Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673256

RESUMO

This study aimed to describe a support material removal protocol (SMRP) from inside the root canals of three-dimensional printed teeth (3DPT) obtained by the microcomputed tomography (microCT) of a natural tooth (NT), evaluate its effectiveness by comparing the 3DPT to NT in terms of internal anatomy and behaviour toward endodontic preparation, and evaluate if 3DPT are adequate to assess the differences between two preparation systems. After the SMRP, twenty 3DPT printed by PolyJet™ were microCT scanned before preparation and thereafter randomly assigned into two groups (n = 10). One group and NT were prepared using ProTaper Gold® (PTG), and the other group with Endogal® (ENDG). MicroCT scans were carried out after preparation, and the volume increase, volume of dentin removed, centroids, transportation, and unprepared areas were compared. For the parameters evaluated, no significant differences were found between the 3DPT and NT before and after preparation (p > 0.05), and no significant differences were found between the 3DPT PTG group and the 3DPT ENDG group (p > 0.05). It can be concluded that the SMRP described is effective in removing the support material SUP706B™. PolyJet™ is adequate for printing 3DPT. Furthermore, 3DPT printed with high-temperature RGD525™ have similar behaviour during endodontic preparation with PTG as the NT, and 3DPT can be used to compare two preparation systems.

2.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338454

RESUMO

In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.


Assuntos
Quitosana , Nanotubos de Carbono , Selênio , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Quitosana/química , Estabilidade Enzimática , Íons , Concentração de Íons de Hidrogênio
3.
ACS Biomater Sci Eng ; 9(10): 5804-5812, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738620

RESUMO

Horseradish peroxidase (HRP)-mediated extrusion bioprinting has a significant potential in tissue engineering and regenerative medicine. However, they often face challenges in terms of printing fidelity and structural integrity when using low-viscosity inks. To address this issue, a method that alternately extrudes bioinks and support material was developed in this study. The bioinks consisting of cells, HRP, and phenolated polymers, and the support material contained hydrogen peroxide (H2O2). The support material not only prevented the collapse of the constructs but also supplied H2O2 to facilitate the enzymatic reaction. 3D constructs with tall and complex shapes were successfully printed from a low-viscosity ink containing 10 U/mL HRP and 1.0% w/v phenolated hyaluronic acid (HA-Ph), with a support material containing 10 mM H2O2. Over 90% viability of mouse fibroblasts (10T1/2) was achieved following the printing process, along with a morphology and proliferation rate similar to that of nontreated cells. Furthermore, human hepatoblastoma (HepG2) cells showed an increased spheroid size over 14 days in the printed constructs. The 10T1/2 cells adhered and proliferated on the constructs printed from inks containing both phenolated gelatin and HA-Ph. These results demonstrate the great potential of this HRP-mediated extrusion bioprinting technique for tissue engineering applications.

4.
Sci Prog ; 106(2): 368504231175328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201921

RESUMO

The outbreak of major public health emergencies such as the coronavirus epidemic has put forward new requirements for urban emergency management procedures. Accuracy and effective distribution model of emergency support materials, as an effective tool to inhibit the deterioration of the public health sector, have gradually become a research hotspot. The distribution of urban emergency support devices, under the secondary supply chain structure of "material transfer center-demand point," which may involve confusing demands, is studied to determine the actual situation of fuzzy requests under the impact of an epidemic outbreak. An optimization model of urban emergency support material distribution, based on Credibility theory, is first constructed. Then an improved sparrow search algorithm, ISSA, was designed by introducing Sobol sequence, Cauchy variation and bird swarm algorithm into the structure of the classical SSA. In addition, numerical validation and standard test set validation were carried out and the experimental results showed that the introduced improved strategy effectively improved the global search capability of the algorithm. Furthermore, simulation experiments are conducted, based on Shanghai, and the comparison with existing cutting-edge algorithms shows that the designed algorithm has stronger superiority and robustness. And the simulation results show that the designed algorithm can reduce vehicle cost by 4.83%, time cost by 13.80%, etc. compared to other algorithms. Finally, the impact of preference value on the distribution of emergency support materials is analyzed to help decision-makers to develop reasonable and effective distribution strategies according to the impact of major public health emergencies. The results of the study provide a practical reference for the solution of urban emergency support materials distribution problems.


