Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001070

RESUMO

Monitoring the strain in the rotating flywheel in a kinetic energy storage system is important for safe operation and for the investigation of long-term effects in composite materials like carbon-fiber-reinforced plastics. An optoelectronic strain-measurement system for contactless deformation and position monitoring of a flywheel was investigated. The system consists of multiple optical sensors measuring the local relative in-plane displacement of the flywheel rotor. A special reflective pattern, which is necessary to interact with the sensors, was applied to the surface of the rotor. Combining the measurements from multiple sensors makes it possible to distinguish between the deformation and in-plane displacement of the flywheel. The sensor system was evaluated using a low-speed steel rotor for single-sensor performance investigation as well as a scaled-down high-speed rotor made from PVC plastic. The PVC rotor exhibits more deformation due to centrifugal stresses than a steel or aluminum rotor of the same dimensions, which allows experimental measurements at a smaller flywheel scale as well as a lower rotation speed. Deformation measurements were compared to expected deformation from calculations. The influence of sensor distance was investigated. Deformation and position measurements as well as derived imbalance measurements were demonstrated.

2.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931738

RESUMO

Borehole strain gauges play a crucial role in geophysical, seismological, and crustal dynamics studies. While existing borehole strain gauges are proficient in measuring horizontal strains within vertical boreholes, their effectiveness in capturing vertical and oblique strains is limited due to technical constraints arising from the cylindrical probe's characteristics. However, the accurate measurement of three-dimensional strain is essential for a comprehensive understanding of crustal tectonics, dynamics, and geophysics, particularly considering the diverse geological structures and force sources within the crustal medium. In this study, we present a novel approach to address this challenge by enhancing an existing horizontal-component borehole strain gauge with a bellows structure and line strain measurement technology to enable vertical and borehole oblique strain measurements. Integrating these enhancements with horizontal strain measurement capabilities enables comprehensive three-dimensional borehole strain measurements within the same hole section. The system was deployed and tested at the Gongxian seismic station in Sichuan Province. Clear observations of solid tides were recorded across horizontal, oblique, and vertical measurement units, with the tidal morphology and amplitude being consistent with the theoretical calculations. The achieved measurement sensitivity of 10-10 meets the requirements for borehole strain measurement, enabling the characterization of three-dimensional strain states within boreholes through association methods.

3.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732787

RESUMO

With the recent advances in autonomous vehicles, there is an increasing need for sensors that can help monitor tire-road conditions and the forces that are applied to the tire. The footprint area of a tire that makes direct contact with the road surface, known as the contact patch, is a key parameter for determining a vehicle's effectiveness in accelerating, braking, and steering at various velocities. Road unevenness from features such as potholes and cracks results in large fluctuations in the contact patch surface area. Such conditions can eventually require the driver to perform driving maneuvers unorthodox to normal traffic patterns, such as excessive pedal depressions or large steering inputs, which can escalate to hazards such as the loss of control or impact. The integration of sensors into the inner liner of a tire has proven to be a promising method for extracting real-time tire-to-road contact patch interface data. In this research, a tire model is developed using Abaqus/CAE and analyzed using Abaqus/Explicit to study the nonlinear behavior of a rolling tire. Strain variations are investigated at the contact patch in three major longitudinal slip driving scenarios, including acceleration, braking, and free-rolling. Multiple vertical loading conditions on the tire are applied and studied. An intelligent tire prototype called KU-iTire is developed and tested to validate the strain results obtained from the simulations. Similar operating and loading conditions are applied to the physical prototype and the simulation model such that valid comparisons can be made. The experimental investigation focuses on the effectiveness of providing usable and reliable tire-to-road contact patch strain variation data under several longitudinal slip operating conditions. In this research, a correlation between FEA and experimental testing was observed between strain shape for free-rolling, acceleration, and braking conditions. A relationship between peak longitudinal strain and vertical load in free-rolling driving conditions was also observed and a correlation was observed between FEA and physical testing.

4.
Biomimetics (Basel) ; 9(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534807

RESUMO

The facial expressions of humanoid robots play a crucial role in human-computer information interactions. However, there is a lack of quantitative evaluation methods for the anthropomorphism of robot facial expressions. In this study, we designed and manufactured a humanoid robot head that was capable of successfully realizing six basic facial expressions. The driving force behind the mechanism was efficiently transmitted to the silicone skin through a rigid linkage drive and snap button connection, which improves both the driving efficiency and the lifespan of the silicone skin. We used human facial expressions as a basis for simulating and acquiring the movement parameters. Subsequently, we designed a control system for the humanoid robot head in order to achieve these facial expressions. Moreover, we used a flexible vertical graphene sensor to measure strain on both the human face and the silicone skin of the humanoid robot head. We then proposed a method to evaluate the anthropomorphic degree of the robot's facial expressions by using the difference rate of strain. The feasibility of this method was confirmed through experiments in facial expression recognition. The evaluation results indicated a high degree of anthropomorphism for the six basic facial expressions which were achieved by the humanoid robot head. Moreover, this study also investigates factors affecting the reproduction of expressions. Finally, the impulse was calculated based on the strain curves of the energy consumption of the humanoid robot head to complete different facial expressions. This offers a reference for fellow researchers when designing humanoid robot heads, based on energy consumption ratios. To conclude, this paper offers data references for optimizing the mechanisms and selecting the drive components of the humanoid robot head. This was realized by considering the anthropomorphic degree and energy consumption of each part. Additionally, a new method for evaluating robot facial expressions is proposed.

5.
Heliyon ; 10(4): e26258, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384525

RESUMO

Thin films are widely used in micro/nano-electronics. To accurately evaluate the mechanical behavior of thin films, it is important to analyze their dynamic behavior during mechanical testing in real-time. However, high-magnification SEM (Scanning Electron Microscope) images for applying strain measurement require time-consuming. In this study, we propose a method for real-time dynamic behavior analysis of thin films using in-situ SEM testing and image-based strain measurement, to obtain the mechanical properties of the thin film material to ensure reliability. We developed an in-situ SEM tensile tester that can be installed within the limited space of a chamber and optimized the magnification and resolution settings to obtain images at 1 frame per second. Therefore, we applied an image-based strain measurement method as continuously acquired high-magnification images from SEM. This method enables us to analyze the dynamic behavior of thin film materials, including failure mechanism.

6.
Bioengineering (Basel) ; 11(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391648

RESUMO

We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µÎµ, 160,000 µÎµ, and 120,000 µÎµ for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.

7.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339586

RESUMO

To overcome the shortcomings of plowing and rotary tillage, a human-like weeding shoveling machine was designed. The machine's various moving rods were analyzed using Matlab R2019b(9.7.0.1190202) software to determine the appropriate entry and cutting conditions, as well as non-cutting conditions. It was concluded that a θ2 of 90° was optimal for cutting the soil and that the shoveling depth was suitable for greenhouse weeding. The Adams and DEM coupled discrete element simulation system was developed for this machine and was used to analyze the rotating shaft torque and shovel bending moment. A strain measurement system based on strain gauges was designed to measure the rotating shaft torque and shovel bar bending moment. A bending moment and torque measurement system was designed to perform field measurement tests for comparison with simulation results. The simulation system's rotating shaft had an average torque error of 6.26%, while the shovel rod's bending moment had an average error of 5.43%. The simulation accuracy was within the acceptable error range. Table U8 (81 × 44) of the Uniform Design of the Mixing Factor Level for the Homogeneous Virtual Simulation Test includes eight levels of forward machine speed ranging from 0.1 to 0.45 m/s and four levels of output shaft speed ranging from 90 to 165 r/min. Crank lengths were set at four levels ranging from 155 to 185 mm, while shovel lengths were set at four levels ranging from 185 to 230 mm. Four types of shovel shapes were proposed, including pointed curved shovels, pointed straight shovels, straight-edged curved shovels, and straight-edged straight shovels. A mathematical model was created via a regression analysis of the results of coupled simulation tests to establish the relationship between shaft torque and shovel rod bending moment, tool advance speed, shaft speed, crank length, tool length, and tool shape. The model was used to determine the optimum working parameters.

8.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400456

RESUMO

Distributed optical fibre sensing (DOFS)-based strain measurement systems are now routinely deployed across infrastructure health monitoring applications. However, there are still practical performance and measurement issues associated with the fibre's attachment method, particularly with thermoplastic pipeline materials (e.g., high-density polyethylene, HDPE) and adhesive affixment methods. In this paper, we introduce a new optical fibre installation method that utilises a hot-weld encapsulation approach that fully embeds the fibre onto the pipeline's plastic surface. We describe the development, application and benefits of the new embedment approach (as compared to adhesive methods) and illustrate its practical performance via a full-scale, real-world, dynamic loading trial undertaken on a 1.8 m diameter, 6.4 m long stormwater pipeline structure constructed from composite spiral-wound, steel-reinforced, HDPE pipe. The optical frequency domain reflectometry (OFDR)-based strain results show how the new method improves strain transference and dynamic measurement performance and how the data can be easily interpreted, in a practical context, without the need for complex strain transfer functions. Through the different performance tests, based on UK rail-road network transport loading conditions, we also show how centimetre- to metre-scale strain variations can be clearly resolved at the frequencies and levels consistent with transport- and construction-based, buried infrastructure loading scenarios.

9.
Micromachines (Basel) ; 15(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38258259

RESUMO

We propose an air gap fiber Bragg grating (g-FBG) sensor that can measure strain and temperature simultaneously. The sensor is made by aligning two fiber Bragg gratings (FBGs), and an air gap exists between these two sub-gratings. This sensor's architecture allows it to form a spectrum with phase-shifted fiber Bragg grating (PSFBG) spectroscopy and Fabry-Perot interference (FPI) spectroscopy. Since the sensitivity of PSFBG and FPI spectra is different for strain and temperature, it is possible to measure both strain and temperature by measuring one of the reflected dips of PSFBG and the interference dip of FPI. The experimental results show that the strain sensitivity is about 11.95 pm/µÎµ via the dip wavelength detection of FPI, and the temperature sensitivity is about 9.64 pm/°C via the dip wavelength detection of PSFBG. The g-FBG sensor demonstrates a resolution of approximately ±3.7 µÎµ within the strain range of 0 to 1000 µÎµ and about ±0.6 °C within the temperature range of 25 °C to 120 °C. The proposed g-FBG sensor, characterized by its simple structure, compact size, and cost-effectiveness, exhibits significant potential in the field of multi-parameter measurements.

10.
BMC Cardiovasc Disord ; 23(1): 584, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012599

RESUMO

BACKGROUND: The present study aimed to detect subtle left ventricular (LV) dysfunction in patients with severe rheumatic mitral stenosis (MS) by measuring global and segmental longitudinal strain with a two-dimensional speckle tracking echocardiography (2D-STE) method. METHODS: In this case-control study, 65 patients with severe rheumatic MS and preserved ejection fraction (EF ≥ 50% measured by conventional echocardiographic methods) were compared with 31 otherwise healthy control subjects. All patients underwent LV strain measurement by the 2D-STE method in addition to conventional echocardiography using a VIVID S60 echocardiography device. RESULTS: Absolute strain values in myocardial segments 1-8, 10, and 12 (all basal, mid anterior, mid anteroseptal, mid inferior, and mid anterolateral segments) were significantly lower in patients with severe MS compared with the control group (P < 0.05 for all). The absolute global longitudinal strain (GLS) value was higher in the control group (-19.56 vs. -18.25; P = 0.006). After adjustment for age, gender, and systolic blood pressure, the difference in GLS between the two groups was as follows: mean difference=-1.16; 95% CI: -2.58-0.25; P = 0.110. CONCLUSION: In patients with severe rheumatic MS and preserved EF, the absolute GLS tended to be lower than healthy controls. Furthermore, the segmental strain values of LV were significantly lower in most of the basal and some mid-myocardial segments. Further studies are warranted to investigate the underlying pathophysiology and clinical implications of this subclinical dysfunction in certain segments of patients with severe rheumatic MS.


Assuntos
Estenose da Valva Mitral , Disfunção Ventricular Esquerda , Humanos , Estenose da Valva Mitral/diagnóstico por imagem , Estenose da Valva Mitral/etiologia , Estudos de Casos e Controles , Deformação Longitudinal Global , Ecocardiografia/métodos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda/fisiologia
11.
Sensors (Basel) ; 23(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960663

RESUMO

For the purpose of validation and identification of mechanical systems, measurements are indispensable. However, they require knowledge of the inherent uncertainty to provide valid information. This paper describes a method on how to evaluate uncertainties in strain measurement using electric strain gages for practical engineering applications. Therefore, a basic model of the measurement is deduced that comprises the main influence factors and their uncertainties. This is performed using the example of a project dealing with strain measurement on the concrete surface of a large-span road bridge under static loading. Special attention is given to the statistical modeling of the inputs, the underlying physical relationship, and the incorporation and the impact of nonlinearities for different environmental conditions and strain levels. In this regard, also experiments were conducted to quantify the influence of misalignment of the gages. The methodological approach used is Monte Carlo simulation. A subsequent variance-based sensitivity analysis reveals the degree of nonlinearity in the relationship and the importance of the different factors to the resulting probability distribution. The developed scheme requires a minimum of expert knowledge of the analytical derivation of measurement uncertainties and can easily be modified for differing requirements and purposes.

12.
Sensors (Basel) ; 23(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836913

RESUMO

Embedding fiber optic sensors (FOSs) within parts for strain measurement is attracting widespread interest due to its great potential in the field of structural health monitoring (SHM). This work proposes a novel method of embedding FOSs using capillaries within solid structures and investigates fiber positions and orientation uncertainties within capillaries of different sizes and their influences on strain measurement accuracies. To investigate how the fiber positions and orientation variations influence strain measurement accuracy, both analytical and numerical models are utilized to predict strain distributions along embedded fibers at different positions and with different orientations within the specimen. To verify the predictions, a group of specimens made of Aluminum 6082 was prepared, and the specimens in each group had capillaries of 2 mm, 4 mm, and 6 mm diameters, respectively. Fibers were embedded within each specimen using the capillaries. Four-point bending static tests were conducted for each specimen with embedded FOSs, performing in situ strain measurement. Subsequently, the specimens were partitioned into several pieces, and the cross sections were observed to know the real positions of the embedded fiber. Finally, the strain predictions at the real locations of the fiber were compared with the measured strain from the embedded FOSs. The predicted strain distributions as a function of the fiber positions alone and as a function of both the fiber positions and orientations were compared to assess the influence of fiber orientation change. The results from a combination of analytical, numerical, and experimental techniques suggest that the fiber position from the capillary center is the main factor that can influence strain measurement accuracies of embedded FOSs, and potential fiber misalignments within the capillary had a negligible influence. The fiber position-induced measured error increases from 10.5% to 18.5% as the capillary diameter increases from 2 mm to 6 mm. A 2 mm capillary diameter is able to lead to the lowest measurement error in this study and maintains ease of embedding. In addition, it is found that the measured strain always lies within a strain window defined by the strain distribution along capillary boundaries when there are no cracks. This can be further studied for crack detection.

13.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896659

RESUMO

This study investigated the use of distributed optical fiber sensing to measure temperature and strain during thermomechanical processes in printed circuit board (PCB) manufacturing. An optical fiber (OF) was bonded to a PCB for simultaneous measurement of temperature and strain. Optical frequency-domain reflectometry was used to interrogate the fiber optic sensor. As the optical fiber is sensitive to both temperature and strain, a demodulation technique is required to separate both effects. Several demodulation techniques were compared to find the best one, highlighting their main limitations. The importance of good estimations of the temperature sensitivity coefficient of the OF and the coefficient of thermal expansion of the PCB was highlighted for accurate results. Furthermore, the temperature sensitivity of the bonded OF should not be neglected for accurate estimations of strains. The two-sensor combination model provided the best results, with a 2.3% error of temperature values and expected strain values. Based on this decoupling model, a methodology for measuring strain and temperature variations in PCB thermomechanical processes using a single and simple OF was developed and tested, and then applied to a trial in an industrial environment using a dynamic oven with similar characteristics to those of a reflow oven. This approach allows the measurement of the temperature profile on the PCB during oven travel and its strain state (warpage).

