Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 478: 135458, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173379

RESUMO

Surfactant-enhanced aquifer remediation (SEAR) has effectively removed dense nonaqueous phase liquids (DNAPLs) from the contaminated aquifers. However, restricted by structural defects, typical monomeric surfactants undergo precipitation, high adsorption loss, and poor solubilization in aquifers, resulting in low remediation efficiency. In this study, a novel sugar-based anionic and non-ionic Gemini surfactant (SANG) was designed and synthesized for SEAR. Glucose was introduced into SANG as a non-ionic group to overcome the interference of low temperature and ions in groundwater. Sodium sulfonate was introduced as an anionic group to overcome aquifer adsorption loss. Two long-straight carbon chains were introduced as hydrophobic groups to provide high surface activity and solubilizing capacity. Even with low temperature or high salt content, its solution did not precipitate in aquifer conditions. The adsorption loss was as low as 0.54 and 0.90 mg/g in medium and fine sand, respectively. Compared with typical surfactants used for SEAR, SANG had the highest solubilization and desorption abilities for perchloroethylene (PCE) without emulsification, a crucial negative that Tween80 and other non-ionic surfactants exhibit. After flushing the contaminated aquifer using SANG, > 99 % of PCE was removed. Thus, with low potential environmental risk, SANG is effectively applicable in subsurface remediation, making it a better surfactant choice for SEAR.

2.
J Biomater Sci Polym Ed ; 25(10): 1045-61, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24854325

RESUMO

Gemini surfactants (GS) with sugar-containing head-groups and different alkyl chains were successfully prepared. Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer was grafted with glycidyl methacrylate (GMA) by means of UV-induced graft polymerization, and then the pGMA-grafted film was chemically immobilized with the GS. The surface graft polymerization was confirmed by ATR-FTIR and XPS. The wettability and hemocompatibility of the modified surface were characterized by means of water contact angle, protein adsorption, and platelet adhesion assays. The results showed that amphiphilic surfactant-containing polymer surfaces presented protein-resistant behavior and anti-platelet adhesion after functionalization with GS, GS1 and GS2. Besides, the hemocompatibility of the modified surface deteriorated as the length of hydrophobic chain of GS increased.


Assuntos
Materiais Biocompatíveis/química , Carboidratos/química , Elastômeros/química , Poliestirenos/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Adsorção , Animais , Materiais Biocompatíveis/farmacologia , Bovinos , Lactose/química , Teste de Materiais , Adesividade Plaquetária/efeitos dos fármacos , Coelhos , Soroalbumina Bovina/química , Água/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA