Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Endocr J ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972727

RESUMO

"Adipsic hypernatremia" is clinically characterized by chronic elevation of plasma [Na+] with an inappropriate lack of thirst and upward resetting of the osmotic set point for arginine vasopressin (AVP) secretion, combined with a relative deficiency of AVP, thereby resulting in persistent hypernatremia. Many cases are accompanied by structural lesions in the hypothalamus, pituitary gland, and circumventricular organs (CVOs). On the other hand, cases without structural lesions have been reported since the 1970s, but the pathophysiology was unknown for a long time. In 2010, Hiyama et al. reported that an anti-Nax antibody response caused adipsic hypernatremia in a pediatric case with ganglioblastoma. In recent years, advances in clinical research have led researchers to recognize that an autoimmunological pathogenic mechanism might be associated with periventricular organs such as the subfornical organ (SFO). In addition, in pediatric cases diagnosed as ROHHAD (rapid-onset obesity with hypoventilation, hypothalamic dysfunction, autonomic dysregulation) syndrome, it has been reported that half of the cases have abnormal serum Na levels, and some research findings indicated an autoimmune mechanism acting on the organs of the hypothalamus and CVOs. Then, anti-ZSCAN1 antibody response was detected in cases diagnosed as ROHHAD-NET in 2022. In this review, by summarizing a series of studies on Nax and ZSCAN1, which are expressed in the hypothalamus, pituitary gland, and SFO, I would like to describe the current findings of the autoimmune pathogenesis of adipsic hypernatremia.

2.
Hypertension ; 81(6): 1332-1344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629290

RESUMO

BACKGROUND: ANG (angiotensin II) elicits dipsogenic and pressor responses via activation of the canonical Gαq (G-protein component of the AT1R [angiotensin type 1 receptor])-mediated AT1R in the subfornical organ. Recently, we demonstrated that ARRB2 (ß-arrestin 2) global knockout mice exhibit a higher preference for salt and exacerbated pressor response to deoxycorticosterone acetate salt. However, whether ARRB2 within selective neuroanatomical nuclei alters physiological responses to ANG is unknown. Therefore, we hypothesized that ARRB2, specifically in the subfornical organ, counterbalances maladaptive dipsogenic and pressor responses to the canonical AT1R signaling. METHODS: Male and female Arrb2FLOX mice received intracerebroventricular injection of either adeno-associated virus (AAV)-Cre-GFP (green fluorescent protein) to induce brain-specific deletion of ARRB2 (Arrb2ICV-Cre). Arrb2FLOX mice receiving ICV-AAV-GFP were used as control (Arrb2ICV-Control). Infection with ICV-AAV-Cre primarily targeted the subfornical organ with few off targets. Fluid intake was evaluated using the 2-bottle choice paradigm with 1 bottle containing water and 1 containing 0.15 mol/L NaCl. RESULTS: Arrb2ICV-Cre mice exhibited a greater pressor response to acute ICV-ANG infusion. At baseline conditions, Arrb2ICV-Cre mice exhibited a significant increase in saline intake compared with controls, resulting in a saline preference. Furthermore, when mice were subjected to water-deprived or sodium-depleted conditions, which would naturally increase endogenous ANG levels, Arrb2ICV-Cre mice exhibited elevated saline intake. CONCLUSIONS: Overall, these data indicate that ARRB2 in selective cardiovascular nuclei in the brain, including the subfornical organ, counterbalances canonical AT1R responses to both exogenous and endogenous ANG. Stimulation of the AT1R/ARRB axis in the brain may represent a novel strategy to treat hypertension.


Assuntos
Pressão Sanguínea , Homeostase , Órgão Subfornical , beta-Arrestina 2 , Animais , Feminino , Masculino , Camundongos , Angiotensina II/farmacologia , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética , Pressão Sanguínea/fisiologia , Pressão Sanguínea/genética , Encéfalo/metabolismo , Homeostase/fisiologia , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Órgão Subfornical/metabolismo
3.
Physiol Rep ; 12(5): e15970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479999

RESUMO

The brain possesses intricate mechanisms for monitoring sodium (Na) levels in body fluids. During prolonged dehydration, the brain detects variations in body fluids and produces sensations of thirst and aversions to salty tastes. At the core of these processes Nax , the brain's Na sensor, exists. Specialized neural nuclei, namely the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), which lack the blood-brain barrier, play pivotal roles. Within the glia enveloping the neurons in these regions, Nax collaborates with Na+ /K+ -ATPase and glycolytic enzymes to drive glycolysis in response to elevated Na levels. Lactate released from these glia cells activates nearby inhibitory neurons. The SFO hosts distinct types of angiotensin II-sensitive neurons encoding thirst and salt appetite, respectively. During dehydration, Nax -activated inhibitory neurons suppress salt-appetite neuron's activity, whereas salt deficiency reduces thirst neuron's activity through cholecystokinin. Prolonged dehydration increases the Na sensitivity of Nax via increased endothelin expression in the SFO. So far, patients with essential hypernatremia have been reported to lose thirst and antidiuretic hormone release due to Nax -targeting autoantibodies. Inflammation in the SFO underlies the symptoms. Furthermore, Nax activation in the OVLT, driven by Na retention, stimulates the sympathetic nervous system via acid-sensing ion channels, contributing to a blood pressure elevation.


Assuntos
Sódio , Sede , Humanos , Sódio/metabolismo , Sede/fisiologia , Pressão Sanguínea , Apetite/fisiologia , Desidratação , Cloreto de Sódio/metabolismo , Encéfalo/metabolismo , Cloreto de Sódio na Dieta/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339072

RESUMO

Recent studies have reported the presence of autoantibodies against zinc finger and SCAN domain-containing protein 1 (ZSCAN1) in the sera of patients with rapid-onset obesity with hypoventilation, hypothalamic and autonomic dysregulation (ROHHAD) syndrome associated with neuroendocrine tumors, suggesting immunologic and paraneoplastic processes as the pathologic underpinnings. Moreover, several hypothalamic regions, including the subfornical organ (SFO), were reported to exhibit antibody reactivity in a patient with ROHHAD syndrome not associated with a tumor. Whether ROHHAD syndrome not associated with a tumor is associated with anti-ZSCAN1 autoantibodies remains unclear. We used a comprehensive protein array analysis to identify candidate molecules in the sera of patients with ROHHAD syndrome and identified ZSCAN1 as a target antigen. We also found that ZSCAN1 was co-expressed at the site of antibody reactivity to the IgG in the patient serum observed in mouse SFOs and an enzyme-linked immunosorbent assay showed that >85% of the patients with ROHHAD syndrome were positive for anti-ZSCAN1 autoantibodies. These results suggest anti-ZSCAN1 autoantibodies as a feasible diagnostic marker in ROHHAD syndrome regardless of the presence of a tumor.


Assuntos
Doenças Hipotalâmicas , Tumores Neuroendócrinos , Obesidade Infantil , Humanos , Animais , Camundongos , Autoanticorpos , Síndrome , Hipoventilação/diagnóstico
5.
J Neuroinflammation ; 21(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243316

RESUMO

BACKGROUND: Sympathoexcitation contributes to myocardial remodeling in heart failure (HF). Increased circulating pro-inflammatory mediators directly act on the Subfornical organ (SFO), the cardiovascular autonomic center, to increase sympathetic outflow. Circulating mitochondria (C-Mito) are the novel discovered mediators for inter-organ communication. Cyclic GMP-AMP synthase (cGAS) is the pro-inflammatory sensor of damaged mitochondria. OBJECTIVES: This study aimed to assess the sympathoexcitation effect of C-Mito in HF mice via promoting endothelial cGAS-derived neuroinflammation in the SFO. METHODS: C-Mito were isolated from HF mice established by isoprenaline (0.0125 mg/kg) infusion via osmotic mini-pumps for 2 weeks. Structural and functional analyses of C-Mito were conducted. Pre-stained C-Mito were intravenously injected every day for 2 weeks. Specific cGAS knockdown (cGAS KD) in the SFO endothelial cells (ECs) was achieved via the administration of AAV9-TIE-shRNA (cGAS) into the SFO. The activation of cGAS in the SFO ECs was assessed. The expression of the mitochondrial redox regulator Dihydroorotate dehydrogenase (DHODH) and its interaction with cGAS were also explored. Neuroinflammation and neuronal activation in the SFO were evaluated. Sympathetic activity, myocardial remodeling, and cardiac systolic dysfunction were measured. RESULTS: C-Mito were successfully isolated, which showed typical structural characteristics of mitochondria with double-membrane and inner crista. Further analysis showed impaired respiratory complexes activities of C-Mito from HF mice (C-MitoHF) accompanied by oxidative damage. C-Mito entered ECs, instead of glial cells and neurons in the SFO of HF mice. C-MitoHF increased the level of ROS and cytosolic free double-strand DNA (dsDNA), and activated cGAS in cultured brain endothelial cells. Furthermore, C-MitoHF highly expressed DHODH, which interacted with cGAS to facilitate endothelial cGAS activation. C-MitoHF aggravated endothelial inflammation, microglial/astroglial activation, and neuronal sensitization in the SFO of HF mice, which could be ameliorated by cGAS KD in the ECs of the SFO. Further analysis showed C-MitoHF failed to exacerbate sympathoexcitation and myocardial sympathetic hyperinnervation in cGAS KD HF mice. C-MitoHF promoted myocardial fibrosis and hypertrophy, and cardiac systolic dysfunction in HF mice, which could be ameliorated by cGAS KD. CONCLUSION: Collectively, we demonstrated that damaged C-MitoHF highly expressed DHODH, which promoted endothelial cGAS activation in the SFO, hence aggravating the sympathoexcitation and myocardial injury in HF mice, suggesting that C-Mito might be the novel therapeutic target for sympathoexcitation in HF.


Assuntos
Insuficiência Cardíaca , Órgão Subfornical , Camundongos , Animais , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Di-Hidro-Orotato Desidrogenase , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo
6.
Mol Metab ; 79: 101858, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141847

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) affects 1 in 3 adults and contributes to advanced liver injury and cardiometabolic disease. While recent evidence points to involvement of the brain in NAFLD, the downstream neural circuits and neuronal molecular mechanisms involved in this response, remain unclear. Here, we investigated the role of a unique forebrain-hypothalamic circuit in NAFLD. METHODS: Chemogenetic activation and inhibition of circumventricular subfornical organ (SFO) neurons that project to the paraventricular nucleus of the hypothalamus (PVN; SFO→PVN) in mice were used to study the role of SFO→PVN signaling in NAFLD. Novel scanning electron microscopy techniques, histological approaches, molecular biology techniques, and viral methodologies were further used to delineate the role of endoplasmic reticulum (ER) stress within this circuit in driving NAFLD. RESULTS: In lean animals, acute chemogenetic activation of SFO→PVN neurons was sufficient to cause hepatic steatosis in a liver sympathetic nerve dependent manner. Conversely, inhibition of this forebrain-hypothalamic circuit rescued obesity-associated NAFLD. Furthermore, dietary NAFLD is associated with marked ER ultrastructural alterations and ER stress in the PVN, which was blunted following reductions in excitatory signaling from the SFO. Finally, selective inhibition of PVN ER stress reduced hepatic steatosis during obesity. CONCLUSIONS: Collectively, these findings characterize a previously unrecognized forebrain-hypothalamic-ER stress circuit that is involved in hepatic steatosis, which may point to future therapeutic strategies for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Obesidade , Núcleo Hipotalâmico Paraventricular/fisiologia , Sistema Nervoso Simpático
7.
J Neuroendocrinol ; 35(11): e13334, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37667574

RESUMO

In addition to being recognised for involvement in cardiovascular control and hydromineral balance, the renin-angiotensin system (RAS) has also been associated with the neuroendocrine control of energy balance. One of the main brain sites for angiotensin II (ANG II)/type 1 receptor (AT1 R) signalling is the subfornical organ (SFO), a circumventricular organ related to the control of autonomic functions, motivated behaviours and energy metabolism. Thus, we hypothesised that circulating ANG II may act on the SFO AT1 R receptors to integrate metabolic and hydromineral balance. We evaluated whether food deprivation can modulate systemic RAS activity and Agrt1a brain expression, and if ANG II/AT1 R signalling influences the hypothalamic expression of mRNAs encoding neuropeptides and food and water ingestion in fed and fasted Wistar rats. We found a significant increase in both ANG I and ANG II plasma levels after 24 and 48 h of fasting. Expression of Agrt1a mRNA in the SFO and paraventricular nucleus (PVN) also increased after food deprivation for 48 h. Treatment of fasted rats with low doses of losartan in drinking water attenuated the decrease in glycemia and meal-associated water intake without changing the expression in PVN or arcuate nucleus of mRNAs encoding selected neuropeptides related to energy homeostasis control. These findings point to a possible role of peripheral ANG II/SFO-AT1 R signalling in the control of refeeding-induced thirst. On the other hand, intracerebroventricular losartan treatment decreased food and water intake over dark time in fed but not in fasted rats.


Assuntos
Jejum , Órgão Subfornical , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Encéfalo/metabolismo , Jejum/metabolismo , Losartan/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Órgão Subfornical/metabolismo
8.
Front Neurosci ; 17: 1223836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732311

RESUMO

Thirst and water intake are regulated by the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO), located around the anteroventral third ventricle, which plays a critical role in sensing dynamic changes in sodium and water balance in body fluids. Meanwhile, neural circuits involved in thirst regulation and intracellular mechanisms underlying the osmosensitive function of OVLT and SFO are reviewed. Having specific Nax channels in the glial cells and other channels (such as TRPV1 and TRPV4), the OVLT and SFO detect the increased Na+ concentration or hyperosmolality to orchestrate osmotic stimuli to the insular and cingulate cortex to evoke thirst. Meanwhile, the osmotic stimuli are relayed to the supraoptic nucleus (SON) and paraventricular nucleus of the hypothalamus (PVN) via direct neural projections or the median preoptic nucleus (MnPO) to promote the secretion of vasopressin which plays a vital role in the regulation of body fluid homeostasis. Importantly, the vital role of OVLT in sleep-arousal regulation is discussed, where vasopressin is proposed as the mediator in the regulation when OVLT senses osmotic stimuli.

9.
Neuron ; 111(12): 1914-1932.e6, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37084721

RESUMO

Parathyroid hormone (PTH) is one of the most important hormones for bone turnover and calcium homeostasis. It is unclear how the central nervous system regulates PTH. The subfornical organ (SFO) lies above the third ventricle and modulates body fluid homeostasis. Through retrograde tracing, electrophysiology, and in vivo calcium imaging, we identified the SFO as an important brain nucleus that responds to serum PTH changes in mice. Chemogenetic stimulation of GABAergic neurons in SFO induces decreased serum PTH followed by a decrease in trabecular bone mass. Conversely, stimulation of glutamatergic neurons in the SFO promoted serum PTH and bone mass. Moreover, we found that the blockage of different PTH receptors in the SFO affects peripheral PTH levels and the PTH's response to calcium stimulation. Furthermore, we identified a GABAergic projection from the SFO to the paraventricular nucleus, which modulates PTH and bone mass. These findings advance our understanding of the central neural regulation of PTH at cellular and circuit level.


Assuntos
Líquidos Corporais , Órgão Subfornical , Animais , Camundongos , Hormônio Paratireóideo/farmacologia , Cálcio , Neurônios GABAérgicos
10.
Ren Fail ; 45(1): 2171886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36715439

RESUMO

OBJECTIVES: Subfornical organ (SFO) is vital in chronic kidney disease (CKD) progression caused by high salt levels. The current study investigated the effects of high salt on phosphoproteomic changes in SFO in CKD rats. METHODS: 5/6 nephrectomized rats were fed a normal-salt diet (0.4%) (NC group) or a high-salt diet (4%) (HC group) for three weeks, while sham-operated rats were fed a normal-salt diet (0.4%) (NS group). For phosphoproteomic analysis of SFO in different groups, TiO2 enrichment, isobaric tags for relative and absolute quantification (iTRAQ) labeling, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used. RESULTS: There were 6808 distinct phosphopeptides found, which corresponded to 2661 phosphoproteins. NC group had 168 upregulated and 250 downregulated phosphopeptides compared to NS group. Comparison to NC group, HC group had 154 upregulated and 124 downregulated phosphopeptides. Growth associated protein 43 (GAP43) and heat shock protein 27 (Hsp27) were significantly upregulated phosphoproteins and may protect against high-salt damage. Differential phosphoproteins with tight functional connection were synapse proteins and microtubule-associated proteins, implying that high-salt diet disrupted brain's structure and function. Furthermore, differential phosphoproteins in HC/NC comparison group were annotated to participate in GABAergic synapse signaling pathway and aldosterone synthesis and secretion, which attenuated inhibitory neurotransmitter effects and increased sympathetic nerve activity (SNA). DISCUSSION: This large scale phosphoproteomic profiling of SFO sheds light on how salt aggravates CKD via the central nervous system.


Assuntos
Insuficiência Renal Crônica , Órgão Subfornical , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida , Órgão Subfornical/fisiologia , Fosfopeptídeos/farmacologia , Espectrometria de Massas em Tandem , Cloreto de Sódio na Dieta/farmacologia , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacologia
11.
Curr Biol ; 32(22): 4832-4841.e5, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36220076

RESUMO

In mammals, thirst is strongly influenced by the subfornical organ (SFO), a forebrain structure that integrates circulating signals including osmotic pressure and sodium contents. Secretin (SCT), a classical gastrointestinal hormone, has been implicated as a humoral factor regulating body-fluid homeostasis. However, the neural mechanism of secretin in the central nervous system in managing thirst remains unclear. In this study, we report that the local ablation of SCT receptor (SCTR) in the SFO reduces water but not salt intake in dehydrated mice and this effect could not be rescued by exogenous SCT administration. Electrophysiology with single-cell RT-PCR indicates that SCT elicits inward currents in the SFO neuronal nitric oxide synthase (SFOnNOS) neurons via SCTR in the presence of glutamate receptor antagonists. We further show that the SCTR in the SFO permits the activation of SFOnNOS neurons under distinct thirst types. Projection-specific gene deletion of SCTR in SFO to the median preoptic nucleus (MnPO) pathway also reduces water intake in dehydrated animals. SCT signaling thus plays an indispensable role in driving thirst. These data not only expand the functional boundaries of SCTR but also provide insights into the central mechanisms of homeostatic regulation.


Assuntos
Órgão Subfornical , Animais , Camundongos , Órgão Subfornical/metabolismo , Secretina/metabolismo , Secretina/farmacologia , Desidratação/metabolismo , Neurônios/fisiologia , Mamíferos
12.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805903

RESUMO

Specific antibody responses to subfornical organs, including Nax antibody, have been reported in patients with adipsic hypernatremia of unknown etiology who do not have structural lesions in the hypothalamic-pituitary gland. The subfornical organ, also referred to as the window of the brain, is a sensing site that monitors sodium and osmotic pressure levels. On the other hand, ROHHAD syndrome is a rare disease for which the etiology of the hypothalamic disorder is unknown, and there have been some reports in recent years describing its association with autoimmune mechanisms. In addition, abnormal Na levels, including hypernatremia, are likely to occur in this syndrome. When comparing the clinical features of adipsic hypernatremia due to autoimmune mechanisms and ROHHAD syndrome, there are similar hypothalamic-pituitary dysfunction symptoms in addition to abnormal Na levels. Since clinical diagnoses of autoimmunological adipsic hypernatremia and ROHAD syndrome might overlap, we need to understand the essential etiology and carry out precise assessments to accurately diagnose patients and provide effective treatment. In this review, I review the literature on the autoimmune mechanism reported in recent years and describe the findings obtained so far and future directions.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças do Sistema Endócrino , Hipernatremia , Doenças Hipotalâmicas , Transtornos Respiratórios , Autoimunidade , Doenças do Sistema Endócrino/complicações , Humanos , Hipernatremia/complicações , Hipernatremia/etiologia , Doenças Raras/complicações , Transtornos Respiratórios/complicações , Sódio , Síndrome
13.
Clin Endocrinol (Oxf) ; 97(1): 72-80, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419873

RESUMO

OBJECTIVE: We recently reported cases of adipsic hypernatremia caused by autoantibodies against the subfornical organ in patients with hypothalamic-pituitary lesions. This study aimed to clarify the clinical features of newly identified patients with adipsic hypernatremia whose sera displayed immunoreactivity to the mouse subfornical organ. DESIGN: Observational cohort study of patients diagnosed with adipsic hypernatremia in Japan, United States, and Europe. METHODS: The study included 22 patients with adipsic hypernatremia but without overt structural changes in the hypothalamic-pituitary region and congenital disease. Antibody response to the mouse subfornical organ was determined using immunohistochemistry. The clinical characteristics were compared between the patients with positive and negative antibody responses. RESULTS: Antibody response to the mouse subfornical organ was detected in the sera of 16 patients (72.7%, female/male ratio, 1:1, 12 pediatric and 4 adult patients). The prolactin levels at the time of diagnosis were significantly higher in patients with positive subfornical organ (SFO) immunoreactivity than in those with negative SFO immunoreactivity (58.9 ± 33.5 vs. 22.9 ± 13.9 ng/ml, p < .05). Hypothalamic disorders were found in 37.5% of the patients with positive SFO immunoreactivity. Moreover, six patients were diagnosed with rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation/neural tumor syndrome after the diagnosis of adipsic hypernatremia. Plasma renin activity levels were significantly higher in patients with serum immunoreactivity to the Nax channel. CONCLUSIONS: The patients with serum immunoreactivity to the SFO had higher prolactin levels and hypothalamic disorders compared to those without the immunoreactivity. The clinical characteristics of patients with serum immunoreactivity to the subfornical organ included higher prolactin levels and hypothalamic disorders, which were frequently associated with central hypothyroidism and the presence of retroperitoneal tumors.


Assuntos
Hipernatremia , Doenças Hipotalâmicas , Órgão Subfornical , Animais , Criança , Feminino , Humanos , Hipotálamo , Imunidade , Masculino , Camundongos , Prolactina , Órgão Subfornical/fisiologia
14.
Neuromolecular Med ; 24(4): 363-373, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35451691

RESUMO

The SARS-CoV-2 virus gains entry to cells by binding to angiotensin-converting enzyme 2 (ACE2). Since circumventricular organs and parts of the hypothalamus lack a blood-brain barrier, and immunohistochemical studies demonstrate that ACE2 is highly expressed in circumventricular organs which are intimately connected to the hypothalamus, and the hypothalamus itself, these might be easy entry points for SARS-CoV-2 into the brain via the circulation. High ACE2 protein expression is found in the subfornical organ, area postrema, and the paraventricular nucleus of the hypothalamus (PVH). The subfornical organ and PVH are parts of a circuit to regulate osmolarity in the blood, through the secretion of anti-diuretic hormone into the posterior pituitary. The PVH is also the stress response centre in the brain. It controls not only pre-ganglionic sympathetic neurons, but is also a source of corticotropin-releasing hormone, that induces the secretion of adrenocorticotropic hormone from the anterior pituitary. It is proposed that the function of ACE2 in the circumventricular organs and the PVH could be diminished by binding with SARS-CoV-2, thus leading to a reduction in the ACE2/Ang (1-7)/Mas receptor (MasR) signalling axis, that modulates ACE/Ang II/AT1R signalling. This could result in increased presympathetic activity/neuroendocrine secretion from the PVH, and effects on the hypothalamic-pituitary-adrenal axis activity. Besides the bloodstream, the hypothalamus might also be affected by SARS-CoV-2 via transneuronal spread along the olfactory/limbic pathways. Exploring potential therapeutic pathways to prevent or attenuate neurological symptoms of COVID-19, including drugs which modulate ACE signalling, remains an important area of unmet medical need.


Assuntos
COVID-19 , Órgãos Circunventriculares , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hipotálamo
15.
Brain Behav Immun ; 101: 304-317, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032573

RESUMO

Impaired threat responding and fear regulation is a hallmark of psychiatric conditions such as post-traumatic stress disorder (PTSD) and Panic Disorder (PD). Most studies have focused on external psychogenic threats to study fear, however, accumulating evidence suggests a primary role of homeostatic perturbations and interoception in regulating emotional behaviors. Heightened reactivity to interoceptive threat carbon dioxide (CO2) inhalation associates with increased risk for developing PD and PTSD, however, contributory mechanisms and molecular targets are not well understood. Previous studies from our group suggested a potential role of interleukin 1 receptor (IL-1R1) signaling within BBB-devoid sensory circumventricular organ, the subfornical organ (SFO) in CO2-evoked fear. However, the necessity of SFO-IL-1R1 in regulating CO2-associated spontaneous fear as well as, long-term fear potentiation relevant to PD/PTSD has not been investigated. The current study tested male mice with SFO-targeted microinfusion of the IL-1R1 antagonist (IL-1RA) or vehicle in a recently developed CO2-startle-fear conditioning-extinction paradigm. Consistent with our hypothesis, SFO IL-1RA treatment elicited significant attenuation of freezing and increased rearing during CO2 inhalation suggesting SFO-IL1R1 regulation of spontaneous fear to CO2. Intriguingly, SFO IL-1RA treatment normalized CO2-associated potentiation of conditioned fear and impaired extinction a week later suggesting modulation of long-term fear by SFO-IL-1R1 signaling. Post behavior FosB mapping revealed recruitment of prefrontal cortex-amygdala-periaqueductal gray (PAG) areas in SFO-IL-1RA mediated effects. Additionally, we localized cellular IL-1R1 expression within the SFO to blood vessel endothelial cells and observed CO2-induced alterations in IL-1ß/IL-1R1 expression in peripheral mononuclear cells and SFO. Lastly, CO2-evoked microglial activation was attenuated in SFO-IL-1RA treated mice. These observations suggest a peripheral monocyte-endothelial-microglia interplay in SFO-IL-1R1 modulation of CO2-associated spontaneous fear and delayed fear memory. Collectively, our data highlight a novel, "bottom-up" neuroimmune mechanism that integrates interoceptive and exteroceptive threat processing of relevance to fear-related pathologies.


Assuntos
Receptores de Interleucina-1 , Órgão Subfornical , Animais , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Células Endoteliais/metabolismo , Medo/fisiologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Masculino , Camundongos , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1 , Órgão Subfornical/metabolismo
16.
Physiol Behav ; 247: 113707, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063424

RESUMO

The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts â†’ LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.


Assuntos
Região Hipotalâmica Lateral , Neurotensina , Alimentos , Região Hipotalâmica Lateral/metabolismo , Neurônios/metabolismo , Neurotensina/metabolismo , Água
17.
CEN Case Rep ; 11(1): 110-115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34420198

RESUMO

Patients with adipsic hypernatremia present with chronic hypernatremia because of defects in thirst sensation and dysregulated salt appetite, without demonstrable hypothalamic structural lesions. The involvement of autoantibodies directed against the sodium channel, Nax in the subfornical organ (SFO) has recently been reported. However, the pathophysiology of water and electrolyte imbalance underlying the disease has yet to be elucidated. We describe the case of a 5-year-old boy who complained of headaches and vomiting that gradually worsened. Brain magnetic resonance imaging detected no abnormal lesions. Blood laboratory testing revealed a serum sodium (Na) concentration of 152 mmol/L and a serum osmolarity of 312 mOsm/L. His body weight had slightly decreased, and his thirst sensation was absent. His plasma vasopressin concentration was 0.9 pg/mL, despite the high serum osmolarity. He was encouraged to drink water, and oral 1-deamino-8-D-arginine-vasopressin was administered. When serum sodium concentrations were normalized, plasma vasopressin concentrations were apparently normal and ranged from 0.8 to 2.0 pg/mL. He did not present with polyuria at any time. Immunohistochemical study using mouse brain sections and the patient's serum revealed the deposition of human immunoglobulin G (IgG) antibody in the mouse SFO. In conclusion, our observations suggested that water and electrolyte imbalance in adipsic hypernatremia is characterized by a certain amount of vasopressin release regardless of serum sodium concentrations with no response to hyperosmolarity.


Assuntos
Hipernatremia , Órgão Subfornical , Animais , Humanos , Hipernatremia/complicações , Hipernatremia/etiologia , Masculino , Camundongos , Sódio , Vasopressinas , Água
18.
Metabolites ; 11(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34436435

RESUMO

The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals-pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.

19.
Handb Clin Neurol ; 180: 203-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225930

RESUMO

In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.


Assuntos
Organum Vasculosum , Órgão Subfornical , Humanos , Hipotálamo , Área Pré-Óptica , Equilíbrio Hidroeletrolítico
20.
Antioxid Redox Signal ; 35(2): 93-112, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32757619

RESUMO

Aims: A high-salt diet can aggravate oxidative stress, and renal fibrosis via the brain and renal renin-angiotensin system (RAS) axis in chronic kidney disease (CKD) rats. (Pro)renin receptor (PRR) plays a role in regulating RAS and oxidative stress locally. However, whether central PRR regulates salt-induced renal injury in CKD remains undefined. Here, we hypothesized that the reduction of central PRR expression could ameliorate central lesions and thereby ameliorate renal injury in high-salt-load CKD rats. Results: We investigated RAS, sympathetic nerve activity, oxidative stress, inflammation, and tissue injury in subfornical organs and kidneys in high-salt-load 5/6 nephrectomy CKD rats after the silencing of central PRR expression by intracerebroventricular lentivirus-RNAi. We found that the sympathetic nerve activity was reduced, and the levels of inflammation and oxidative stress were decreased in both brain and kidney. Renal injury and fibrosis were ameliorated. To explore the mechanism by which central inhibition of PRR expression ameliorates kidney damage, we blocked central MAPK/ERK1/2 and PI3K/Akt signaling pathways as well as angiotensin converting enzyme 1-angiotensin II-angiotensin type 1 receptors (ACE1-Ang II-AT1R) axis. Salt-induced overexpression of renal RAS, inflammation, oxidative stress, and fibrosis in CKD rats were prevented by central blockade of the pathways. Innovation: This study provides new insights into the mechanisms underlying salt-induced kidney damage. Targeting central PRR or PRR-mediated signaling pathway may be a novel strategy for the treatment of CKD. Conclusions: These results suggested that the silencing of central PRR expression ameliorates salt-induced renal injury in CKD through Ang II-dependent and -independent pathways.


Assuntos
Vetores Genéticos/administração & dosagem , Receptores de Superfície Celular/genética , Insuficiência Renal Crônica/terapia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sódio na Dieta/efeitos adversos , ATPases Vacuolares Próton-Translocadoras/genética , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Vetores Genéticos/genética , Infusões Intraventriculares , Lentivirus/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Nefrectomia/efeitos adversos , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA