Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 130: 103960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179163

RESUMO

Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing. αT homeostasis is primarily regulated by the α-tocopherol transfer protein (αTTP), which is widely distributed throughout the brain - where it plays a crucial role in maintaining αT levels within neuronal cells. This study investigates the distribution of αTTP in the hippocampus of 4- and 24-month-old Pol µ knockout mice (Pol µ-/-), a delayed-ageing model, and the wild type (Pol µ+/+). We also examine the colocalisation in the stratum oriens (st.or) of CA1 region with the primary interneuron populations expressing calcium-binding proteins (CBPs) (calbindin (CB), parvalbumin (PV), and calretinin (CR)). Our findings reveal that αTTP immunoreactivity (-IR) in the st.or of Pol µ mice is significantly reduced. The density of PV-expressing interneurons (INs) increased in aged mice in both Pol µ genotypes (Pol µ-/- and Pol µ+/+), although the density of PV-positive INs was lower in the aged Pol µ-/- mice compared to wild-type mice. By contrast, CR- and CB-positive INs in Pol µ mice remained unchanged during ageing. Furthermore, double immunohistochemistry reveals the colocalisation of αTTP with CBPs in INs of the CA1 st.or. Our study also shows that the PV/αTTP-positive IN population remains unchanged in all groups. A significant decrease of CB/αTTP-positive INs in young Pol µ-/- mice has been detected, as well as a significant increase in CR/αTTP-IR in older Pol µ-/- animals. These results suggest that the differential expression of αTTP and CBPs could have a crucial effect in aiding the survival and maintenance of the different IN populations in the CA1 st.or, and their coexpression could contribute to the enhancement of their resistance to OS-related damage and neurodegeneration associated with ageing.


Assuntos
Envelhecimento , Região CA1 Hipocampal , Proteínas de Transporte , Interneurônios , Parvalbuminas , Animais , Masculino , Camundongos , Envelhecimento/metabolismo , Região CA1 Hipocampal/metabolismo , Calbindinas/metabolismo , Calbindinas/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parvalbuminas/metabolismo
2.
Neurobiol Stress ; 17: 100431, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35535260

RESUMO

Glutamate receptors have a key role in the neurobiology of opioid addiction. Using electron microscopic immunocytochemical methods, this project elucidates how sex and chronic immobilization stress (CIS) impact the redistribution of GluN1 and GluA1 within rat hippocampal CA3 pyramidal cells following oxycodone (Oxy) conditioned place preference (CPP). Four groups of female and male Sprague-Dawley rats subjected to CPP were used: Saline- (Sal) and Oxy-injected (3 mg/kg, I.P.) naïve rats; and Sal- and Oxy-injected CIS rats. GluN1: In both naive and CIS rats, Sal-females compared to Sal-males had elevated cytoplasmic and total dendritic GluN1. Following Oxy CPP, near plasmalemmal, cytoplasmic, and total GluN1 decreased in CA3 dendrites of unstressed females suggesting reduced pools of GluN1 available for ligand binding. Following CIS, Oxy-males (which did not acquire CPP) had increased GluN1 in all compartments of dendrites and spines of CA3 neurons. GluA1: There were no differences in the distribution GluA1 in any cellular compartments of CA3 dendrites in naïve females and males following either Sal or Oxy CPP. CIS alone increased the percent of GluA1 in CA3 dendritic spines in males compared to females. CIS Oxy-males compared to CIS Sal-males had an increase in cytoplasmic and total dendritic GluA1. Thus, in CIS Oxy-males increased pools of GluN1 and GluA1 are available for ligand binding in CA3 neurons. Together with our prior experiments, these changes in GluN1 and GluA1 following CIS in males may contribute to an increased sensitivity of CA3 neurons to glutamate excitation and a reduced capacity to acquire Oxy CPP.

3.
Front Mol Neurosci ; 15: 823640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370551

RESUMO

Dravet syndrome is severe childhood-onset epilepsy, caused by loss of function mutations in the SCN1A gene, encoding for the voltage-gated sodium channel NaV1.1. The leading hypothesis is that Dravet is caused by selective reduction in the excitability of inhibitory neurons, due to hampered activity of NaV1.1 channels in these cells. However, these initial neuronal changes can lead to further network alterations. Here, focusing on the CA1 microcircuit in hippocampal brain slices of Dravet syndrome (DS, Scn1a A1783V/WT) and wild-type (WT) mice, we examined the functional response to the application of Hm1a, a specific NaV1.1 activator, in CA1 stratum-oriens (SO) interneurons and CA1 pyramidal excitatory neurons. DS SO interneurons demonstrated reduced firing and depolarized threshold for action potential (AP), indicating impaired activity. Nevertheless, Hm1a induced a similar AP threshold hyperpolarization in WT and DS interneurons. Conversely, a smaller effect of Hm1a was observed in CA1 pyramidal neurons of DS mice. In these excitatory cells, Hm1a application resulted in WT-specific AP threshold hyperpolarization and increased firing probability, with no effect on DS neurons. Additionally, when the firing of SO interneurons was triggered by CA3 stimulation and relayed via activation of CA1 excitatory neurons, the firing probability was similar in WT and DS interneurons, also featuring a comparable increase in the firing probability following Hm1a application. Interestingly, a similar functional response to Hm1a was observed in a second DS mouse model, harboring the nonsense Scn1a R613X mutation. Furthermore, we show homeostatic synaptic alterations in both CA1 pyramidal neurons and SO interneurons, consistent with reduced excitation and inhibition onto CA1 pyramidal neurons and increased release probability in the CA1-SO synapse. Together, these results suggest global neuronal alterations within the CA1 microcircuit extending beyond the direct impact of NaV1.1 dysfunction.

4.
Neurobiol Dis ; 148: 105209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271326

RESUMO

Dravet syndrome (Dravet) is a rare, severe childhood-onset epilepsy, caused by heterozygous de novo mutations in the SCN1A gene, encoding for the alpha subunit of the voltage-gated sodium channel, NaV1.1. The neuronal basis of Dravet is debated, with evidence favoring reduced function of inhibitory neurons, that might be transient, or enhanced activity of excitatory cells. Here, we utilized Dravet mice to trace developmental changes in the hippocampal CA1 circuit, examining the properties of CA1 horizontal stratum-oriens (SO) interneurons and pyramidal neurons, through the pre-epileptic, severe and stabilization stages of Dravet. Our data indicate that reduced function of SO interneurons persists from the pre-epileptic through the stabilization stages, with the greatest functional impairment observed during the severe stage. In contrast, opposing changes were detected in CA1 excitatory neurons, with a transient increase in their excitability during the pre-epileptic stage, followed by reduced excitability at the severe stage. Interestingly, alterations in the function of both inhibitory and excitatory neurons were more pronounced when the firing was evoked by synaptic stimulation, implying that loss of function of NaV1.1 may also affect somatodendritic functions. These results suggest a complex pathophysiological mechanism and indicate that the developmental trajectory of this disease is governed by reciprocal functional changes in both excitatory and inhibitory neurons.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/metabolismo , Epilepsias Mioclônicas/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Interneurônios/fisiologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios , Células Piramidais/fisiologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia
5.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937911

RESUMO

The molecular anatomy of synapses defines their characteristics in transmission and plasticity. Precise measurements of the number and distribution of synaptic proteins are important for our understanding of synapse heterogeneity within and between brain regions. Freeze-fracture replica immunogold electron microscopy enables us to analyze them quantitatively on a two-dimensional membrane surface. Here, we introduce Darea software, which utilizes deep learning for analysis of replica images and demonstrate its usefulness for quick measurements of the pre- and postsynaptic areas, density and distribution of gold particles at synapses in a reproducible manner. We used Darea for comparing glutamate receptor and calcium channel distributions between hippocampal CA3-CA1 spine synapses on apical and basal dendrites, which differ in signaling pathways involved in synaptic plasticity. We found that apical synapses express a higher density of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and a stronger increase of AMPA receptors with synaptic size, while basal synapses show a larger increase in N-methyl-D-aspartate (NMDA) receptors with size. Interestingly, AMPA and NMDA receptors are segregated within postsynaptic sites and negatively correlated in density among both apical and basal synapses. In the presynaptic sites, Cav2.1 voltage-gated calcium channels show similar densities in apical and basal synapses with distributions consistent with an exclusion zone model of calcium channel-release site topography.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Hipocampo/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Aprendizado Profundo , Dendritos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica/métodos , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
6.
Biol Pharm Bull ; 41(1): 138-141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29311476

RESUMO

Appropriate axonal pathfinding is a necessary step for the function of neuronal circuits. The mossy fibers (MFs) in the hippocampus of CaMKIIα heterozygous knockout (CaMKIIα-hKO) psychiatric model mice project onto not only the stratum lucidum but also the stratum oriens region in the CA3, which is a projection pattern distinct from that in normal mice. Thus, we examined the electrophysiological properties of the MF-CA3 connection in this mutant mouse on field recordings and found a lower synaptic connection. This study suggested that the phenotype of abnormal MF pathfindings could induce aberrant neuronal functions, which may link to cognition and memory.


Assuntos
Orientação de Axônios , Região CA3 Hipocampal/ultraestrutura , Transtornos Mentais/patologia , Fibras Musgosas Hipocampais/ultraestrutura , Neurônios/ultraestrutura , Animais , Orientação de Axônios/fisiologia , Região CA3 Hipocampal/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Heterozigoto , Masculino , Transtornos Mentais/fisiopatologia , Camundongos Knockout , Fibras Musgosas Hipocampais/fisiopatologia , Neurônios/metabolismo
7.
Neuron ; 96(1): 160-176.e8, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28957665

RESUMO

Hippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses. Further, we discovered that these differences require the Type II classic cadherins, cadherins-6, -9, and -10. Though cadherins typically function via trans-cellular homophilic interactions, our results suggest presynaptic cadherin-9 binds postsynaptic cadherins-6 and -10 to regulate mushroom spine density and high-magnitude LTP in the SO layer. Loss of these cadherins has no effect on the lower-magnitude LTP typically observed in the SR layer, demonstrating that cadherins-6, -9, and -10 are gatekeepers for high-magnitude LTP. Thus, Type II cadherins may uniquely contribute to the specificity and strength of synaptic changes associated with learning and memory.


Assuntos
Região CA1 Hipocampal/fisiologia , Caderinas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/ultraestrutura , Caderinas/metabolismo , Células Cultivadas , Cricetinae , Estimulação Elétrica , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Ratos , Sinapses/ultraestrutura
8.
Prog Neurobiol ; 111: 34-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025745

RESUMO

The reuniens and rhomboid nuclei, located in the ventral midline of the thalamus, have long been regarded as having non-specific effects on the cortex, while other evidence suggests that they influence behavior related to the photoperiod, hunger, stress or anxiety. We summarise the recent anatomical, electrophysiological and behavioral evidence that these nuclei also influence cognitive processes. The first part of this review describes the reciprocal connections of the reuniens and rhomboid nuclei with the medial prefrontal cortex and the hippocampus. The connectivity pattern among these structures is consistent with the idea that these ventral midline nuclei represent a nodal hub to influence prefrontal-hippocampal interactions. The second part describes the effects of a stimulation or blockade of the ventral midline thalamus on cortical and hippocampal electrophysiological activity. The final part summarizes recent literature supporting the emerging view that the reuniens and rhomboid nuclei may contribute to learning, memory consolidation and behavioral flexibility, in addition to general behavior and aspects of metabolism.


Assuntos
Comportamento/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Núcleos da Linha Média do Tálamo/anatomia & histologia , Núcleos da Linha Média do Tálamo/fisiologia , Animais , Humanos
9.
Neuropharmacology ; 73: 160-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747570

RESUMO

Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K(+) channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function in the treatment of some neurodegenerative diseases.


Assuntos
Acetilcolina/fisiologia , Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Receptores Muscarínicos/fisiologia , Potenciais Sinápticos/fisiologia , Acetilcolina/agonistas , Acetilcolina/antagonistas & inibidores , Animais , Atropina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Interneurônios/efeitos dos fármacos , Camundongos , Antagonistas Muscarínicos/farmacologia , Fisostigmina/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Septo do Cérebro/fisiologia , Potenciais Sinápticos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA