Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Clin Respir J ; 18(5): e13776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778673

RESUMO

This systematic review aimed to summarize the available data on the treatment of pulmonary contusions with exogenous surfactants, determine whether this treatment benefits patients with severe pulmonary contusions, and evaluate the optimal type of surfactant, method of administration, and drug concentration. Three databases (MEDline, Scopus, and Web of Science) were searched using the following keywords: pulmonary surfactant, surface-active agents, exogenous surfactant, pulmonary contusion, and lung contusion for articles published between 1945 and February 2023, with no language restrictions. Four reviewers independently rated the studies for inclusion, and the other four reviewers resolved conflicts. Of the 100 articles screened, six articles were included in the review. Owing to the limited number of papers on this topic, various types of studies were included (two clinical studies, two experiments, and two case reports). In all the studies, surfactant administration improved the selected ventilation parameters. The most frequently used type of surfactant was Curosurf® in the concentration of 25 mg/kg of ideal body weight. In most studies, the administration of a surfactant by bronchoscopy into the segmental bronchi was the preferable way of administration. In both clinical studies, patients who received surfactants required shorter ventilation times. The administration of exogenous surfactants improved ventilatory parameters and, thus, reduced the need for less aggressive artificial lung ventilation and ventilation days. The animal-derived surfactant Curosurf® seems to be the most suitable substance; however, the ideal concentration remains unclear. The ideal route of administration involves a bronchoscope in the segmental bronchi.


Assuntos
Contusões , Lesão Pulmonar , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório , Humanos , Surfactantes Pulmonares/administração & dosagem , Surfactantes Pulmonares/uso terapêutico , Contusões/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Animais , Respiração Artificial/métodos , Resultado do Tratamento , Broncoscopia/métodos
2.
Iran J Microbiol ; 15(3): 425-432, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37448686

RESUMO

Background and Objectives: Biosurfactants are amphiphilic surface-active agents that mainly produced by various microorganisms. In this study, the anti-biofilm and inhibition of bacterial adhesion activities of two bacterial biosurfactants were investigated. Materials and Methods: After extraction and evaluation of Bacillus cereus and Serratia nematodiphila biosurfctants, inhibition of bacterial adhesion and anti-biofilm effects of them on Staphylococcus aureus and Pseudomonas aeruginosa were determined. Results: On average, the synergistic effect of two bacterial biosurfactants, caused about 60% decrease in adhesion and about 80% decrease in biofilm formation of S. aureus and P. aeruginosa. Conclusion: The results of this study showed that combination of B. cereus and S. nematodiphila biosurfactants would increase the potential of attachment inhibition and biofilm eradication with very low toxicity.

3.
Int J Biol Macromol ; 241: 124485, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37076071

RESUMO

The fabrication and application of nanoemulsions for incorporating and delivering diverse bioactive compounds, particularly hydrophobic substances, is becoming an increasing focus of research with the potential to improve the nutritional and health status of individuals. Constant advancements in nanotechnological approaches aid in the creation of nanoemulsions using diverse biopolymers such as proteins, peptides, polysaccharides, and lipids to improve the stability, bioactivity, and bioavailability of active hydrophilic and lipophilic compounds. This article provides a comprehensive overview of various techniques used to create and characterize nanoemulsions as well as theories for understanding their stability. The article also highlights the advancement of nanoemulsions in boosting the bioaccessibility of nutraceuticals to help advance their potential use in various food and pharmaceutical formulations.


Assuntos
Suplementos Nutricionais , Lipídeos , Humanos , Emulsões/química , Disponibilidade Biológica , Polissacarídeos
4.
Future Microbiol ; 17: 1363-1379, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36169348

RESUMO

Aims: This study aimed to evaluate the antibacterial effect of two new cationic surfactants based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM). Materials & methods: Antibacterial activity, mechanism of action and interactions with Staphylococcus aureus enzymes were measured through microbiological, flow cytometry and molecular docking assays, respectively. Results & conclusion: These compounds showed antibacterial activity in the range of 4.06-16.24 µg/ml against planktonic cells and no activity against mature biofilms, since they caused a loss of membrane integrity and increased DNA damage, as revealed by flow cytometry analysis. In silico assays revealed the existence of molecular bonds such as hydrogen bonds, mainly with DNA. Therefore, these compounds have promising pharmacological activity against MRSA strains.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Triptofano/farmacologia , Testes de Sensibilidade Microbiana , Arginina/farmacologia , Arginina/química , Tensoativos/farmacologia , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Fenilalanina/farmacologia
5.
Sci Total Environ ; 845: 157181, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817095

RESUMO

In this study, two homologous series of esterquats comprising alkyl (from ethyl to octadecyl) betainate cations and bromide as well as dicamba anions were successfully synthesized, starting from a renewable raw material - glycine betaine. Due to the favorable octanol-water partition coefficient and utilization of biodegradable cations of natural origin, synthesized esterquats can be considered promising alternatives to currently applied dicamba-based formulations. In addition, the obtained results allowed us to verify whether the organic cations in quaternary ammonium salts containing herbicidally active anions (such as dicamba) play the role of biologically inactive adjuvants that only enhance the efficiency of the active ingredient or if they simultaneously exhibit a significant degree of phytotoxicity. Analysis of the influence of alkyl betainate esterquats containing nonherbicidal (bromide) anions on seedlings of white mustard revealed that alkyl betainate cations promote the germination of white mustard seeds; however, the subsequent growth of the seedlings was significantly inhibited. Further studies performed on white mustard and cornflower plants in a stage of 4-6 leaves allowed us to conclude that in the case of sensitive plants, the high phytotoxicity can be attributed to the presence of the dicamba anion, whereas for more resistant plants the additional influence of the cation on the phytotoxic effect is visible. Esterquats comprising a dodecyl substituent or longer had high surface active properties. Nonetheless, their contact angle values were not correlated with phytotoxicity data, indicating an additional influence of the cation on this stage of plant development. Interestingly, subsequent dose-response experiments conducted for two selected dicamba-based products confirmed that the greatest phytotoxicity was expressed by compounds containing a decyl substituent.


Assuntos
Dicamba , Herbicidas , Ânions , Betaína/toxicidade , Brometos , Cátions , Herbicidas/toxicidade , Sinapis
6.
Braz. dent. j ; 33(2): 1-11, Mar.-Apr. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1374628

RESUMO

Abstract The aim was to assess the physicochemical properties and the penetration into dentinal tubules of calcium hypochlorite solution [Ca(OCl)2], with or without surfactants. The surfactants benzalkonium chloride, cetrimide, Tween 80 and Triton X-100 were mixed at different concentrations with sodium hypochlorite solution (NaOCl), Ca(OCl)2 and distilled water (control). Once the critical micellar concentration (CMC) of the surfactants in Ca(OCl)2 and NaOCl was determined, pH, free chlorine, surface tension and free calcium ions were evaluated. The penetration into dentinal tubules of NaOCl and Ca(OCl)2, with or without benzalkonium chloride and Triton X-100 [surfactants that promoted the lowest surface tension of Ca(OCl)2], was assessed using human premolars stained with crystal violet. The statistical tests were one-way ANOVA and Tukey's post-test, Kruskal-Wallis and Dunn's post-test, two-way ANOVA and Bonferroni's post-test, and t-test; depending on the assay. The addition of surfactants reduced the surface tension of NaOCl and Ca(OCl)2, and did not alter the pH or the free available chlorine of either solution. The addition of all surfactants increased the availability of free calcium ions in Ca(OCl)2, especially benzalkonium chloride. Ca(OCl)2 exhibited lower penetration into dentinal tubules than NaOCl, and the addition of surfactants did not improve the penetration of Ca(OCl)2, but did increase the penetration of NaOCl. It can be concluded that the addition of surfactants to Ca(OCl)2 did not increase the penetration into dentinal tubules, but it did promote lower surface tension, without changing the pH or free available chlorine values, and higher availability of free calcium ions in Ca(OCl)2.


Resumo O objetivo foi avaliar as propriedades físico-químicas e a penetrabilidade nos túbulos dentinários da solução de hipoclorito de cálcio [Ca(OCl)2], com ou sem surfactantes. Os surfactantes cloreto de benzalcônio, cetrimida, Tween 80 e Triton X-100 foram misturados em diferentes concentrações com a solução de hipoclorito de sódio (NaOCl), Ca(OCl)2 e água destilada (controle). Uma vez determinada a concentração micelar crítica (CMC) dos surfactantes em Ca(OCl)2 e NaOCl, foram avaliados o pH, cloro livre, tensão superficial e íons de cálcio livre. A penetrabilidade nos túbulos dentinários de NaOCl e Ca(OCl)2, com ou sem cloreto de benzalcônio e Triton X-100 [surfactantes que promoveram a menor tensão superficial de [Ca(OCl)2] foi avaliada utilizando pré-molares humanos corados com cristal violeta. Os testes estatísticos foram ANOVA de uma via e pós-teste de Tukey, Kruskal-Wallis e pós-teste de Dunn, ANOVA de duas vias e pós-teste de Bonferroni, e teste t; dependendo do ensaio. A adição de surfactantes reduziu a tensão superficial do NaOCl e Ca(OCl)2, e não alterou o pH ou cloro livre das soluções. A adição de todos os surfactantes aumentou a disponibilidade de íons de cálcio livre de Ca(OCl)2, principalmente o cloreto de benzalcônio. Ca(OCl)2 apresentou menor penetrabilidade nos túbulos dentinários do que NaOCl, e a adição de surfactantes não aumentou a penetrabilidade de Ca(OCl)2, mas aumentou a penetrabilidade de NaOCl. Pode-se concluir que a adição de surfactantes no Ca(OCl)2 não aumentou a penetrabilidade nos túbulos dentinários, mas promoveu menor tensão superficial, sem alterar os valores de pH ou cloro livre, e maior disponibilidade de íons de cálcio livre em Ca(OCl)2.

7.
Appl Biochem Biotechnol ; 194(6): 2700-2719, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35244858

RESUMO

Talaromyces thermophilus galactolipase (TTL) was found to produce alcohol sugar fatty acid diesters. The modulation of the solvent composition was used for the esterification reaction screening of diesters from xylitol and various fatty acids using the immobilized Talaromyces thermophilus galactolipase. The reactions were assessed by LC-MS analysis. The antimicrobial activity assay showed that both xylitol dicaprylate and xylitol dilaurate esters had more ability to inhibit the growth of several bacteria involved in surface contamination in the food industry. The xylitol dilaurate ester has the highest activity against Gram-positive strains with the lowest MIC values of 0.0016 and 0.005 mg mL-1 against Bacillus licheniformis and Staphylococcus aureus, respectively. Xylitol dicaprylate ester is more active against Gram-negative ones with significantly low MIC values of 0.25 and 0.4 mg mL-1 against Escherichia coli and Pseudomonas aeruginosa, respectively. The highest antifungal activity of the xylitol dicaprylate ester has been also proven, with a MIC value of 0.02 mg mL-1 against Penicillium occitanis and Fusarium solani. A better reduction in critical micelle concentrations and air-water surface tension were observed with these diesters compared to their corresponding monoesters in addition to their efficient emulsifying properties. The stability of these diesters in a liquid detergent formula after one year of storage was tested by a positive oil spreading assay and a retained antimicrobial activity. They exhibit a typical surfactant behavior with a two-in-one effect that can act as a detergent and a disinfectant with potential use in different cleaning processes.


