteínas de Bactérias/genéticaRESUMO
The first report of wheat blast in the world was in Brazil, in 1986. Since then, a great effort has been made towards the development of wheat cultivars resistant to this disease, which is caused by the fungus Pyricularia oryzae Triticum (PoT). The objective of this research was to (i) evaluate the resistance of wheat genotypes to blast and (ii) verify the correlation between disease severity on wheat spikes and sporulation rate of PoT on spike rachises. Plants of 40 cultivars grown in pots, at the flowering stage (stage 65 on the Zadoks scale), were inoculated with a suspension of conidia of a PoT isolate representative of the main variant of the fungus reported in Brazil. Severity of blast on the spikes at 5 and 7 days after inoculation (dai) and the rate of sporulation of the fungus on the rachis (conidia per g of rachis) were evaluated. Eighty percent of the cultivars that were classified in the group with the lowest sporulation rate were also classified in the group with the highest resistance at 7 dai. However, the correlation coefficients of the analysis established between the cultivar severity at 5 and 7 dai averages and the PoT sporulation rate averages were not significant (r=0.2464 and r=0.2047, respectively). Results obtained represent the updated characterization to blast of wheat cultivars in Brazil and constitute an important exploratory framework for the evaluation of the reaction of wheat genotypes based on the sporulation rate of PoT on their tissues.
O primeiro relato da brusone do trigo no mundo foi no Brasil, em 1986. Desde então, tem-se realizado um esforço muito grande com vistas ao desenvolvimento de cultivares de trigo resistentes a esta doença, a qual é causada pelo fungo Pyricularia oryzae Triticum (PoT). O objetivo deste trabalho foi de (i) avaliar a resistência de genótipos de trigo à brusone e (ii) verificar a correlação entre severidade da doença em espigas e taxa de esporulação de PoT em ráquis de espigas. Plantas de 40 cultivares brasileiras de trigo crescidas em vasos, no estádio de florescimento (estádio 65 da escala de Zadoks), foram submetidas à inoculação com uma suspensão de conídios de um isolado de PoT representativo da principal variante do fungo encontrada no Brasil. A severidade de brusone nas espigas aos cinco e sete dias após a inoculação (dai) e a taxa de esporulação do fungo nas ráquis (conídios por g de ráquis) foram avaliadas. Oitenta por cento das cultivares que foram classificadas no grupo com menor taxa de esporulação também foram classificadas no grupo de maior resistência aos sete dai. Entretanto, os coeficientes de correlação da análise estabelecida entre as médias de severidade das cultivares aos cinco e sete dai e as médias da taxa de esporulação de PoT não foram significativos (r=0,2464 e r=0,2047, respectivamente). Os resultados obtidos representam a caracterização atualizada da reação à brusone de cultivares de trigo do Brasil e constituem-se em importante marco exploratório da avaliação da reação de genótipos de trigo baseado na taxa de esporulação de PoT em seus tecidos.
Assuntos
Esporos Fúngicos , Triticum/genética , Triticum/parasitologia , Fungos/fisiologiaRESUMO
Abstract The effect of different fungicides on mycorrhizal fungi should be investigated in different plants and environmental conditions. Thus, the purpose of this study was to appraise the effect of simultaneous fungicides application (including benomyl, rovral TS, mancozeb, and tilt) on the efficiency of Rhizophagus irregularis in cultivations of maize and wheat. This study was conducted in two separate experiments in the laboratory and greenhouse. The results of the laboratory stage showed that the use of all four fungicides significantly reduced the spore number compared to the conditions of non-use of the fungicide, although only rovral TS and mancozeb led to a significant reduction in root colonization percentage of R. irregularis. In the greenhouse, the benomyl significantly increased root dry weight in maize although tilt significantly reduced root colonization of maize with R. irregularis. The tilt and rovral TS had a positive effect and benomyl had a negative effect on wheat growth traits, but the root colonization of wheat with R. irregularis was not affected by fungicides. Generally, benomyl (2 g L-1) in maize and tilt (2 mL L-1) in wheat and rovral TS in both plants could be recommended with the combined application of R. irregularis inoculants. Therefore, depending on the type of fungicide and the host plant, the effect of the fungicide on colonization and association of mycorrhiza varies.
RESUMO
The sporulating, filamentous soil bacterium Streptomyces venezuelae ATCC 10712 differentiates under submerged and surface growth conditions. In order to lay a solid foundation for the study of development-associated division for this organism, a congenic set of mutants was isolated, individually deleted for a gene encoding either a cytoplasmic (i.e. ftsZ) or core inner membrane (i.e. divIC, ftsL, ftsI, ftsQ, ftsW) component of the divisome. While ftsZ mutants are completely blocked for division, single mutants in the other core divisome genes resulted in partial, yet similar, blocks in sporulation septum formation. Double and triple mutants for core divisome membrane components displayed phenotypes that were similar to those of the single mutants, demonstrating that the phenotypes were not synergistic. Division in this organism is still partially functional without multiple core divisome proteins, suggesting that perhaps other unknown lineage-specific proteins perform redundant functions. In addition, by isolating an ftsZ2p mutant with an altered -10 region, the conserved developmentally controlled promoter was also shown to be required for sporulation-associated division. Finally, microscopic observation of FtsZ-YFP dynamics in the different mutant backgrounds led to the conclusion that the initial assembly of regular Z rings does not per se require the tested divisome membrane proteins, but the stability of Z rings is dependent on the divisome membrane components tested. The observation is consistent with the interpretation that Z ring instability likely results from and further contributes to the observed defects in sporulation septation in mutants lacking core divisome proteins.
Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Streptomyces/citologia , Proteínas de Bactérias/genética , Divisão Celular/genética , Segregação de Cromossomos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Regiões Promotoras Genéticas , Esporos Bacterianos/citologia , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Streptomyces/genética , Streptomyces/fisiologiaRESUMO
Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.
RESUMO
The development of an efficient transformation system is essential to enrich the genetic understanding of Trichoderma atroviride. To acquire an additional homologous selectable marker, uracil auxotrophic mutants were generated. First, the pyr4 gene encoding OMP decarboxylase was replaced by the hph marker gene, encoding a hygromycin phosphotransferase. Then, uracil auxotrophs were employed to determine that 5 mM uracil restores their growth and conidia production, and 1 mg ml-1 is the lethal dose of 5-fluoroorotic acid in T. atroviride. Subsequently, uracil auxotrophic strains, free of a drug-selectable marker, were selected by 5-fluoroorotic acid resistance. Two different deletions in pyr4 were mapped in four auxotrophs, encoding a protein with frameshifts at the 310 and 335 amino acids in their COOH-terminal. Six auxotrophs did not have changes in the pyr4 ORF even though a specific cassette to delete the pyr4 was used, suggesting that 5-FOA could have mutagenic activity. The Ura-1 strain was selected as a genetic background to knock out the MAPKK Pbs2, MAPK Tmk3, and the blue light receptors Blr1/Blr2, using a short version of pyr4 as a homologous marker. The ∆tmk3 and ∆pbs2 mutants selected with pyr4 or hph marker were phenotypically identical, highly sensitive to different stressors, and affected in photoconidiation. The ∆blr1 and ∆blr2 mutants were not responsive to light, and complementation of uracil biosynthesis did not interfere in the expression of blu1, grg2, phr1, and env1 genes upregulated by blue light. Overall, uracil metabolism can be used as a tool for genetic manipulation in T. atroviride.
Assuntos
Proteínas Fúngicas/genética , Hypocreales , Orotidina-5'-Fosfato Descarboxilase , Transformação Genética , Biomarcadores/metabolismo , Genes Fúngicos , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Esporos Fúngicos/metabolismoRESUMO
Blastocladiella emersonii is an aquatic fungus of the phylum Blastocladiomycota, localized near the base of the fungal tree. Previous studies have shown that B. emersonii responds to heat shock and cadmium exposure inducing the transcription of a high number of genes. EST sequencing from heat shocked and cadmium exposed B. emersonii cells has shown that exposure to cadmium causes strong splicing inhibition. Despite the knowledge about splicing inhibition by cadmium, it is still unclear if other metal contaminants can cause the same response. In the present study, we have demonstrated that the effect of cadmium exposure on splicing inhibition is much stronger than that of other divalent metals such as cobalt and manganese. Data presented here also indicate that intron retention occurs randomly among the fungal transcripts, as verified by analyzing differently affected transcripts. In addition, we identified in the genome of B. emersonii the genes encoding the snRNA splicing components U1, U2, U4, U5 and U6 and observed that spliceosome snRNAs are upregulated in the presence of metals, in particular snRNA U1 in cells under cadmium exposure. This observation suggests that snRNA upregulation might be a defense of the fungal cell against the metal stress condition.
Assuntos
Blastocladiella , Metais Pesados , Spliceossomos , Blastocladiella/efeitos dos fármacos , Cádmio/toxicidade , Cobalto/toxicidade , Manganês/toxicidade , Metais Pesados/toxicidade , Spliceossomos/efeitos dos fármacosRESUMO
Botrytis cinerea is a phytopathogenic fungus that causes large crop and post-harvest losses. Therefore, new and effective strategies are needed to control the disease and to reduce resistance to fungicides. Modulating pathogenicity and virulence by manipulating microbial communication is a promising strategy. This communication mechanism, called Quorum Sensing (QS), has already been reported in bacteria and yeasts; however, it has not yet been studied in B. cinerea. To establish the existence of this biochemical process in B. cinerea, we prepared extracts at different growth times (D1-D12), which were applied to fresh cultures of the same fungi. The chemical analysis of the extracts obtained from several fermentations showed different compositions and biological activities. We confirmed the presence of several phytotoxins, as well as compounds 1-phenylethanol and 3-phenylpropanol. Day five extract (0.1%) inhibited conidia germination and elongation of germ tubes, day seven extract (1%) produced the greatest phytotoxic effect in tomato leaves, and day nine extract (0.1%) was a sporulation inhibitor. In contrast, the extracts from days 7, 9, and 12 of fermentation (0.1% and 0.01%) promoted pellet and biofilm formation. Sporulation was slightly induced at 0.01%, while at 0.1% there was a great inhibition. At the highest extract concentrations, a biocidal effect was detected, but at the lowest, we observed a QS-like effect, regulating processes such as filamentation, morphogenesis, and pathogenesis. These results of the biological activity and composition of extracts suggest the existence of a QS-like mechanism in B. cinerea, which could lead to new non-biocidal alternatives for its control through interference in the pathogenicity and virulence mechanisms of the fungi.
RESUMO
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Assuntos
Bacillus thuringiensis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Sequência Conservada , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Percepção de Quorum , Esporos Bacterianos/genéticaRESUMO
Natural products are ecofriendly agents that can be used against parasitic diseases. Eimeria species cause eimeriosis in many birds and mammals and resistance to available medications used in the treatment of eimeriosis is emerging. We investigated the in vitro and in vivo activity of Morus nigra leaf extracts (MNLE) against sporulation of oocysts and infection of mice with Eimeria papillata. Phytochemical analysis of MNLE showed the presence of seven compounds and the in vitro effects of MNLE, amprolium, DettolTM, formalin, ethanol, and phenol were studied after incubation with oocysts before sporulation. Furthermore, infection of mice with E. papillata induced an oocyst output of approximately 12 × 105 oocysts/g of feces. MNLE significantly decreased oocyst output to approximately 86% and the total number of parasitic stages in the jejunum by approximately 87%. In addition, the reduction in the number of goblet cells in the jejuna of mice was increased after treatment. These findings suggest that mulberry exhibited powerful anticoccidial activity.(AU)
Os produtos naturais são agentes ecologicamente corretos que podem ser usados contra doenças parasitárias. As espécies de Eimeria causam eimeriose em muitas aves e mamíferos e a resistência aos medicamentos disponíveis usados no tratamento da eimeriose está emergindo. Foram investigadas as atividades in vitro e in vivo dos extratos de folhas de Morus nigra (MNLE) contra esporulação de oocistos e infecção de camundongos com Eimeria papillata. A análise fitoquímica do MNLE mostrou a presença de sete compostos e os efeitos in vitro do MNLE, amprolium, DettolTM, formalina, etanol e fenol foram estudados após incubação com oocistos antes da esporulação. Além disso, a infecção de camundongos com E. papillata induziu uma produção de oocistos de aproximadamente 12 × 105 oocistos / g de fezes. O MNLE reduziu significativamente a produção de oocistos para aproximadamente 86%, e o número total de estágios parasitários no jejuno em aproximadamente 87%. Além disso, a redução no número de células caliciformes no jejuno de camundongos aumentou após o tratamento. Esses achados sugerem que a amoreira exibia uma poderosa atividade anticoccidiana.(AU)