Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.989
Filtrar
1.
Biochem Soc Trans ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958608

RESUMO

TDP-43 is an abundant and ubiquitously expressed nuclear protein that becomes dysfunctional in a spectrum of neurodegenerative diseases. TDP-43's ability to phase separate and form/enter biomolecular condensates of varying size and composition is critical for its functionality. Despite the high density of phase-separated assemblies in the nucleus and the nuclear abundance of TDP-43, our understanding of the condensate-TDP-43 relationship in this cellular compartment is only emerging. Recent studies have also suggested that misregulation of nuclear TDP-43 condensation is an early event in the neurodegenerative disease amyotrophic lateral sclerosis. This review aims to draw attention to the nuclear facet of functional and aberrant TDP-43 condensation. We will summarise the current knowledge on how TDP-43 containing nuclear condensates form and function and how their homeostasis is affected in disease.

2.
BMC Anesthesiol ; 24(1): 220, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956469

RESUMO

BACKGROUND: As a novel regional analgesic technique, ultrasound-guided pericapsular nerve group (PENG) block has some potential advantages, and we designed a randomized clinical trial (RCT) to investigate whether the ultrasound-guided PENG block combined with general anesthesia can better reduce stress response, maintain intraoperative hemodynamic stability, and reduce postoperative analgesia in elderly hip arthroplasty compared with ultrasound-guided suprainguinal fascia iliaca block (SIFIB) combined with general anesthesia. METHODS: Seventy-four subjects were enrolled over an 8-month period (20 April 2023 to 31 December 2023). All patients were divided into the test group (group P) and the control group (group S) using the envelope as the randomization method. The test group was treated with preoperative ultrasound-guided PENG block analgesia combined with general anesthesia and the control group was treated with preoperative ultrasound-guided SIFIB analgesia combined with general anesthesia. The primary outcome selected was the patient Visual Analogue Scale (VAS) score at 12 h postoperatively. RESULTS: After generalized estimating equations (GEE) analysis, there was a statistically significant difference in the main effect of postoperative VAS score in group P compared with group S (P = 0.009), the time effect of VAS score in each group was significantly different (P < 0.001), and there was no statistically significant difference in the group-time interaction effect (P = 0.069). There was no statistically significant difference in the main effect of intraoperative mean arterial pressure (MAP) change (P = 0.911), there were statistically significant differences in the time effect of MAP in each group (P < 0.001), and there were statistically significant differences in the interaction effect (P < 0.001). CONCLUSIONS: In summary, we can conclude that in elderly patients undergoing hip fracture surgery, postoperative analgesia is more pronounced, intraoperative hemodynamic parameters are more stable, and intraoperative stress is less induced in patients receiving SIFIB than in patients receiving PENG block.


Assuntos
Artroplastia de Quadril , Bloqueio Nervoso , Dor Pós-Operatória , Ultrassonografia de Intervenção , Humanos , Masculino , Feminino , Idoso , Método Duplo-Cego , Bloqueio Nervoso/métodos , Estudos Prospectivos , Artroplastia de Quadril/métodos , Dor Pós-Operatória/prevenção & controle , Ultrassonografia de Intervenção/métodos , Anestesia Geral/métodos , Fáscia , Estresse Fisiológico/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Idoso de 80 Anos ou mais
3.
Structure ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38964336

RESUMO

The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.

4.
Arh Hig Rada Toksikol ; 75(2): 147-154, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963138

RESUMO

Mistakes in translation are mostly associated with toxic effects in the cell due to the production of functionally aberrant and misfolded proteins. However, under certain circumstances mistranslation can have beneficial effects and enable cells to preadapt to other stress conditions. Mistranslation may be caused by mistakes made by aminoacyl-tRNA synthetases, essential enzymes that link amino acids to cognate tRNAs. There is an Escherichia coli strain expressing isoleucyl-tRNA synthetase mutant variant with inactivated editing domain which produces mistranslated proteomes where valine (Val) and norvaline (Nva) are misincorporated into proteins instead of isoleucine. We compared this strain with the wild-type to determine the effects of such mistranslation on bacterial growth in oxidative stress conditions. When the cells were pre-incubated with 0.75 mmol/L Nva or 1.5 mmol/L Val or Nva and exposed to hydrogen peroxide, no beneficial effect of mistranslation was observed. However, when the editing-deficient strain was cultivated in medium supplemented with 0.75 mmol/L Val up to the early or mid-exponential phase of growth and then exposed to oxidative stress, it slightly outgrew the wild-type grown in the same conditions. Our results therefore show a modest adaptive effect of isoleucine mistranslation on bacterial growth in oxidative stress, but only in specific conditions. This points to a delicate balance between deleterious and beneficial effects of mistranslation.


Assuntos
Escherichia coli , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Peróxido de Hidrogênio
5.
Front Plant Sci ; 15: 1421734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966146

RESUMO

Citrus is commercially propagated via grafting, which ensures trees have consistent fruit traits combined with favorable traits from the rootstock such as soil adaptability, vigor, and resistance to soil pathogens. Graft incompatibility can occur when the scion and rootstock are not able to form a permanent, healthy union. Understanding and preventing graft incompatibility is of great importance in the breeding of new fruit cultivars and in the choice of scion and rootstock by growers. The rootstock US-1283, a citrandarin generated from a cross of "Ninkat" mandarin (Citrus reticulata) and "Gotha Road" #6 trifoliate orange (Poncirus trifoliata), was released after years of field evaluation because of its superior productivity and good fruit quality on "Hamlin" sweet orange (C. sinensis) under Florida's growing conditions. Subsequently, it was observed that trees of "Bearss" lemon (C. limon) and "Valencia" sweet orange (C. sinensis) grafted onto US-1283 exhibited unhealthy growth near the graft union. The incompatibility manifested as stem grooving and necrosis underneath the bark on the rootstock side of the graft. Another citrandarin rootstock, US-812 (C. reticulata "Sunki" × P. trifoliata "Benecke"), is fully graft compatible with the same scions. Transcriptome analysis was performed on the vascular tissues above and below the graft union of US-812 and US-1283 graft combinations with "Bearss" and "Valencia" to identify expression networks associated with incompatibility and help understand the processes and potential causes of incompatibility. Transcriptional reprogramming was stronger in the incompatible rootstock than in the grafted scions. Differentially expressed genes (DEGs) in US-1283, but not the scions, were associated with oxidative stress and plant defense, among others, similar to a pathogen-induced immune response localized to the rootstock; however, no pathogen infection was detected. Therefore, it is hypothesized that this response could have been triggered by signaling miscommunications between rootstock and scion either through (1) unknown molecules from the scion that were perceived as danger signals by the rootstock, (2) missing signals from the scion or missing receptors in the rootstock necessary for the formation of a healthy graft union, (3) the overall perception of the scion by the rootstock as non-self, or (4) a combination of the above.

6.
Front Plant Sci ; 15: 1412540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966148

RESUMO

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

7.
Heliyon ; 10(12): e32386, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988564

RESUMO

Multidrug-resistant yeast Candida auris is a serious threat to public health with documented survival in various hospital niches. The dynamics of this survival benefit and its trade off with drug resistance are still unknown for this pathogen. In this study we investigate the oxidative stress response (OSR) in fluconazole-resistant C. auris and compare its relative fitness with fluconazole-susceptible strains. A total of 351 C. auris clinical isolates (61 fluconazole-susceptible and 290 fluconazole-resistant) were screened for stress tolerance by spot assay and 95.08 % fluconazole-susceptible isolates were hyper-resistant to oxidative stress while majority (94.5 %) fluconazole-resistant isolates had lower oxidative tolerance. Expression of Hog1 and Cta1 gene transcript levels and cellular catalase levels were significantly higher in fluconazole-susceptible isolates and a corresponding higher intracellular reactive oxygen species level (iROS) was accumulated in the fluconazole-resistant isolates. Biofilm formation and cell viability under oxidative stress revealed higher biofilm formation and better viability in fluconazole-susceptible isolates. Fluconazole-resistant isolates had higher basal cell wall chitin. On comparison of virulence, the % cytotoxicity in A549 cell line was higher in fluconazole-susceptible isolates and the median survival of the infected larvae in G. mellonella infection model was higher in fluconazole-resistant (5; IQR:4.5-5 days) vs. fluconazole-susceptible C. auris (2; IQR:1.5-2.5 days). All organisms evolve with changes in their environmental conditions, to ensure an optimal balance between proliferation and survival. Development of tolerance to a certain kind of stress example antifungal exposure in yeast can leads to a compensatory decrease in tolerance for other stresses. This study provides useful insights into the comparative fitness and antifungal susceptibility trade off in C. auris. We report a negative association between H2O2 tolerance and fluconazole susceptibility. Using in-vitro cell cytotoxicity and in-vivo survival assays we also demonstrate the higher virulence potential of fluconazole-susceptible C. auris isolates corroborating the negative correlation between susceptibility and pathogen survival or virulence. These findings could also be translated to clinical practice by investigating the possibility of using molecules targeting stress response and fitness regulating pathways for management of this serious infection.