Assuntos
Desinfetantes , Ésteres , Hidrolases de Éster Carboxílico , Detergentes , Eurotiales , Ácidos Graxos , Testes de Sensibilidade Microbiana , Tensoativos/farmacologia , Xilitol
8.
J Environ Sci Health B ; 56(9): 838-844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370606

RESUMO

The fungus Penicillium crustosum was employed for endosulfan biodegradation, finding that sulphate endosulfan and mono alcohol endosulfan were the main compounds produced; therefore, an oxidative degradation pathway was suggested. A 93 ± 4.7% of Endosulfan degradation after one month of treatment of a highly salty agricultural soil was obtained, where ΔST was up to 17 ± 0.58 mN m-1, (related to the water value of 72 mNm-1), that was induced by the fungus during soil mycoremediation Additionally, an improvement in soil quality (reduction of clay proportion and salinity, as well as an increase of soluble phosphorus, carbon content and organic matter) was observed during the mycoremediation treatment. The phytotoxicity of the pesticide on Phaseolus leptostachyus was evaluated in the soil without the fungus addition (control), where the pesticide was translocated in the crop, presenting a negative effect in germination index, root length and weight, aerial weight, humidity, and proline content. This contrasted with the effect on the crop grown in the soil treated with P. crustosum, which had better agronomic characteristics. This is first report in which the effect of this property allows the pesticide biodegradation, due to a combined Endosulfan bioavailability and fungal biodegradation.


Assuntos
Inseticidas , Penicillium , Phaseolus , Poluentes do Solo , Biodegradação Ambiental , Bioensaio , Endossulfano/análise , Endossulfano/toxicidade , Inseticidas/análise , Solo , Poluentes do Solo/análise
9.
Colloids Surf B Biointerfaces ; 207: 112017, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34391169

RESUMO

In the past two decades, the increase in microbial resistance to conventional antimicrobials has spurred scientists around the world to search tirelessly for new treatments. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds. In this work, two new cationic amino acid-based surfactants were synthesized and their physicochemical, antifungal and antibiofilm properties evaluated. The surfactants were based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM) and prepared from renewable raw materials using a simple chemical procedure. The critical micelle concentrations of the new surfactants were determined by conductivity and fluorescence. Micellization of LPAM and LTAM took place at 1.05 and 0.54 mM, respectively. Both exhibited good antifungal activity against fluconazole-resistant Candida spp. strains, with a low minimum inhibitory concentration (8.2 µg/mL). Their mechanism of action involves alterations in cell membrane permeability and mitochondrial damage, leading to death by apoptosis. Furthermore, when LPAM and LTAM were applied with Amphotericin B, a significant synergistic effect was observed against all the studied Candida strains. These new cationic surfactants are also able to disperse biofilms of Candida spp. at low concentrations. The results indicate that LPAM and LTAM have potential application to combat the advance of fungal resistance as well as microbial biofilms.


Assuntos
Antifúngicos , Fluconazol , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Arginina , Biofilmes , Candida , Farmacorresistência Fúngica , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Fenilalanina , Tensoativos/farmacologia , Triptofano
10.
Folia Med (Plovdiv) ; 63(3): 392-399, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34196143

RESUMO

INTRODUCTION: Bacterial natural products such as biosurfactants and surface-active agents are important compounds which exhibit many applications in the fields of medicine. AIM: The aim of the present study was to isolate and identify Nocardia strains with high biosurfactant production and antibiofilm ability. MATERIALS AND METHODS: In the present study, a biosurfactant producing Nocardia species was isolated and identified by a laboratory method. Nocardia species were initially screened and then tested for their ability to produce biosurfactant. The oil spreading test and the surface tension measurements showed that one strain was a biosurfactant producer. The strain with the best surface activity results was selected for further studies and identified by 16S rRNA gene sequencing method. Fourier transform infrared spectroscopy (FTIR) and compositional analysis proved a biosurfactant structure. RESULTS: Oil spreading test and blue agar plate test confirmed biosurfactants and extracellular anionic glycolipids. E24% assay using olive oil revealed strong emulsifying characteristic of the extracted biosurfactant with 100% emulsifying strength. FTIR spectrum indicated the presence of aliphatic hydrocarbon chain (lipid) along with the polysaccharide portion, confirming the glycolipid nature of the biosurfactant. The stability of the biosurfactant produced in different conditions was significant. Increasing concentration of BS significantly inhibited Pseudomonas aeruginosa biofilm. CONCLUSIONS: N. coubleae can be a representative of the genus Nocardia for the production of biosurfactants with beneficial physicochemical properties.