14.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687943

RESUMO

A feasible and precise method to measure ligament strain during surgical interventions could significantly enhance the quality of ligament reconstructions. However, all existing scientific approaches to measure in vivo ligament strain possess at least one significant disadvantage, such as the impairment of the anatomical structure. Seeking a more advantageous method, this paper proposes defining medical and technical requirements for a non-destructive, optical measurement technique. Furthermore, we offer a comprehensive review of current optical endoscopic techniques which could potentially be suitable for in vivo ligament strain measurement, along with the most suitable optical measurement techniques. The most promising options are rated based on the defined explicit and implicit requirements. Three methods were identified as promising candidates for a precise optical measurement of the alteration of a ligaments strain: confocal chromatic imaging, shearography, and digital image correlation.


Assuntos
Ligamentos , Ligamentos/diagnóstico por imagem , Ligamentos/cirurgia , Humanos , Endoscopia
15.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571477

RESUMO

The structural dynamic response of hydraulic turbines needs to be continuously monitored to predict incipient failures and avoid catastrophic breakdowns. Current methods based on traditional off-board vibration sensors mounted on fixed components do not permit inferring loads induced on rotating parts with enough accuracy. Therefore, the present paper assesses the performance of fiber Bragg grating sensors to measure the vibrations induced on a rotating shaft-disc assembly partially submerged in water resembling a hydraulic turbine rotor. An innovative mounting procedure for installing the sensors is developed and tested, which consists of machining a thin groove along a shaft line to embed a fiber-optic array that can pass through the bearings. At the top of the shaft, a rotary joint is used to extract, in real time, the signals to the interrogator. The shaft strain distribution is measured with high spatial resolution at different rotating speeds in air and water. From this, the natural frequencies, damping ratios, and their associated mode shapes are quantified at different operating conditions. Additionally, the change induced in the modes of vibration by the rotation effects is well captured. All in all, these results validate the suitability of this new fiber-optic technology for such applications and its overall better performance in terms of sensitivity and spatial resolution relative to traditional equipment. The next steps will consist of testing this new sensing technology in actual full-scale hydraulic turbines.

16.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571478

RESUMO

Fiber Bragg grating (FBG) sensor has a lot of advantages over the resistance strain gauge and has been used in many applications. However, there are few applications of rotor blade dynamic measurement in helicopter flight. In this paper, a method for blade dynamic strain measurement using an FBG sensor in a helicopter's real flight is presented. The corresponding measurement system is established and can eliminate the effects of the helicopter's electromagnetic environment on the electrical sensing components in the measurement system with the orthogonal frequency-division multiplexing modulation. The measured dynamic strains on the rotor blades of the helicopter in real flight contain six harmonic frequencies with the vibration characteristics of rotor blades, indicating that the established FBG measurement method and system have practical engineering applications.

17.
J Biomech ; 157: 111729, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473706

RESUMO

The purpose of this study is to determine whether in-fiber Bragg grating (FBG) sensors detect changes within the periodontal ligament (PDL) of ex-vivo swine tooth-PDL-bone complex (TPBC) when manipulating fluid content. Recording strain will allow for a better understanding of the biomechanics of viscoelastic load transfer from the tooth to the PDL during chewing and/or orthodontic tooth movement, as well as replication of these dynamics in regenerated PDL tissues. FBG sensors placed within the PDL of swine incisor teeth were used to measure strain resulting from an intrusive load. Specimens were mounted in a custom platform within an MTS machine and a compressive load was applied at 0.3 mm/s to a depth of 0.5 mm and held for 10 s. Median peak strain and load and median absolute deviation (MAD) were compared: dry vs. saline (n = 19) with bias-corrected bootstrap 95% CI. Dry vs. saline conditions did not statistically differ (median peaks of 5µÎµ, 103-105 N) and recorded strains showed high repeatability (MAD of 0.82µÎµ, 0.72µÎµ, respectively). FBG sensors did not detect the fluid changes in this study, suggesting that the deformation of tissues in the PDL space collectively determine FBG strain in response to tooth loading. The repeatability of measurements demonstrates the potential for FBG sensors to assess the strain in the PDL space of an in vivo swine model.


Assuntos
Incisivo , Ligamento Periodontal , Suínos , Animais , Incisivo/fisiologia , Análise de Elementos Finitos , Mastigação , Fenômenos Biomecânicos , Estresse Mecânico
18.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514792

RESUMO

A composite optical bench made up of Carbon Fiber Reinforced Polymer (CFRP) skin and aluminum honeycomb has been developed for the Tunable Magnetograph instrument (TuMag) for the SUNRISE III mission within the NASA Long Duration Balloon Program. This optical bench has been designed to meet lightweight and low sensitivity to thermal gradient requirements, resulting in a low Coefficient of Thermal Expansion (CTE). In addition to the flight model, a breadboard model identical to the flight one has been manufactured, including embedded fiber Bragg temperature and strain sensors. The aim of this is to explore if the use of distributed fiber Bragg gratings (FBGs) can provide valuable information for strain and temperature mapping of an optical instrument on board a space mission during its operation as well as its on-ground testing. Furthermore, surface-mounted strain FBG sensors and thermocouples have been installed in the optical bench for intercomparison purposes. This paper presents the results obtained from a thermal vacuum test consisting of three thermal cycles with stabilization steps at 100 °C, 60 °C, 20 °C and -20 °C. Experimental results provide information about how FBG embedded temperature sensors can provide a proper and quick response to the temperature changes of the optical bench and that embedded FBG strain sensors are able to measure micro-deformation induced in a close-to-zero CTE optical bench.

19.
Ultramicroscopy ; 253: 113810, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37429066

RESUMO

The rapid collection and indexing of electron diffraction patterns as produced via electron backscatter diffraction (EBSD) has enabled crystallographic orientation and structural determination, as well as additional property-determining strain and dislocation density information with increasing speed, resolution, and efficiency. Pattern indexing quality is reliant on the noise of the collected electron diffraction patterns, which is often convoluted by sample preparation and data collection parameters. EBSD acquisition is sensitive to many factors and thus can result in low confidence index (CI), poor image quality (IQ), and improper minimization of fit, which can result in noisy datasets and misrepresent the microstructure. In an attempt to enable both higher speed EBSD data collection and enable greater orientation fit accuracy with noisy datasets, an image denoising autoencoder was implemented to improve pattern quality. We show that EBSD data processed through the autoencoder results in a higher CI, IQ, and a more accurate degree of fit. In addition, using denoised datasets in HR-EBSD cross correlative strain analysis can result in reduced phantom strain from erroneous calculations due to the increased indexing accuracy and improved correspondence between collected and simulated patterns.

20.
Eur J Orthop Surg Traumatol ; 33(8): 3299-3305, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37284986

RESUMO

PURPOSE: Interfragmentary strain influences whether a fracture will undergo direct and indirect fracture healing. Orthopedic trauma surgeons modulate strain and create optimal biomechanical environments for specific fracture patterns using fixation constructs. However, objective intraoperative interfragmentary strain measurement does not currently inform fixation strategy in common practice. This review identifies potential methods and technologies to enable intraoperative strain measurement for guiding optimal fracture fixation strategies. METHODS: PubMed, Scopus, and Web of Science were methodologically queried for manuscripts containing terms related to "bone fracture," "strain," "measurement," and "intraoperative." Manuscripts were systematically screened for relevance and adjudicated by three reviewers. Relevant articles describing methods to measure interfragmentary strain intraoperatively were summarized. RESULTS: After removing duplicates, 1404 records were screened initially. There were 49 manuscripts meeting criteria for in-depth review. Of these, four reports were included in this study that described methods applicable to measuring interfragmentary strain intraoperatively. Two of these reports described a method using instrumented staples, one described optical tracking of Kirschner wires, and one described using a digital linear variable displacement transducer with a custom external fixator. CONCLUSION: The four reports identified by this review describe potential methods to quantify interfragmentary strain after fixation. However, further studies are needed to confirm the precision and accuracy of these measurements across a range of fractures and fixation methods. Additionally, described methods require the insertion and likely removal of additional implants into the bone. Ideally, innovations that measure interfragmentary strain intraoperatively would provide dynamic biomechanical feedback for the surgeon to proactively modulate construct stability.


Assuntos
Fixação Interna de Fraturas , Fraturas Ósseas , Humanos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Fios Ortopédicos , Consolidação da Fratura , Tomada de Decisões , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...