8.
Behav Brain Res ; 471: 115138, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969019

RESUMO

Negative urgency (NU), or the tendency to act rashly when stress of negative affect is high, could be the result of an insufficient control of the ventromedial prefrontal cortex (vmPFC) over the striatum, through an impaired dopamine (DA) transmission. Therefore, we investigated in vivo human stress-induced DA release in the vmPFC, its relation with fronto-striatal functional connectivity (FC), and NU in daily life. In total, 12 female healthy participants performed a simultaneous [18 F]fallypride PET and fMRI scan during which stress was induced. Regions displaying stress-induced DA release were identified and used to investigate stress-induced changes in fronto-striatal FC. Additionally, participants enrolled in an experience sampling study, reporting on daily life stress and rash actions over a 12-month-long period. Mixed models explored whether stress-induced DA release and FC moderated NU in daily life. Stress led to a lower FC between the vmPFC and dorsal striatum, but a higher FC between the vmPFC and contralateral ventral striatum. Participants with a higher FC between the vmPFC and dorsal striatum displayed more NU in daily life. A higher stress-induced DA release in the vmPFC was related to a higher stress-induced change in FC between the vmPFC and striatum. Participants with a higher DA release in the vmPFC displayed more NU in daily life. In conclusion, stress could differentially impact fronto-striatal FC whereby the connectivity with the dorsal striatum is especially important for NU in daily life. This could be mediated by a higher, but not a lower, stress-induced DA release in the vmPFC.

9.
Cureus ; 16(6): e61690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975455

RESUMO

Background Zinc is a trace element essential for the normal functioning of many vital enzymes and organ systems. Studies examining the rates and degrees of zinc deficiency and its consequences in patients with critical illnesses remain scarce. Materials and methods This is a prospective observational study assessing zinc deficiency in critically ill adult patients admitted to a tertiary care intensive care unit (ICU) and its impact on clinical outcomes. Patients were divided into those with normal (≥ 71 µg/dl) and low (≤ 70 µg/dl) zinc levels. Zinc-deficient patients were further divided into mild, moderate, and severe zinc deficiency groups based on zinc levels of 61-70 µg/dl, 51-60 µg/dl, and below 51 µg/dl, respectively. The primary outcome assessed was ICU mortality, and the secondary outcomes were ICU length of stay (LOS), duration of invasive mechanical ventilation (IMV), acute kidney injury (AKI) at admission, need for non-invasive ventilation (NIV), renal replacement therapy (RRT), or vasopressors during the course of the ICU. Other parameters compared included APACHE (Acute Physiology and Chronic Health Evaluation) II, SOFA (Sequential Organ Failure Assessment) score on day 1, and levels of lactate, procalcitonin, calcium, magnesium, phosphate, and serum albumin. The study also compared the mean zinc levels in patients with low and high SOFA scores (scores up to 7 vs. 8 and above) and low and high APACHE II values (scores up to 15 vs. 16 and above). Results A total of 50 patients were included, of whom 43 (86%) were zinc deficient. Mortality in zinc-deficient and normal zinc-level patients was 33% and 43%, respectively (p = 0.602). Patients with zinc deficiency were also older (mean age 69 vs. 49 years, p = 0.02). There was no difference in secondary outcome parameters, except for more zinc-deficient patients needing RRT. Twenty-six of the zinc-deficient patients had severe zinc deficiency, ten moderate, and seven mild (p = 0.663). ICU mortality was approximately 42%, 10%, and 29% in the severe, moderate, and mild deficiency groups, respectively (p = 0.092). Zinc levels were similar between those with low and high APACHE II scores (mean 47.9 vs. 45.5 µg/dl, p = 0.606) as well as between low and high SOFA scores (mean 47.8 vs. 45.7 µg/dl, p = 0.054). Conclusion The present study suggests that zinc deficiency is very common in critically ill patients but does not correlate with their severity of illness, nor does it lead to a poorer outcome in these patients. However, further studies with a larger cohort of patients would be required to make definitive conclusions.

10.
Genes Cells ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977420

RESUMO

Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including HSP70, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.