Assuntos
Emergências , Saúde Pública , Humanos , China/epidemiologia , Algoritmos , Simulação por Computador
5.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176995

RESUMO

The synthesis and characterization of sol-gel-derived cornhusk support for low-temperature catalytic methane combustion (LTCMC) were investigated in this study. The prepared cornhusk support was impregnated with palladium and cerium oxide (Pd/CeO2) via the classical incipient wetness method. The resulting catalyst was characterized using various techniques, including X-ray diffraction (XRD), N2 physisorption (BET), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The catalytic performance of the Pd/CeO2/CHSiO2 catalyst was evaluated for methane combustion in the temperature range of 150-600 °C using a temperature-controlled catalytic flow reactor, and its performance was compared with a commercial catalyst. The results showed that the Pd/CeO2 dispersed on SiO2 from the cornhusk ash support (Pd/CeO2/CHSiO2) catalyst exhibited excellent catalytic activity for methane combustion, with a conversion of 50% at 394 °C compared with 593 °C for the commercial silica catalyst (Pd/CeO2/commercial). Moreover, the Pd/CeO2/CHSiO2 catalyst displayed better catalytic stability after 10 h on stream, with a 7% marginal loss in catalytic activity compared with 11% recorded for the Pd/CeO2/commercial catalyst. The N2 physisorption and H2-TPR results indicated that the cornhusk SiO2 support possessed a higher surface area and strong reducibility than the synthesized commercial catalyst, contributing to the enhanced catalytic activity of the Pd/CeO2/SiO2 catalyst. Overall, the SiO2 generated from cornhusk ash exhibited promising potential as a low-cost and environmentally friendly support for LTCMC catalysts.

6.
ACS Appl Mater Interfaces ; 15(15): 18771-18780, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37039396

RESUMO

Activated carbons (ACs) are the most widely used and attractive support materials for electrocatalytic applications because of their significant surface areas, high electrical conductivities, and moderate affinities toward supported metal catalysts. However, the corrosive behavior of ACs at oxidative potentials causes an inevitable reduction in the active surface area of supported catalysts, resulting in the continuous deterioration of their electrocatalytic performance. Therefore, the introduction of corrosion-resistant durable catalyst supports is essential for sustainable and efficient electrocatalysis. Here, we modified ACs to obtain different boron (B)-doped structures via doping-temperature controls to investigate the corrosion resistance of B-doped ACs. With increasing doping temperature, the B-doped ACs exhibited a decreased defect density and enhanced crystallinity owing to the accelerating dopant-induced graphitization. We found that the substitution of B atoms into the carbon lattice improved the structural integrity of the carbon structure, and cyclic voltammetry (CV) tests suggested that the highly B-substituted structures caused electrochemical surface passivation against carbon corrosion. Moreover, B-doped ACs significantly contributed to the increase in loading mass of cobalt (Co)-based catalyst on them and the electrochemical durability toward the oxygen evolution reaction as catalyst-support hybrid. The B22 (B-doped AC obtained at a 2200 °C B-doping temperature)-supported Co catalyst with the lowest oxidation current exhibited a voltage change of 32 mV at a current density of 10 mA/cm2 (ΔEj=10) after 10,000 cycles, which was a factor of ∼7 higher cycle durability and stability than that of the conventional IrO2 catalyst (ΔEj=10 = 205 mV). Here, we propose that surface engineering by B-doping to improve the structural integrity of ACs is an attractive method for designing durable electrocatalytic support materials.

7.
Int J Biol Macromol ; 226: 1284-1308, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36574582

RESUMO

In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.


Assuntos
Celulose , Poluentes Ambientais , Celulose/química , Reprodutibilidade dos Testes , Polímeros/química , Materiais Biocompatíveis
8.
J Environ Manage ; 325(Pt A): 116438, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240641

RESUMO

In recent years, global warming has become an important topic of public concern. As one of the most promising carbon capture technologies, solid amine adsorbents have received a lot of attention because of their high adsorption capacity, excellent selectivity, and low energy cost, which is committed to sustainable development. The preparation methods and support materials can influence the thermal stability and adsorption capacity of solid amine adsorbents. As a supporting material, it needs to meet the requirements of high pore volume and abundant hydroxyl groups. Industrial and biomass waste are expected to be a novel and cheap raw material source, contributing both carbon dioxide capture and waste recycling. The applied range of solid amine adsorbents has been widened from flue gas to biogas and ambient air, which require different research focuses, including strengthening the selectivity of CO2 to CH4 or separating CO2 under the condition of the dilute concentration. Several kinetic or isotherm models have been adopted to describe the adsorption process of solid amine adsorbents, which select the pseudo-first order model, pseudo-second order model, and Langmuir isotherm model most commonly. Besides searching for novel materials from solid waste and widening the applicable gases, developing the dynamic adsorption and three-dimensional models can also be a promising direction to accelerate the development of this technology. The review has combed through the recent development and covered the shortages of previous review papers, expected to promote the industrial application of solid amine adsorbents.