Assuntos
Nocardia , Biofilmes , Glicolipídeos , Nocardia/genética , Pseudomonas aeruginosa , RNA Ribossômico 16S , Tensoativos/farmacologia
11.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673549

RESUMO

Surface active agents (SAAs), currently used in modern industry, are synthetic chemicals produced from non-renewable sources, with potential toxic impacts on humans and the environment. Thus, there is an increased interest for the identification and utilization of natural derived SAAs. As such, the marine environment is considered a promising source of biosurfactants with low toxicity, environmental compatibility, and biodegradation compared to their synthetic counterparts. MARISURF is a Horizon 2020 EU-funded project aiming to identify and functionally characterize SAAs, derived from a unique marine bacterial collection, towards commercial exploitation. Specifically, rhamnolipids produced by Marinobacter MCTG107b and Pseudomonas MCTG214(3b1) strains were previously identified and characterized while currently their toxicity profile was assessed by utilizing well-established methodologies. Our results showed a lack of cytotoxicity in in vitro models of human skin and liver as indicated by alamar blue and propidium iodide assays. Additionally, the use of the single gel electrophoresis assay, under oxidative stress conditions, revealed absence of any significant mutagenic/anti-mutagenic potential. Finally, both 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) cell-free assays, revealed no significant anti-oxidant capacity for neither of the tested compounds. Consequently, the absence of significant cytotoxicity and/or mutagenicity justifies their commercial exploitation and potential development into industrial end-user applications as natural and environmentally friendly biosurfactants.


Assuntos
Bactérias/metabolismo , Queratinócitos/patologia , Neoplasias/patologia , Tensoativos/efeitos adversos , Tensoativos/isolamento & purificação , Apoptose , Proliferação de Células , Humanos , Queratinócitos/efeitos dos fármacos , Neoplasias/induzido quimicamente , Testes de Toxicidade , Células Tumorais Cultivadas
12.
J Laryngol Otol ; 135(3): 196-205, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33666152

RESUMO

OBJECTIVE: Chronic rhinosinusitis patients with biofilms cultured from their sinonasal cavity have greater symptom burden and risk of recalcitrant disease. A number of non-antibiotic, 'anti-biofilm' treatments exist which show anti-biofilm properties in preclinical studies. There is little evidence evaluating their impact on clinical symptom scores in chronic rhinosinusitis. METHOD: A systematic review was performed to assess the literature regarding the efficacy of non-steroid, non-antibiotic, anti-biofilm specific topical therapies in the treatment of chronic rhinosinusitis. The primary outcome assessed was change in validated patient reported outcome measures before and after anti-biofilm treatment. RESULTS: Thirteen studies assessing the effect of anti-biofilm therapies in chronic rhinosinusitis through validated patient-reported outcome measures were included. Seven different anti-biofilm specific therapies for chronic rhinosinusitis were identified. None of the seven anti-biofilm therapies was identified as being confidently efficacious beyond placebo. Only one therapy (intranasal xylitol) showed a statistically significant reduction in symptom scores compared with placebo in more than one trial. CONCLUSION: Robust evidence supporting the use of various anti-biofilm therapies in chronic rhinosinusitis is lacking. Further high quality, human, in vivo trials studying the effect of anti-biofilm therapies in chronic rhinosinusitis are needed to address the deficiencies of the current evidence base.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Biofilmes/efeitos dos fármacos , Rinite/tratamento farmacológico , Sinusite/tratamento farmacológico , Administração Tópica , Adulto , Doença Crônica , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/microbiologia , Medidas de Resultados Relatados pelo Paciente , Rinite/microbiologia , Sinusite/microbiologia , Resultado do Tratamento
13.
Front Bioeng Biotechnol ; 9: 626639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659240

RESUMO

Surfactants are a group of amphiphilic chemical compounds (i.e., having both hydrophobic and hydrophilic domains) that form an indispensable component in almost every sector of modern industry. Their significance is evidenced from the enormous volumes that are used and wide diversity of applications they are used in, ranging from food and beverage, agriculture, public health, healthcare/medicine, textiles, and bioremediation. A major drive in recent decades has been toward the discovery of surfactants from biological/natural sources-namely bio-surfactants-as most surfactants that are used today for industrial applications are synthetically-manufactured via organo-chemical synthesis using petrochemicals as precursors. This is problematic, not only because they are derived from non-renewable resources, but also because of their environmental incompatibility and potential toxicological effects to humans and other organisms. This is timely as one of today's key challenges is to reduce our reliance on fossil fuels (oil, coal, gas) and to move toward using renewable and sustainable sources. Considering the enormous genetic diversity that microorganisms possess, they offer considerable promise in producing novel types of biosurfactants for replacing those that are produced from organo-chemical synthesis, and the marine environment offers enormous potential in this respect. In this review, we begin with an overview of the different types of microbial-produced biosurfactants and their applications. The remainder of this review discusses the current state of knowledge and trends in the usage of biosurfactants by the Oil and Gas industry for enhancing oil recovery from exhausted oil fields and as dispersants for combatting oil spills.

14.
Restor Dent Endod ; 45(4): e47, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33294412

RESUMO

OBJECTIVES: The aim of this study was to assess the physicochemical properties, cytotoxicity and penetration into dentinal tubules of ChlorCid™ Surf (3% sodium hypochlorite [NaOCl] with surfactant) in comparison to ChlorCid™ (3% NaOCl without surfactant). MATERIALS AND METHODS: The physicochemical properties evaluated were pH, surface tension, free available chlorine (FAC) and contact angle. Cytotoxicity was evaluated in L929 fibroblasts exposed to the solutions by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red assays. Assessment of penetration into dentinal tubules was performed by staining single-rooted permanent human teeth with crystal violet (n = 9), which were irrigated with the solutions and analyzed in cervical, middle and apical segments. Data were analyzed by one-way analysis of variance (ANOVA) and Tukey's post-test, 2-way ANOVA and Bonferroni's post-test or t-test (α = 0.05). RESULTS: ChlorCid™ Surf and ChlorCid™ FAC values were close to those indicated by the manufacturer. ChlorCid™ Surf showed lower surface tension and contact angle on dentin, and higher pH than ChlorCid™ (p < 0.05). The penetration of ChlorCid™ Surf was higher in cervical and middle segments, compared with ChlorCid™ (p < 0.05). There was no difference in irrigant cytotoxicity (p > 0.05). CONCLUSIONS: ChlorCid™ Surf showed lower surface tension, lower contact angle on root canal dentin, higher penetration into dentinal tubules and more alkaline pH, compared with ChlorCid™. However, both solutions showed similar cytotoxicity and FAC content.

15.
Pharmaceutics ; 12(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708243

RESUMO

Surface active agents (SAAs) are molecules with the capacity to adsorb to solid surfaces and/or fluid interfaces, a property that allows them to act as multifunctional ingredients (e.g., wetting and dispersion agents, emulsifiers, foaming and anti-foaming agents, lubricants, etc.) in a widerange of the consumer products of various industrial sectors (e.g., pharmaceuticals, cosmetics, personal care, detergents, food, etc.). Given their widespread utilization, there is a continuously growing interest to explore their role in consumer products (relevant to promoting human health) and how such information can be utilized in order to synthesize better chemical derivatives. In this review article, weaimed to provide updated information on synthetic and biological (biosurfactants) SAAs and their health-promoting properties (e.g., anti-microbial, anti-oxidant, anti-viral, anti-inflammatory, anti-cancer and anti-aging) in an attempt to better define some of the underlying mechanism(s) by which they exert such properties.

16.
Water Res ; 183: 116086, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673895

RESUMO

The link between aeration efficiency and biosorption capacity in water resource recovery facilities was extensively investigated, with special emphasis on wastewater characteristics and the development of strategies to maximize adsorption. Biosorption of oxygen transfer inhibitors (i.e., surfactants, colloidal, and soluble fractions) was examined by a series of pilot batch-scale experiments and full-scale studies. The impact of a sorption-enhancing strategy (i.e., bioaugmentation) deployed at full-scale over a five-year period was evaluated. Bench-scale experiments determined the inhibition coefficient (Ki) to measure the impact of surfactants and COD fractions as inhibitors of oxygen transfer efficiencies (αSOTE) in wastewater systems. The inhibition constant for surfactants Ki was found at 2.4 ± 0.4 mg L-1 SDS while for colloidal material was at 14 ± 1 mg L-1 (no inhibition for soluble fraction was found). Two enhancing biosorption configurations (i.e., contact stabilization and anaerobic selector) resulted in significant improvements in both aeration efficiency indicators (αSOTE) and surfactants removals. αSOTE improvements of 46% and 54% in comparison to conventional high rate activated sludge process (HRAS) were reported. Similarly, the removal of surfactants was increased by 27% and 56% using optimized enhancing-sorption strategies. Further analyses helped elucidate the underlying mechanisms of surfactants removal. Findings are expected to help full-scale applications increase their sorption potential as well as the concurrent aeration efficiency, which helps WRRFs to advance toward energy-positive wastewater treatments.


Assuntos
Oxigênio , Eliminação de Resíduos Líquidos , Reatores Biológicos , Esgotos , Águas Residuárias
17.
Biomolecules ; 10(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526944

RESUMO

Surface active agents are characterized for their capacity to adsorb to fluid and solid-water interfaces. They can be classified as surfactants and emulsifiers based on their molecular weight (MW) and properties. Over the years, the chemical surfactant industry has been rapidly increasing to meet consumer demands. Consequently, such a boost has led to the search for more sustainable and biodegradable alternatives, as chemical surfactants are non-biodegradable, thus causing an adverse effect on the environment. To these ends, many microbial and/or marine-derived molecules have been shown to possess various biological properties that could allow manufacturers to make additional health-promoting claims for their products. Our aim, in this review article, is to provide up to date information of critical health-promoting properties of these molecules and their use in blue-based biotechnology (i.e., biotechnology using aquatic organisms) with a focus on food, cosmetic and pharmaceutical/biomedical applications.


Assuntos
Biotecnologia , Saúde , Tensoativos/química , Animais , Humanos , Tensoativos/metabolismo
18.
Proteins ; 87(9): 715-722, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30980557

RESUMO

The effects of a photoresponsive surfactant and light illumination on the complex formed between ribonuclease A (RNase A) and a protein ribonuclease inhibitor (RI) have been investigated to develop a light-based technique to reactivate an enzyme through surfactant-induced dissociation of the enzyme-inhibitor complex. The photoresponsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to reversibly control protein-inhibitor interactions. In the absence of surfactant, RI binds tightly to RNase A through noncovalent interactions, which inhibits the enzyme activity. Upon addition of the surfactant under visible light, RNase A is reactivated, regaining ~75% of the native activity in the absence of RI. In the presence of the surfactant under UV light, however, the enzyme remains inhibited. Fluorescence spectroscopy, dynamic light scattering, and circular dichroism spectroscopy reveal that RI dramatically unfolds upon addition of the trans form of the surfactant, while RNase A does not undergo noticeable structural changes under the same conditions. This indicates that RNase A reactivation occurs through dissociation of the enzyme-inhibitor complex arising from surfactant-induced unfolding of the inhibitor. As a result, photoresponsive surfactant and light illumination can be used as a novel light-based technique to dissociate enzyme-inhibitor complexes and, thus, reactivate an inhibited enzyme.


Assuntos
Luz , Tensoativos/química , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Conformação Proteica/efeitos da radiação , Espectrometria de Fluorescência
19.
Int Endod J ; 52(3): 385-392, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30220093

RESUMO

AIM: To assess the penetration of sodium hypochlorite (NaOCl) gel or NaOCl solutions with surfactants, and the effect of passive ultrasonic irrigation (PUI) on penetration into dentinal tubules. METHODOLOGY: Bovine incisor root canals were instrumented, the roots sectioned and the dentine blocks obtained were stained with crystal violet. Dentine blocks (n = 10 per group) were exposed to 3% NaOCl gel or 3% NaOCl solution for 10 and 20 min. Other dentine blocks (n = 10 per group) were exposed to Chlor-Extra (6% NaOCl + surfactant), 6% NaOCl, 2.5% NaOCl with 0.2% cetrimide and 2.5% NaOCl for 10 and 20 min. The penetration depth of irrigants into dentinal tubules was measured in micrometres by viewing the bleached crystal violet under a stereomicroscope. Additionally, bovine incisor root canals, instrumented and stained with crystal violet, were distributed into two groups (n = 10) and irrigated with 2.5% NaOCl with PUI or conventional syringe irrigation (CSI). The penetration depth of irrigants into dentinal tubules was assessed 3 and 7 mm from the apex. Statistical analysis was performed by ANOVA and Tukey tests (α = 0.05). RESULTS: There was significantly greater penetration of 3% NaOCl solution into dentinal tubules compared with the gel form (P < 0.05). There was no difference (P > 0.05) between 6% NaOCl and Chlor-Extra, and between 2.5% NaOCl and 2.5% NaOCl + cetrimide. PUI significantly increased the penetration depth of NaOCl into dentinal tubules when compared with CSI (P < 0.05). CONCLUSIONS: In extracted bovine incisors, NaOCl gel penetrated less into dentinal tubules than NaOCl solution. The addition of surfactants did not increase the penetration depth. The use of PUI significantly increased NaOCl penetration into dentinal tubules.


Assuntos
Dentina/efeitos dos fármacos , Irrigantes do Canal Radicular/farmacocinética , Hipoclorito de Sódio/farmacocinética , Raiz Dentária/efeitos dos fármacos , Animais , Bovinos , Géis , Técnicas In Vitro , Soluções , Tensoativos/farmacologia , Irrigação Terapêutica/métodos , Ultrassom/métodos
20.
Contemp Clin Dent ; 9(2): 255-259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875570

RESUMO

BACKGROUND: Effective management of smear layer ensures adequate clinical success. Use of sodium hypochlorite (NaOCl)/ethylenediaminetetraacetic acid regimen has been the gold standard with limitations. Commercial irrigants incorporate surface modifiers to address these drawbacks. The aim of this study was to evaluate the cytotoxicity of combination regimens on target and nontarget cell lines by trypan blue assay. MATERIALS AND METHODS: Nonsurfactant combination regimen of chlorhexidine (CHX) and NaOCl (2% CHX + 2.5% NaOCl) and surfactant regimens of CHX with cetrimide (CTR) (2% CHX + 0.5% CTR) and CHX with sodium dodecyl sulfate (2% CHX + 1% SDS) were prepared. 0.9% normal saline (NS) and Biopure MTAD (100%) served as control. Cytotoxicity was evaluated on human gingival fibroblast (HGF) and Henrietta Lacks (HeLa) cell lines by trypan blue assay. Thirty microliter of the cell suspension was treated with 20 µl of irrigants. The cell suspension was loaded into Neubauer chamber after 5 min and cell count was performed under inverted microscope and expressed as viability percentage. RESULTS: Nonsurfactant combination comprising of 2% CHX + 2.5% NaOCl formed a brownish precipitate while surfactant combination regimes were stable without any precipitate formation. NS and 2% CHX + 0.5% CTR had greater viability scores on both cell lines. Two percent CHX + 1% SDS had better viability on HeLa but were severely cytotoxic on HGF. Two percent CHX + 2.5% NaOCl and MTAD were found to be severely cytotoxic on HeLa with limited viability on HGF. CONCLUSION: The variation in data obtained could be possibly attributed to the difference in the cellular membrane composition and mechanism of action of combination regimens. Experimental surfactant regimen 2% CHX + 0.5% CTR shows lower cytotoxicity than MTAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...