Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248599

RESUMO

Subsoiling practice is an essential tillage practice in modern agriculture. Tillage forces and energy consumption during subsoiling are extremely high, which reduces the economic benefits of subsoiling technology. In this paper, a cicada-inspired biomimetic subsoiling tool (CIST) was designed to reduce the draught force during subsoiling. A soil-tool interaction model was developed using EDEM and validated using lab soil bin tests with sandy loam soil. The validated model was used to optimize the CIST and evaluate its performance by comparing it with a conventional chisel subsoiling tool (CCST) at various working depths (250-350 mm) and speeds (0.5-2.5 ms-1). Results showed that both simulated draught force and soil disturbance behaviors agreed well with those from lab soil bin tests, as indicated by relative errors of <6.1%. Compared with the CCST, the draught forces of the CIST can be reduced by 17.7% at various working depths and speeds; the design of the CIST obviously outperforms some previous biomimetic designs with largest draught force reduction of 7.29-12.8%. Soil surface flatness after subsoiling using the CIST was smoother at various depths than using the CCST. Soil loosening efficiencies of the CIST can be raised by 17.37% at various working speeds. Results from this study implied that the developed cicada-inspired subsoiling tool outperforms the conventional chisel subsoiling tool on aspects of soil disturbance behaviors, draught forces, and soil loosening efficiencies. This study can have implications for designing high-performance subsoiling tools with reduced draught forces and energy requirements, especially for the subsoiling tools working under sandy loam soil.

2.
Plants (Basel) ; 11(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079634

RESUMO

Tillage modifies soil structure, which can be demonstrated by changes in the soil's physical properties, such as penetration resistance (PR) and soil electrical resistivity (ρ). The aim of this study was to evaluate the effect of deep tillage strategies on three morphogenetically contrasting soil classes in the establishment of perennial crops regarding geophysical and physical-hydric properties. The experiment was conducted in the state of Minas Gerais, southeastern Brazil. The tillage practices were evaluated in Typic Dystrustept, Rhodic Hapludult, and Rhodic Hapludox soil classes, and are described as follows: MT­plant hole; CT­furrow; SB­subsoiler; DT­rotary hoe tiller; and DT + calcium (Ca) (additional liming). Analyses of PR and electrical resistivity tomography (ERT) were performed during the growing season and measurements were measured in plant rows of each experimental plot. Undisturbed soil samples were collected for analysis of soil bulk density (Bd) at three soil depths (0−0.20, 0.20−0.40, and 0.40−0.60 m) with morphological evaluation of soil structure (VESS). Tukey's test (p < 0.05) for Bd and VESS and Pearson linear correlation analysis between Bd, ρ, and PR were performed. Soil class and its intrinsic attributes have an influence on the effect of tillage. The greatest effect on soil structure occurred in the treatments DT and DT + Ca that mixed the soil to a depth of 0.60 m. The ρ showed a positive correlation with Bd and with PR, highlighting that ERT may detect changes caused by cultivation practices, although ERT lacks the accuracy of PR. The soil response to different tillage systems and their effects on soil structure were found to be dependent on the soil class.

3.
PeerJ ; 9: e11099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828919

RESUMO

BACKGROUND: Soil degradation is one of the main problems in agricultural production and leads to decreases in soil quality and productivity. Improper farming practices speed this process and are therefore not conducive to food security. The North China Plain (NCP) is a key agricultural area that greatly influences food security in China. To explore the effects of different tillage measures on aggregate-associated organic carbon (AOC), the accumulation and transport of dry matter, and maize yield, and to identify the most suitable tillage method for use on the NCP, a field experiment was conducted at Shandong Agricultural University from 2016-2017 using plots that have been farmed using conservation tillage since 2002. METHODS: In this study, Zhengdan 958 summer maize was used as the test material and undisturbed soil and plant samples were obtained under four tillage methods-no-tillage (NT, tillage depth: 0 cm); rotary tillage (RT, tillage depth: 10 cm); conventional tillage (CT, tillage depth: 20 cm); subsoiling (SS, tillage depth: 40 cm)-which were used to determine the AOC and dry matter contents, as well as the yields of two summer maize growing seasons. Each sample was replicated three times and the AOC content was determined via potassium dichromate oxidation colorimetry. Potassium dichromate oxidized organic carbon in organic matter was employed to reduce hexadecent chromium into green trivalent chromium. Colorimetry was then used to determine the amount of reduced trivalent chromium and calculate the organic matter content. RESULTS: The resulting data were statistically analyzed and the results showed that, compared with CT, the AOC contents with NT and SS increased by 5.65% and 9.73%, respectively, while that with RT decreased by 0.12%. Conventional tillage resulted in the highest mean dry matter weight when the maize reached maturity, which was 19.19%, 9.83%, and 3.38% higher than those achieved using NT, RT, and SS, respectively. No significant difference was found between CT and SS treatments, both of which tended to increase the accumulation of dry matter as well as its contribution of assimilates to grain yield post-anthesis. Compared with CT, the mean yield increased at a rate of 0.18% with SS, while yields declined at rates of 17.17% and 11.15 with NT and RT, respectively. The yield with NT was the lowest, though the harvest indices with NT and SS were higher than those with RT and CT. Overall, SS increased the accumulation of dry matter and its contribution of assimilates to grain yields post-anthesis, as well as the AOC content and yields, making it the ideal tillage method for the NCP.

4.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1327-1336, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33899401

RESUMO

Both reasonable soil tillage and fertilization management play critical roles in improving the yield and water use efficiency (WUE) of forage maize in the semi-arid area of Loess Plateau. A field experiment was conducted at Dingxi experimental station of Gansu Academy of Agricultural Sciences between 2017 and 2019. We explored the effects of tillage method and fertilization type on yields and WUE of forage maize, as well as the economic benefits. There were four treatments in the experiment, including traditional rotary tillage + organic-inorganic fertilization (TOF), deep rotary tillage + organic-inorganic fertilization (DOF), and vertical rotary subsoiling + organic-inorganic fertilization (VROF), and the traditional rotary tillage + inorganic fertilization as the control (TF). Our results showed that, compared with DOF, TOF, TF, and VROF all decreased soil water storage in 0-300 cm soil layer at flowering stage, ranging from 16.9 mm to 79.9 mm, but they all increased soil water consumption by 9.7-22.4 mm during vegetative growing stages, 11.0-19.8 mm during reproductive stage in the dry years. Due to significant improvement in water absorption, VROF increased dry matter weight at maturity by 3.9%-13.4% compared to other treatments. Similarly, plant height, ear length, grain number per ear, 100-grain weight, and double ear rate under VROF were significantly increased, while bald head length was decreased significantly, when compared with other treatments. As a result, over the three experimental seasons, VROF increased the grain and biological yield by 4.3%-51.5% and 4.3%-25.7% compared to other treatments, respectively. Accordingly, WUE calculated by grain and biomass yields were increased by 2.7%-36.9% and 3.6%-13.5% under VROF, compared to other treatments. VROF increased the unit gross total output value and the net income by 5.1%-32.9% and 6.9%-80.5% respectively, compared to other treatments. These results demonstrated that VROF is a drought-resistant and yield-increasing farming technology for sustainable forage maize production in the semi-arid area of the Loess Plateau, Northwest China.


Assuntos
Água , Zea mays , Agricultura , China , Fertilização , Solo
5.
Front Plant Sci ; 12: 788651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211130

RESUMO

Reductions in soil productivity and soil water retention capacity, and water scarcity during crop growth, may occur due to long-term suboptimal tillage and fertilization practices. Therefore, the application of appropriate tillage (subsoiling) and fertilization (organic fertilizer) practices is important for improving soil structure, water conservation and soil productivity. We hypothesize that subsoiling tillage combined with organic fertilizer has a better effect than subsoiling or organic fertilizer alone. A field experiment in Henan, China, has been conducted since 2011 to explore the effects of subsoiling and organic fertilizer, in combination, on winter wheat (Triticum aestivum L.) farming. We studied the effects of conventional tillage (CT), subsoiling (S), organic fertilizer (OF), and organic fertilizer combined with subsoiling (S+OF) treatments on dry matter accumulation (DM), water consumption (ET), water use efficiency (WUE) at different growth stages, yield, and water production efficiency (WPE) of winter wheat over 3 years (2016-2017, 2017-2018, 2018-2019). We also analyzed the soil structure, soil organic carbon, soil microbial biomass carbon and nitrogen, and soil enzymes in 2019. The results indicate that compared with CT, the S, OF and S+OF treatments increased the proportion of >0.25 mm aggregates, and S+OF especially led to increased soil organic carbon, soil microbial biomass carbon and nitrogen, soil enzyme activity (sucrase, cellulose, and urease). S+OF treatment was most effective in reducing ET, and increasing DM and WUE during the entire growth period of wheat. S+OF treatment also increased the total dry matter accumulation (Total DM) and total water use efficiency (total WUE) by 18.6-32.0% and 36.6-42.7%, respectively, during these 3 years. Wheat yield and WPE under S+OF treatment increased by 11.6-28.6% and 26.8-43.6%, respectively, in these 3 years. Therefore, S+OF in combination was found to be superior to S or OF alone, which in turn yielded better results than the CT.

6.
Sci Total Environ ; 745: 140887, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717599

RESUMO

No-tillage (NT) is a major component of conservation agricultural systems. Challenges that have arisen with the adoption of NT include soil compaction, weed management, and stratification of organic matter and nutrients. As an attempt to overcome these challenges, occasional tillage (OT) has been used as a soil management practice in NT systems. However, little is known about the impacts of OT on agronomic and environmental factors. For this reason, the objectives of this meta-analysis were: 1) to summarize the effects of OT on crop productivity, soil physical, chemical and biological properties, soil erosion and weed control; 2) to discuss the main aspects of NT management to optimize the use of OT; 3) to point out shortcomings in the diagnosis of soil compaction in NT systems, which may lead to erroneous decision-making processes regarding the use of OT. Overall, OT did not affect crops yields, although increased crop yields were observed in regions under water restriction and in soils with low retention capacity and water availability; OT improved soil physical properties (penetration resistance, soil bulk density, macroporosity, and total porosity), with persistence, generally, greater than 24 months, and decreased the soil aggregates stability; total organic carbon was reduced, particularly when plow/harrow was used and NT was already consolidated, and there was no effect on pH and available P; OT increased microbial biomass carbon, but had no effect on total microbial activity; soil erosion was reduced due to increased soil-water infiltration and reduced runoff, and finally, weed management was also improved by OT. It is suggested that suitable NT implementation and management, with the correct application of NT principles, will overcome problems associated with NT. As soil compaction is the main justification for the use of OT, methods of diagnosis and monitoring of soil compaction should be improved to assist in decision-making.

7.
Ying Yong Sheng Tai Xue Bao ; 31(2): 459-466, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32476338

RESUMO

Straw mulching and subsoiling can protect soil and improve soil structure. However, long-term continuous subsoiling cannot continuously gain yield increasing and soil improvement. To realize continuous soil improvement and yield enhancement, a long-term experiment on subsoiling alternation patterns was carried out with spring maize continuous cropping in the Loess Plateau in 2007-2016. The subsoiling alternation patterns were no-tillage/conventional tillage/subsoiling (NT/CT/ST) and subsoiling/conventional tillage (ST/CT), with continuous subsoiling (ST) as control. We analyzed the effects of the different patterns on soil physical and chemical properties and maize yield. The results showed that, compared with the ST, the mechanical-stable aggregates (DR0.25) and water-stable aggregates (WR0.25) in NT/CT/ST were significantly increased by 9.2% and 21.9%, with the mean weight diameter (MWD) and geometrical mean diameter (GMD) being significantly increased. The WR0.25 in ST/CT was significantly increased by 11.9%. In 0-20 cm soil layer, soil bulk density in NT/CT/ST and ST/CT decreased by 7.0% and 11.5%, and soil porosity increased by 8.4% and 13.9%, respectively. In 20-40 cm soil layer, soil bulk density in ST/CT increased by 6.9%, and soil porosity decreased by 5.7%. In the NT/CT/ST, soil total nitrogen and organic matter contents significantly increased, but soil total phosphorus and total potassium contents reduced. The multi-year average grain yield of spring maize in NT/CT/ST was 10.2% higher than ST and 4.8% higher than ST/CT. The DR0.25, WR0.25, soil total nitrogen content and soil organic carbon content were all positively correlated with maize yield, indicating such changes faci-litated corn grain yield. Considering the effects on soil fertility and corn yield, the NT/CT/ST model was conducive to soil fertility, soil structural stability and higher maize yield.


Assuntos
Solo , Zea mays , Agricultura , Carbono , China
8.
Ying Yong Sheng Tai Xue Bao ; 30(2): 405-412, 2019 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-30915790

RESUMO

We investigated the physical properties of the plough soil and the components of sugarcane yield in the depth of mechanized subsoiling of sugarcane field, along with the clarification on the specific soil location and obstacle factors of subsoiling, with the aim to provide scientific basis for the construction of a good sugarcane cultivation layer and the development of soil improvement strategies. Three depths of subsoiling operation (35, 40 and 45 cm) were set up, with nosubsoiling as control. Soil physical properties, including compactness, bulk density, water content, porosity, three-phase volume ratio, and yield components and cane yield of sugarcane in the fields were investigated. The results showed that subsoiling depth was significantly correlated with the soil structure characteristics and the improvement of sugarcane yield in sugarcane field. Subsoiling broke down the plow bottom, significantly reduced soil compaction, bulk density, and the corresponding penetration resistance and shear strength during mechanical operation, especially for the above factors in 20-30 cm soil layer, with positive consequences for sugarcane yield. Moreover, subsoiling significantly increased the liquid volume rate of the soil layer within 30 cm and soil moisture storage capacity, and thus significantly improved the water index of the 10-30 cm soil layer. The 10-30 cm soil layer was the location for the most significant effect of subsoiling on the improvement of solid volume rate in the plough soil. The effective stem number, plant height, cane yield and sucrose content of sugarcane were significantly promoted by subsoiling. In view of the common equipment level in the sugarcane planting area, we suggested that the operating depth standard of mechanized subsoiling should not be less than 40 cm.


Assuntos
Saccharum , Agricultura , Grão Comestível , Solo , Água
9.
Ying Yong Sheng Tai Xue Bao ; 30(1): 224-232, 2019 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-30907544

RESUMO

A field experiment was conducted to examine the effects of subsoiling 35 cm with maize straw returning, subsoiling 35 cm without maize straw returning, and rotary tillage without maize straw returning on soil compaction, soil bulk density, soil infiltration, soil water content in 0-100 cm depth, nutrients uptake and production of maize on sierozem in the Gansu Yellow River irrigated area in 2015-2017. Compared with subsoiling 35 cm without maize straw returning and rotary tillage without maize straw returning, subsoiling 35 cm with maize straw returning significantly decreased the soil compaction and soil density in 0-40 cm depth. Compared with that in 2015 (before experiment), soil compaction and soil bulk density in subsoiling 35 cm with straw returning was decreased by 42.6% and 7.0%, respectively, after harvest in 2017. Compared with other treatments, subsoiling 35 cm with straw returning had the lowest variation of soil compaction (6.1%) and soil bulk density (3.2%) in 0-40 cm depth before sowing and after harvest in 2016 and 2017. The soil infiltration rate in subsoiling 35 cm with straw returning was significantly improved by 33.6% compared with rotary tillage without maize straw returning. Subsoiling 35 cm with straw retention could significantly increase soil water content and decrease water variation in 0-100 cm soil depth in spring (before maize sowing) and autumn (after maize harvest). Compared with rotary tillage without maize straw returning, water storage in subsoiling 35 cm with straw retention was increased by 15.5% and 5.6% in spring and autumn, respectively. The water use efficiency was enhanced by 32.4%. Furthermore, subsoiling 35 cm with straw retention could increase maize economic yield and biomass yield by 25.6% and 33.3%, compared with rotary tillage without straw retention. Subsoilng and straw retention could promote nutrient absorption, with N, P2O5 and K2O uptake increased by 49.6%, 51.5% and 37.6%, compared with rotary tillage. Overall, our results suggested that subsoiling 35 cm straw retention could improve soil characteristics, stabilize the phy-sical properties of the plough layer, increase soil water content in the 0-100 cm soil layer, and reduce water variation in spring and autumn. Consequently, it was the best management to promote the water and nutrient utilization of maize and achieve high yield. Our findings could provide theoretical basis for further research on the construction technology of the plough layer in Gansu irrigation area.


Assuntos
Agricultura/métodos , Zea mays , China , Rios , Solo/química , Triticum
10.
Ying Yong Sheng Tai Xue Bao ; 29(10): 3293-3301, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30325154

RESUMO

To examine the effects of vertically rotary sub-soiling tillage (VRT) on stage water consumption, individual and population development, yield, water use efficiency, and economic profit of potato is helpful to find the optimized tillage method which could increase crop drought-resistant, yield, and resource use efficiency. With randomized block design, the field experiment involved in three treatments, 1) vertically rotary sub-soiling tillage for 40 cm depth (VRT), 2) deep loosing tillage for 40 cm (DLT), and 3) rotary tillage for 15 cm (TT). The soil water storage in 0-200 cm soil profile in different growth stages of potato, foliar SPAD value, leaf area index (LAI), plant dry matter content, tuber yield were recorded, and stage water consumption, water use efficiency (WUE), tuber commodity rate, tuber commodity yield, and profit were calculated, to investigate the effects of VRT on production efficiency and economic profit. The results showed that VRT increased water consumption in flowering and tuber expanding stage by 46.7, 35.7 mm in 2016 and 27.2, 47.3 mm in 2017, as compared with DLT and TT. Based on the increased stage water consumption, foliar SPAD value, dry matter content, and LAI increased significantly, suggesting the VRT promoted individual and population development. The higher individual and population biomass resulted in significant increase in tuber yield which increased by 156.8%, 47.8% in 2016 and 24.8%, 41.0% in 2017 respectively, as compared with DLT and TT. Accordingly, WUE increased by 92.3%, 19.2% and 18.9%, 26.6%. The tuber commodity yield and profit significantly increased in VRT treatment, as well as the profit which reached to 12631.9, 11019.1 yuan·hm-2 in 2016 and 29498.3, 18245.5 yuan·hm-2 in 2017, respectively. VRT promoted potato water consumption in flowering and tuber expanding stages, resulted in significant increases of foliar SPAD value, plant dry matter, and LAI, with positive consequences on the tuber yield, WUE, as well as the tuber commodity yield and economic profit. These indicated that the VRT was helpful to increase potato drought resistance, yield and profit, and thus would be the appropriate tillage method on semi-arid northwest Loess Plateau.


Assuntos
Solanum tuberosum , Biomassa , China , Secas , Solo , Água
11.
Ying Yong Sheng Tai Xue Bao ; 27(6): 1925-1934, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29737701

RESUMO

In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.


Assuntos
Irrigação Agrícola , Enzimas/análise , Rizosfera , Zea mays/crescimento & desenvolvimento , Nitrogênio , Raízes de Plantas , Solo , Microbiologia do Solo , Água
12.
Plant Physiol Biochem ; 70: 69-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770596

RESUMO

This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3).


Assuntos
Ácido Abscísico/metabolismo , Aldeído Oxidase/metabolismo , Nitrogênio , Fotossíntese , Estruturas Vegetais/metabolismo , Água , Zea mays/metabolismo , Adaptação Fisiológica , Fertilizantes , Flores , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Especificidade da Espécie , Ureia/metabolismo , Zea mays/fisiologia
13.
Ciênc. rural ; 41(1): 120-126, 2011. ilus, tab
Artigo em Português | LILACS | ID: lil-571451

RESUMO

O objetivo deste trabalho foi estudar teorias, utilizadas especialmente para simular situações reais de campo, contrastada por dados empíricos obtidos em condições reais de trabalho agrícola mecanizado em solo de textura argilosa com os resultados obtidos em trabalhos semelhantes realizados em outros países. Avaliou-se as demandas de tração de diferentes combinações entre velocidade e profundidade de trabalho de um escarificador. Buscou-se a representação gráfica da demanda requerida de força de tração e patinagem através da utilização do software Predição versão 1.0, contrastadas com resultados obtidos pela aplicação das teorias de predição Cn, Bn e Mn. As teorias preditivas Cn, Bn e Mn apresentam correlação boa com os valores experimentais, no entanto, existe uma superestimativa por parte das teorias comparadas aos valores medidos experimentalmente, para força de tração e patinagem, causando um dimensionamento do trator inadequado.


The objective of this research was studied theories used specially to simulate real field situations contrasted by empiric data obtained in real real working conditions in mechanized agricultural clay soil with the results obtained in similar studies conducted in other countries. We tried to the graphical representation of the demand required traction force and slippage through the use of Prediction software version 1.0, contrasted with results obtained by applying the theories of prediction Cn, Bn and Mn. Predictive theories Cn, Bn and Mn have good correlation with experimental values, however, there is an overestimation by the theory compared to the values measured experimentally, for traction force and slippage, causing a tractor design inadequate.

14.
Ciênc. agrotec., (Impr.) ; 33(3): 870-874, maio-jun. 2009. tab
Artigo em Português | LILACS | ID: lil-519514

RESUMO

Foi estudado o consumo de combustível de diferentes sistemas de preparo periódico, realizados antes e depois da operação de subsolagem num solo classificado como Nitossolo Vermelho Distroférrico. As operações de preparo foram: a) 1 aração com arado de discos; b) 1 aração com arado de discos e 1 gradagem com grade destorroadora-niveladora; c) 1 gradagem com grade aradora; d) 1 gradagem com grade aradora e 1 gradagem com grade destorroadora-niveladora e; e) 1 escarificação com escarificador. O consumo específico (g kWh-1) de combustível para os diferentes sistemas de preparo periódico do solo variou estatisticamente com a condição de subsolagem realizada antes e depois. A escarificação proporcionou menor volume de combustível requerido por hectare (L ha-1) que os demais sistemas de preparo. O preparo do solo depois da subsolagem obteve um maior volume de combustível consumido por área (L ha-1).


We studied the consumption of fuel in different systems of periodical preparation performed before and after the subsoiling operation on a soil classified as Dystroferric Red Nitosol. The systems of tillage periodic preparation were disc plowing; disc plowing followed by a light disc harrowing; heavy offset disc harrowing; heavy offset disc harrowing followed by a light disc harrowing, and chisel plowing. The specific consumption (g kWh-1) of fuel for the different systems of soil periodical preparation varied statistically with the subsoiling condition carried out before and after. The scarification resulted in a smaller volume of fuel requested by hectare (L ha-1) than the other systems of preparation. The soil preparation after the subsoiling resulted in a larger volume of fuel consumed by area (L ha-1).

15.
J Nematol ; 18(2): 203-7, 1986 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19294167

RESUMO

A field trial was conducted for 2 years in an Arredondo fine sand containing a tillage pan at 15-20 cm deep to determine the influence of subsoiling on the distribution of corn roots and plant-parasitic nematodes. Soil samples were taken at various depths and row positions at 30, 60, and 90 days after planting in field corn subsoiled under the row with two chisels and in non-subsoiled corn. At 30 and 60 days, in-row nematode population densities to 60 cm deep were not affected by subsoiling compared with population densities in nonsubsoiled plots. After 90 days, subsoiling had not affected total root length or root weight at the 20 depth-row position sampling combinations, but population densities of Meloidogyne incognita and Criconemella spp. had increased in subsoiled corn. Numbers of Pratylenchus zeae were not affected. Subsoiling generally resulted in a change in distribution of corn roots and nematodes in the soil profile but caused little total increase in either roots or numbers of nematodes. Corn yield was increased by subsoiling.

16.
J Nematol ; 10(3): 217-24, 1978 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19305844

RESUMO

Movement and persistence of 1,2-dibrotno-3-chloropropane (DBCP) in a Coastal Plain soil containing a sandy plow-pan were enhanced in each of 2 years by subsoiling, increased depth of application, and increased rate of application. DBCP was extracted from the soil with hexane and analyzed by gas chromatography. Subsoiling at a 35-cm depth gave the greatest increase in lateral movement and downward penetration of DBCP in 1975 (a wet year), but bad less effect in 1976 (a dry year). An increased application rate (10 kg/ha vs. 13.5) improved coverage moderately in 1975 by increasing lateral movement, but had little effect in 1976. Increased application depth (18 vs. 35 cm) improved coverage in both years though more in 1976. Deep placement extended DBCP retention time. Rainfall in 1975 probably decreased the number and size of air-filled pores, slowing loss of DBCP to the atmosphere. Because of reduced porosity, the plow-pan was impervious to the passage of DBCP unless disrupted by subsoiling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...