Assuntos
Aminas , Dióxido de Carbono , Dióxido de Carbono/análise , Adsorção , Ar , Gases
9.
Adv Sci (Weinh) ; 9(34): e2200882, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261395

RESUMO

3D bioprinting holds great promise for tissue engineering, with extrusion bioprinting in suspended hydrogels becoming the leading bioprinting technique in recent years. In this method, living cells are incorporated within bioinks, extruded layer by layer into a granular support material followed by gelation of the bioink through diverse cross-linking mechanisms. This approach offers high fidelity and precise fabrication of complex structures mimicking living tissue properties. However, the transition of cell mass mixed with the bioink into functional native-like tissue requires post-printing cultivation in vitro. An often-overlooked drawback of 3D bioprinting is the nonuniform shrinkage and deformation of printed constructs during the post-printing tissue maturation period, leading to highly variable engineered constructs with unpredictable size and shape. This limitation poses a challenge for the technology to meet applicative requirements. A novel technology of "print-and-grow," involving 3D bioprinting and subsequent cultivation in κ-Carrageenan-based microgels (CarGrow) for days is presented. CarGrow enhances the long-term structural stability of the printed objects by providing mechanical support. Moreover, this technology provides a possibility for live imaging to monitor tissue maturation. The "print-and-grow" method demonstrates accurate bioprinting with high tissue viability and functionality while preserving the construct's shape and size.

10.
Environ Technol ; 43(16): 2443-2456, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33502955

RESUMO

This research aimed the performance evaluation of a structured bed reactor with different cycles of Intermittent Aeration (IA)(SBRRIA) in the municipal sewage treatment and the verification of the effect of IA cycles on the total nitrogen (TN) removal and organic matter (COD). Three IA cycles were evaluated: phase I (4 h AE (aeration on) - 2 h NA (aeration off)); II (2 h AE-1 h NA) and III (2 h AE-2 h NA), with Hydraulic Retention Time of 16 h. The best nitrogen removal was obtained during phase II, with the lowest non-aeration time: efficiency of nitrification, denitrification, TN and COD removal of 80 ± 15%, 82 ± 12%, 67 ± 6% and 94 ± 7%, respectively. The mean cell residence time was 19, 26 and 33 d in phases I, II and III, respectively. The statistical analysis applied to the AE/NA profiles showed that the time of AE and NA in the cycles did not influence nitrogen and organic matter removal. Thus, this indicates the recirculation and the gradient formed in the support material facilitate the process of Simultaneous Nitrification and Denitrification. The lowest concentration of nitrifying and denitrifying microorganisms was obtained in effluent and sludge at the end of phase III. From the TP (Total Proteins)/TPS (Total Polysaccharides) ratio obtained (0.8 ± 0.1, 1.3 ± 0.1 e 1.5 ± 0.1 in phases I, II and III), it was possible to conclude that the biofilm in phase I was more porous, with a thin layer if compared to that in phase II and III.


Assuntos
Desnitrificação , Nitrogênio , Biofilmes , Reatores Biológicos , Nitrificação , Nitrogênio/metabolismo , Esgotos , Eliminação de Resíduos Líquidos
11.
Materials (Basel) ; 14(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802017

RESUMO

The current article proposes a concept for the additive manufacturing of rubber components using extrusion-based 3D printing, in which an additional medium is added to ensure the maintenance of shape within the elastomeric structure during the additive manufacturing process and in the subsequent vulcanization process. Specific requirements for the dimensional stabilization of the media were defined and suitable media were derived. Silicone rubber, molding sand, and plaster were examined in experimental vulcanization tests for their suitability as possible media with regard to shape retention. Selected rubber geometries made of NBR were embedded in these media to undergo the vulcanization process. The results show a significant influence of the media on the heating times. All media were able to ensure that the rubber geometries maintained their shape during vulcanization. Nevertheless, some side effects were found. The silicone rubber did not cure properly around the rubber sample. Therefore, it was difficult to remove it from the rubber after vulcanization. The molding sand caused an increased surface roughness on the rubber. Plaster changed the glossy surfaces at the beginning to a matte one after vulcanization and residuals were difficult to remove. However, all media can serve as stabilization media with specific changes.

12.
Front Vet Sci ; 7: 587524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330714

RESUMO

Rabbit inhalation anesthesia by endotracheal intubation involves a higher risk among small animals owing to several anatomical and physiological features, which is pathognomonic to this species of lagomorphs. Rabbit-specific airway devices have been designed to prevent misguided intubation attempts. However, it is believed that expert anesthetic training could be a boon in limiting the aftermaths of this procedure. Our research is aimed to develop a novel biomimetic 3D printed rabbit airway model with representative biomechanical material behavior and radiodensity. Imaging data were collected for two sacrificed rabbit heads using micro-computed tomography (µCT) and micro-magnetic resonance imaging for the first head and cone beam computed tomography (CBCT) for the second head. Imaging-based life-size musculoskeletal airway models were printed using polyjet technology with a combination of hard and soft materials in replicates of three. The models were evaluated quantitatively for dimensional accuracy and radiodensity and qualitatively using digital microscopy and endoscopy for technical, tactic, and visual realism. The results displayed that simulation models printed with polyjet technology have an overall surface representation of 93% for µCT-based images and 97% for CBCT-based images within a range of 0.0-2.5 mm, with µCT showing a more detailed reproduction of the nasotracheal anatomy. Dimensional discrepancies can be caused due to inadequate support material removal and due to the limited reconstruction of microstructures from the imaging on the 3D printed model. The model showed a significant difference in radiodensities in hard and soft tissue regions. Endoscopic evaluation provided good visual and tactile feedback, comparable to the real animal. Overall, the model, being a practical low-cost simulator, comprehensively accelerates the learning curve of veterinary nasotracheal intubation and paves the way for 3D simulation-based image-guided interventional procedures.

13.
Quant Imaging Med Surg ; 10(2): 340-355, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32190561

RESUMO

BACKGROUND: For surgical fixation of bone fractures of the human hand, so-called Kirschner-wires (K-wires) are drilled through bone fragments. Due to the minimally invasive drilling procedures without a view of risk structures like vessels and nerves, a thorough training of young surgeons is necessary. For the development of a virtual reality (VR) based training system, a three-dimensional (3D) printed phantom hand is required. To ensure an intuitive operation, this phantom hand has to be realistic in both, its position relative to the driller as well as in its haptic features. The softest 3D printing material available on the market, however, is too hard to imitate human soft tissue. Therefore, a support-material (SUP) filled metamaterial is used to soften the raw material. Realistic haptic features are important to palpate protrusions of the bone to determine the drilling starting point and angle. An optical real-time tracking is used to transfer position and rotation to the training system. METHODS: A metamaterial already developed in previous work is further improved by use of a new unit cell. Thus, the amount of SUP within the volume can be increased and the tissue is softened further. In addition, the human anatomy is transferred to the entire hand model. A subcutaneous fat layer and penetration of air through pores into the volume simulate shiftability of skin layers. For optical tracking, a rotationally symmetrical marker attached to the phantom hand with corresponding reference marker is developed. In order to ensure trouble-free position transmission, various types of marker point applications are tested. RESULTS: Several cuboid and forearm sample prints lead to a final 30 centimeter long hand model. The whole haptic phantom could be printed faultless within about 17 hours. The metamaterial consisting of the new unit cell results in an increased SUP share of 4.32%. Validated by an expert surgeon study, this allows in combination with a displacement of the uppermost skin layer a good palpability of the bones. Tracking of the hand marker in dodecahedron design works trouble-free in conjunction with a reference marker attached to the worktop of the training system. CONCLUSIONS: In this work, an optically tracked and haptically correct phantom hand was developed using dual-material 3D printing, which can be easily integrated into a surgical training system.

14.
ACS Appl Mater Interfaces ; 11(26): 23102-23111, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31179684

RESUMO

NH3 emissions were limited strictly because of the threat for human health and sustainable development. Pt/Al2O3 and Pt/CeZrO2 were prepared by the impregnation method. Differences in surface chemical states, reduction ability, acid properties, morphological properties, reaction mechanisms, and ammonia oxidation activity were studied. It indicated that Pt species states were affected by different metal-support interactions. The homogeneously dispersed Pt species over Pt/Al2O3 exposed Pt(111) because of weak metal-support interactions; there even existed an obvious interface between Pt and Al2O3. While obscure even an overlapped interface was observed over Pt/CeZrO2, resulting in the formation of PtO because of the oxygen migration from CeZrO2 to Pt species (confirmed by CO-FTIR, the cycled H2-TPR and transmission electron microscopy results). It was noteworthy that different reaction mechanisms were induced by different states of Pt species; NH was the key intermediate species for ammonia oxidation reaction over Pt/Al2O3, but two kinds of intermediates, N2H4 and HNO, were observed for Pt/CeZrO2. It consequently resulted in the obvious distinction of the NH3-SCO catalytic performance; the light-off temperatures of NH3 over Pt/Al2O3 and Pt/CeZrO2 were 231 and 275 °C, respectively, while the maximum N2 selectivity (65%) was obtained over Pt/CeZrO2, it was obviously better than that over Pt/Al2O3.


Assuntos
Amônia/química , Catálise , Platina/química , Zircônio/química , Óxido de Alumínio/química , Microscopia Eletrônica de Transmissão , Oxirredução , Oxigênio/química
15.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003419

RESUMO

Printed electronics have led to new possibilities in the detection and quantification of a wide range of molecules important for medical, biotechnological, and environmental fields. The integration with microfluidics is often adopted to avoid hand-deposition of little volumes of reagents and samples on miniaturized electrodes that strongly depend on operator's skills. Here we report design, fabrication and test of an easy-to-use electrochemical sensor platform with microfluidics entirely realized with Aerosol Jet Printing (AJP). We printed a six-electrochemical-sensors platform with AJP and we explored the possibility to aerosol jet print directly on it a microfluidic structure without any support material. Thus, the sacrificial material removal and/or the assembly with sensors steps are avoided. The repeatability observed when printing both conductive and ultraviolet (UV)-curable polymer inks can be supported from the values of relative standard deviation of maximum 5% for thickness and 9% for line width. We designed the whole microfluidic platform to make the sample deposition (20 µL) independent from the operator. To validate the platform, we quantified glucose at different concentrations using a standard enzyme-mediated procedure. Both mediator and enzyme were directly aerosol jet printed on working electrodes (WEs), thus the proposed platform is entirely fabricated by AJP and ready to use. The chronoamperometric tests show limit of detection (LOD) = 2.4 mM and sensitivity = 2.2 ± 0.08 µA/mM confirming the effectiveness of mediator and enzyme directly aerosol jet printed to provide sensing in a clinically relevant range (3-10 mM). The average relative standard inter-platform deviation is about 8%. AJP technique can be used for fabricating a ready-to-use microfluidic device that does not need further processing after fabrication, but is promptly available for electrochemical sample analysis.

16.
Quant Imaging Med Surg ; 9(1): 30-42, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30788244

RESUMO

BACKGROUND: Currently, it is common practice to use three-dimensional (3D) printers not only for rapid prototyping in the industry, but also in the medical area to create medical applications for training inexperienced surgeons. In a clinical training simulator for minimally invasive bone drilling to fix hand fractures with Kirschner-wires (K-wires), a 3D-printed hand phantom must not only be geometrically but also haptically correct. Due to a limited view during an operation, surgeons need to perfectly localize underlying risk structures only by feeling of specific bony protrusions of the human hand. METHODS: The goal of this experiment is to imitate human soft tissue with its haptic and elasticity for a realistic hand phantom fabrication, using only a dual-material 3D printer and support-material-filled metamaterial between skin and bone. We present our workflow to generate lattice structures between hard bone and soft skin with iterative cube edge (CE) or cube face (CF) unit cells. Cuboid and finger shaped sample prints with and without inner hard bone in different lattice thickness are constructed and 3D printed. RESULTS: The most elastic available rubber-like material is too firm to imitate soft tissue. By reducing the amount of rubber in the inner volume through support material (SUP), objects become significantly softer. Without metamaterial, after disintegration, the SUP can be shifted through the volume and thus the body loses its original shape. Although the CE design increases the elasticity, it cannot restore the fabric form. In contrast to CE, the CF design increases not only the elasticity but also guarantees a local limitation of the SUP. Therefore, the body retains its shape and internal bones remain in its intended place. Various unit cell sizes, lattice thickening and skin thickness regulate the rubber material and SUP ratio. Test prints with higher SUP and lower rubber material percentage appear softer and vice versa. This was confirmed by an expert surgeon evaluation. Subjects adjudged pure rubber-like material as too firm and samples only filled with SUP or lattice structure in CE design as not suitable for imitating tissue. 3D-printed finger samples in CF design were rated as realistic compared to the haptic of human tissue with a good palpable bone structure. CONCLUSIONS: We developed a new dual-material 3D print technique to imitate soft tissue of the human hand with its haptic properties. Blowy SUP is trapped within a lattice structure to soften rubber-like 3D print material, which makes it possible to reproduce a realistic replica of human hand soft tissue.

17.
Appl Biochem Biotechnol ; 187(3): 984-993, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30136171

RESUMO

The adhesion behavior of microorganisms on different materials was examined to obtain basic knowledge for designing support materials for microorganisms. The microorganisms were isolated from soil, and their adhesion behavior on hydroxyapatite (HA), carbon-coated HA (Carbon), poly (vinyl chloride) (PVC), and polyurethane (PU) pellets was investigated. The total metabolic activity on and adherence of microorganisms to the tested materials were in the following order: HA > Carbon > PVC > PU. This order was consistent with the extent of hydrophilicity of the materials. Morphological examination and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis of microorganisms adhered to the materials revealed that the activities and states of microorganisms were affected by the composition of the pellets. PCR-DGGE analysis revealed various species of microorganisms adhered to the HA pellet. HA ceramics are expected to be one of the most suitable materials for supporting microorganisms.


Assuntos
Adesão Celular , Durapatita/química , Microbiologia do Solo , Carbono/química , Poliuretanos/química , Cloreto de Polivinila/química
18.
Braz. arch. biol. technol ; 62: e19180504, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055407

RESUMO

Abstract The aim of this work is to evaluate the performance of upflow anaerobic fixed bed reactors filled with espresso coffee capsules to treat sanitary sewage. Three reactors (R1, R2 and R3) were constructed in blue PVC pipes measuring 30 cm height and 150 mm diameter and filled with coffee capsules made of aluminum and plastic. The sewage from the pre-treatment phase of the wastewater treatment plant of the Federal University of Lavras fed the system. Temperature, pH, alkalinity and volatile acids concentration, COD, TS, TVS and TSS of the influent and effluent were analyzed to evaluate the reactors performances. Statistics tests were run in the software Statistica 10. Changes occurred in the organic loading rates caused two different operating phases, one at an OLR of 2.1 kg COD m-3d-1 and another at 4.0 kg COD m-3d-1. The average temperature during the monitoring period was 18°C. In spite of the operating conditions variations, the reactors showed satisfactory performances, presenting COD efficiency removals up to 80% in both phases. The capsules characteristics were similar to other materials used as support. Hence, it is possible to utilize coffee capsules as support material in anaerobic reactors, providing satisfactory pollutants removal efficiencies.


Assuntos
Esgotos Domésticos , Biomassa , Reutilização de Equipamento , Eficiência , Anaerobiose , Imobilização
19.
Bioresour Technol ; 255: 359-363, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433772

RESUMO

The effect of support material pore size on the filtration behaviors during start-up and stabilized stages in the dynamic membrane bioreactors (DMBR) was studied. Before the dynamic membrane (DM) was formed, the turbidity at 50-µm could be more than 250 NTU, while it was less than 40 and 10 NTU at 25- and 10-µm, respectively. After the DM was formed, the stabilized stage lasted for 61 days with low transmembrane pressure <0.6 kPa and the 5-, 10-, and 25-µm filters had similar effluent turbidity (<1 NTU) and chemical oxygen demand. However, their averaged flux was 66.4, 25.1, and 3.5 L·m-2·h-1, respectively, suggesting that the 25-µm filter had significantly lower filtration resistance. Consequently, to avoid unallowable high effluent turbidity during start-up or after membrane cleaning and to achieve high flux with low pressure filtration, a mesh size of ∼25 µm is more suitable for DMBR.


Assuntos
Reatores Biológicos , Filtração , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Membranas Artificiais , Pressão , Purificação da Água
20.
Bioresour Technol ; 256: 201-207, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29448156

RESUMO

Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal.


Assuntos
Biocombustíveis , Metano , Methylococcaceae , Oxirredução , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...