11.
Gastroenterology Res ; 17(3): 126-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38993550

RESUMO

Background: With the advancement of laparoscopic technology, the combination of laparoscopy, choledochoscopy, and holmium laser lithotripsy has emerged as an effective treatment modality for both choledocholithiasis and hepatolithiasis. This study aimed to assess the efficacy and safety of this approach. Methods: Retrospective analysis was conducted on the medical records of 76 patients diagnosed with choledocholithiasis and hepatolithiasis between April 2021 and March 2023. Patients were divided into two groups based on the treatment plan: the control group, which underwent traditional laparotomy and choledochoscopy lithotripsy (n = 38), and the experimental group, which underwent laparoscopy combined with choledochoscopy and holmium laser lithotripsy (n = 38). Comparative analysis was performed on various operation-related parameters, stone-free rate, complication rates, and changes in biochemical, liver function, inflammatory, stress response indicators, and pain scores between the two groups. Results: The experimental group demonstrated significantly shorter stone removal time, reduced intraoperative bleeding, and shorter hospital stay compared to the control group (P < 0.05). Moreover, the experimental group exhibited lower incidence of postoperative complications and lower pain scores at 2 weeks to 3 months post-operation (P < 0.05). Biochemical indicators including total bile acid (TBA), total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and glutamyl transpeptidase (GGT) were significantly lower in the observation group compared to the control group (P < 0.05). Additionally, stress and inflammation indicators were also lower in the experimental group (P < 0.05). Conclusions: The combination of laparoscopy, choledochoscopy, and holmium laser lithotripsy presents favorable therapeutic outcomes in the management of choledocholithiasis and hepatolithiasis, indicating its potential for widespread clinical application.

12.
Front Plant Sci ; 15: 1396634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993940

RESUMO

Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.

13.
Front Plant Sci ; 15: 1416742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993942

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with over 300 members in various species. Nearly all PPR proteins are nuclear-encoded and targeted to the chloroplast and mitochondria, modulating organellar gene expression by participating in RNA metabolism, including mRNA stability, RNA editing, RNA splicing, and translation initiation. Organelle RNA metabolism significantly influences chloroplast and mitochondria functions, impacting plant photosynthesis, respiration, and environmental responses. Over the past decades, PPR proteins have emerged as a research focus in molecular biology due to their diverse roles throughout plant life. This review summarizes recent progress in understanding the roles and molecular mechanisms of PPR proteins, emphasizing their functions in fertility, abiotic and biotic stress, grain quality, and chloroplast development in rice. Furthermore, we discuss prospects for PPR family research in rice, aiming to provide a theoretical foundation for future investigations and applications.

14.
Psychoneuroendocrinology ; 168: 107120, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39002453

RESUMO

Acute physiological responses to psychosocial stressors are a potential pathway underlying racial disparities in stress-related illnesses. Uric acid (UA) is a potent antioxidant that has been linked to disparities in stress-related illnesses, and recent research has shown that UA is responsive to acute social stress. However, an examination of the relationships between the purinergic system and other commonly measured stress systems is lacking. Here, we measure and characterize associations of salivary uric acid (sUA) with markers of hypothalamic-pituitary-adrenal (HPA) axis activation, sympathetic-adreno-medullar (SAM) axis activation, and acute inflammation. A community sample of 103 African Americans (33 male, 70 female) completed the Trier Social Stress Test to induce social-evaluative threat. Passive drool collected before, during, and after the stressor task provided salivary reactivity measures of UA (sUA), cortisol, dehydroepiandrosterone sulfate (DHEAS), salivary alpha amylase (sAA - a surrogate marker of SAM activity) and C-reactive protein (sCRP). Multiple regressions revealed that total activation of cortisol, DHEAS, and sCRP were each positively associated with higher total activation of sUA. Additionally, DHEAS reactivity was positively associated with sUA reactivity. Relationships between HPA-axis markers and sUA were especially observed among younger and male participants. Overall, findings suggest potential coordination of stress systems with sUA in response to acute stress, which may further the contributions of biological stress processes to racial health disparities.

15.
Dev Cell ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38986607

RESUMO

Following the Goldilocks principle, mitochondria size must be "just right." Mitochondria balance division and fusion to avoid becoming too big or too small. Defects in this balance produce dysfunctional mitochondria in human diseases. Mitochondrial safeguard (MitoSafe) is a defense mechanism that protects mitochondria against extreme enlarging by suppressing fusion in mammalian cells. In MitoSafe, hyperfused mitochondria elicit flickering-short pulses of mitochondrial depolarization. Flickering activates an inner membrane protease, Oma1, which in turn proteolytically inactivates a mitochondrial fusion protein, Opa1. The mechanisms underlying flickering are unknown. Using a live-imaging screen, we identified Slc25a3 (a mitochondrial carrier transporting phosphate and copper) as necessary for flickering and Opa1 cleavage. Remarkably, copper, but not phosphate, is critical for flickering. Furthermore, we found that two copper-containing mitochondrial enzymes, superoxide dismutase 1 and cytochrome c oxidase, regulate flickering. Our data identify an unforeseen mechanism linking copper, redox homeostasis, and membrane flickering in mitochondrial defense against deleterious fusion.

16.
Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959891

RESUMO

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.

17.
Clin Proteomics ; 21(1): 48, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969968

RESUMO

BACKGROUND: Characterization of the host response in cutaneous leishmaniasis (CL) through proteome profiling has gained limited insights into leishmaniasis research compared to that of the parasite. The primary objective of this study was to comprehensively analyze the proteomic profile of the skin lesions tissues in patients with CL, by mass spectrometry, and subsequent validation of these findings through immunohistochemical methods. METHODS: Eight lesion specimens from leishmaniasis-confirmed patients and eight control skin biopsies were processed for proteomic profiling by mass spectrometry. Formalin-fixed paraffin-embedded lesion specimens from thirty patients and six control skin specimens were used for Immunohistochemistry (IHC) staining. Statistical analyses were carried out using SPSS software. The chi-square test was used to assess the association between the degree of staining for each marker and the clinical and pathological features. RESULTS: Sixty-seven proteins exhibited significant differential expression between tissues of CL lesions and healthy controls (p < 0.01), representing numerous enriched biological processes within the lesion tissue, as evident by both the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Among these, the integrated endoplasmic reticulum stress response (IERSR) emerges as a pathway characterized by the up-regulated proteins in CL tissues compared to healthy skin. Expression of endoplasmic reticulum (ER) stress sensors, inositol-requiring enzyme-1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6) in lesion tissue was validated by immunohistochemistry. CONCLUSIONS: In conclusion, proteomic profiling of skin lesions carried out as a discovery phase study revealed a multitude of probable immunological and pathological mechanisms operating in patients with CL in Sri Lanka, which needs to be further elaborated using more in-depth and targeted investigations. Further research exploring the intricate interplay between ER stress and CL pathophysiology may offer promising avenues for the development of novel diagnostic tools and therapeutic strategies in combating this disease.

18.
Front Genet ; 15: 1397502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045328

RESUMO

Excessive reactive oxygen species stress due to salinity poses a significant threat to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis engages in alternative splicing (AS) to generate a variety of proteins that help it withstand the effects of salt stress. While several studies have investigated the impact of alternative splicing on plants stress responses, the mechanisms by which AS interacts with transcriptional regulation to modulate the salt stress response in G. uralensis remain poorly understood. In this study, we utilized high-throughput RNA sequencing data to perform a comprehensive analysis of AS events at various time points in G. uralensis under salt stress, with exon skipping (SE) being the predominant AS type. KEGG enrichment analysis was performed on the different splicing genes (DSG), and pathways associated with AS were significantly enriched, including RNA transport, mRNA surveillance, and spliceosome. This indicated splicing regulation of genes, resulting in AS events under salt stress conditions. Moreover, plant response to salt stress pathways were also enriched, such as mitogen-activated protein kinase signaling pathway - plant, flavonoid biosynthesis, and oxidative phosphorylation. We focused on four differentially significant genes in the MAPK pathway by AS and qRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative 5'splice site (A5SS), respectively. The expression levels of isoform1 of these four genes displayed different but significant increases in different tissue sites and salt stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and RbohD in G. uralensis activate the expression of isoform1, leading to the production of more isoform1 protein and thereby enhancing resistance to salt stress. These findings suggest that salt-responsive AS directly and indirectly governs G. uralensis salt response. Further investigations into AS function and mechanism during abiotic stresses may offer novel references for bolstering plant stress tolerance.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39043487

RESUMO

The sbiT-sbiR-sbiS operon of Stenotrophomonas maltophilia encodes an inner-membrane protein SbiT and a SbiS-SbiR two-component regulatory system. A sbiT mutant displayed a growth defect in LB agar. Mechanism studies revealed that sbiT deletion resulted in SbiSR activation and gloIo upregulation, which increased intracellular ROS level and caused growth defect.

20.
Front Microbiol ; 15: 1423995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035445

RESUMO

Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...