Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.910
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001088

RESUMO

The diversification of mobility into services such as smart stores and conference rooms has accelerated the development of purpose-built vehicles (PBVs)-vehicles designed for specific purposes that utilize an extended electric vehicle chassis and autonomous driving technology. Despite the standards on speed bump dimensions stipulated by the National Land Transportation Act of the Republic of Korea, real-world speed bumps feature varying widths and heights that deviate from these standards. In this study, a velocity equation was derived via regression analysis to achieve the desired dynamic characteristics for a PBV passing over speed bumps with varying shapes through two types of semi-active suspension control: proportional-integral-differential (PID) and linear-quadratic-regulator (LQR). For a cargo-transport PBV, the PID and LQR controllers increased the velocity by 23.74% and 50.74%, respectively, under different speed bump widths and by 19.44% and 38.31%, respectively, under different speed bump heights. Moreover, an analysis of the vibration dose value (VDV), an indicator of ride comfort, revealed that the VDVs calculated using the velocity equation were within an acceptable error range of 10% above the target VDV. These findings provide insights into the speed control required for different types of autonomous PBVs to ensure ride comfort, as well as minimize the driving duration, depending on the specific purpose of the vehicle.

2.
Chempluschem ; : e202400177, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951113

RESUMO

The adsorption characteristics of novel activated biocarbons prepared from horsetail herb by physical activation (using carbon dioxide) and chemical one (using phosphoric(V) acid) in the process of simultaneous proteins immobilization in multicomponent solutions were examined. The carbon materials were characterized in terms of their porous structure, acidic-basic properties, and surface morphology. The binding mechanisms of such proteins as bovine serum albumin (BSA) and lysozyme (LSZ), differing in internal stability, were determined alone and in their blends. This was done based on the comprehensive analysis of the results of adsorption/desorption, surface, electrokinetic and stability measurements. These experiments were carried out over a wide pH range of 3-11. They included the following issues: (1) determination of the protein adsorbed/desorbed amounts on/from a surface of activated biocarbons; (2) study of the kinetics of these processes; (3) examination of the macromolecules impact on the surface charge density and zeta potential of the carbon materials; and (4) determination of the suspension stability and size of aggregates formed in the examined systems. The analysis of the obtained results indicated the differences in the binding mechanism of both proteins that is of key importance for their simultaneous immobilization on activated biocarbons surface in the soil environment.

3.
Methods Mol Biol ; 2829: 49-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951326

RESUMO

This chapter outlines the workflow using the ExpiSf™ Expression System designed for high-density infection of suspension ExpiSf9™ cells. The system utilizes a chemically defined, serum-free, protein-free, and animal origin free medium, making it suitable for recombinant protein expression experiments. The ExpiSf™ chemically defined medium allows efficient transfection and baculovirus production directly within the same culture medium. The ExpiSf™ Expression System Starter Kit provides all necessary components, including cells, culture medium, and reagents needed to infect one (1) liter of cell culture. The system's versatility and animal origin free nature make it a valuable tool for various protein expression studies and biotechnological applications.


Assuntos
Baculoviridae , Proteínas Recombinantes , Fluxo de Trabalho , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baculoviridae/genética , Transfecção/métodos , Meios de Cultura/química , Técnicas de Cultura de Células/métodos , Linhagem Celular , Expressão Gênica
4.
J Pharm Sci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986870

RESUMO

Topical ocular sustained-release drug delivery systems represent an effective strategy for the treatment of ocular diseases, for which a suitable carrier has yet to be sufficiently developed. Herein, an eye-compatible sodium polystyrene sulfonate resin (SPSR) was synthesized with a uniform particle size of about 3 µm. Ligustrazine phosphate (LP) was adsorbed to SPSR by cation exchange to form LP@SPSR. LP@SPSR suspension eye drops were further developed using the combination of Carbopol 934P and xanthan gum as suspending agents. The LP@SPSR suspension showed a sustained release in vitro, which was consistent with the observed porcine corneal penetration ex vivo. Pharmacokinetics in tear fluid of rabits indicated that LP@SPSR suspension led to prolonged ocular retention of LP and a 2-fold improved the area under the drug concentration-time curve (AUC0-t). Pharmacokinetics in the aqueous humor of rabbits showed 2.8-fold enhancement in the AUC0-t compared to LP solution. The LP@SPSR suspension exhibited no cytotoxicity to human corneal epithelial cells, nor irritation was observed in rabbit eyes. Thus, the LP@SPSR suspension has been validated as a safe and sustained release system leading to enhanced ophthalmic bioavailability for treating ocular diseases.

5.
Biofactors ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989918

RESUMO

Extracellular vesicles are secreted by all eukaryotic cells and they have an important role in intercellular signaling. Plant extracellular vesicles (PEVs) are a novel area of research that has gained attention due to their potential implications in biomolecule transport and therapeutic applications. PEVs are lipid bilayer-enclosed structures that contain a diverse cargo of biomolecules such as proteins and lipids. Moreover, it is known that PEVs have a noticeable therapeutic potential for various conditions such as inflammation and oxidative stress. However, there are critical problems such as removing the endosomes and plant-derived biomolecules that decrease the standardization and therapeutic efficacy of PEVs. In our study, the aim was to characterize plant cell suspension-derived extracellular vesicles (PCSEVs) obtained from two different plant cell suspension cultures: Stevia rebaudiana and Vaccaria hispanica. These vesicles were isolated using ultrafiltration and characterized with nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM). The molecular composition of PCSEVs was profiled and the cellular uptake assay was performed. Our results demonstrated that PCSEVs have a spherical shape, less than 200 nm. In the fatty acid analysis, the primary components in PCSEVs were palmitic acid, linoleic acid, and cis-vaccenic acid. The protein content of Stevia rebaudiana-derived EVs (SDEVs) was largely associated with proteins involved in extracellular structures and functions. Conversely, Vaccaria hispanica-derived EVs (HDEVs) displayed a higher presence of cytosolic proteins. These findings contribute to the understanding of PCSEVs and open up potential avenues in extracellular vesicle research, pointing to promising prospects for future innovations in various fields.

6.
J Proteome Res ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008777

RESUMO

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

7.
Ann N Y Acad Sci ; 1537(1): 51-63, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012278

RESUMO

Vorticella convallaria are microscopic sessile suspension feeders that live attached to substrates in aquatic environments. They feed using a self-generated current and help maintain the health of aquatic ecosystems and wastewater treatment facilities by consuming bacteria and detritus. Their environmental impact is mediated by their feeding rate. In ambient flow, feeding rates are highly dependent on an individual's orientation relative to the substrate and the flow. Here, we investigate how this orientation is impacted by flow speed. Furthermore, we examined whether individuals actively avoid orientations unfavorable for feeding. We exposed individuals to unidirectional laminar flow at shear rates of 0, 0.5, 1.0, and 1.5 s-1, and recorded their 3D orientation using a custom biplanar microscope. We determined that V. convallaria orientation became progressively tilted downstream as the shear rate increased, but individuals were still able to actively reorient. Additionally, at higher shear rates, individuals spent a larger fraction of their time in orientations with reduced feeding rates. Our shear rates correspond to freestream flows on the scale of mm s-1 to cm s-1 in natural environments.


Assuntos
Ecossistema , Animais , Comportamento Alimentar/fisiologia , Hidrozoários/fisiologia , Movimentos da Água
8.
Pulm Ther ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012432

RESUMO

INTRODUCTION: This study aimed to gain insight from patients with refractory Mycobacterium avium complex lung disease (MAC-LD) into strategies used to manage adverse events (AEs) associated with amikacin liposome inhalation suspension (ALIS). METHODS: We conducted semi-structured interviews with US patients with refractory MAC-LD prescribed ALIS in a real-world setting. Interview transcripts were analyzed and coded to identify patterns in participants' descriptions of their ALIS treatment experiences, including AEs and their disruptiveness, and AE mitigation strategies, including participants' ratings of strategies' effectiveness. Concept saturation was also assessed. RESULTS: Twenty participants (mean age 48.7 years; 80% women; mean ALIS duration 5.45 months) were interviewed. At the time of the interview, 15 participants (75%) had received ALIS for > 1 month and 13 (65%) were currently receiving ALIS. Participants described 44 unique AE mitigation strategies, which can be categorized into three groups: prepare for treatment; prevent increased emergence of AEs; and persist on treatment by mitigating AEs. Common strategies (reported by ≥ 50% of participants) included use of educational materials from the patient support program, localized management of throat irritation, and symptom management to reduce fatigue. Evidence of concept saturation was observed: no new strategies were identified in the last five interviews, which suggests the sample was robust enough to identify all mitigation strategies likely to be used by the broader patient population. CONCLUSIONS: This real-world study identified a diverse set of potential AE mitigation strategies intended to help individual patients prepare for ALIS treatment, prevent the increased emergence of certain AEs, and mitigate the impact of AEs on treatment persistence. Developing a comprehensive accounting of the types of mitigation strategies in use among patients in real-world settings can inform future investigation of the effectiveness of such strategies, and support evidence-based recommendations for treatment management.

9.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998728

RESUMO

The steady rheological behavior of suspensions of solid particles thickened by cellulose nanocrystals is investigated. Two different types and sizes of particles are used in the preparation of suspensions, namely, TG hollow spheres of 69 µm in Sauter mean diameter and solospheres S-32 of 14 µm in Sauter mean diameter. The nanocrystal concentration varies from 0 to 3.5 wt% and the particle concentration varies from 0 to 57.2 vol%. The influence of salt (NaCl) concentration and pH on the rheology of suspensions is also investigated. The suspensions generally exhibit shear-thinning behavior. The degree of shear-thinning is stronger in suspensions of smaller size particles. The experimental viscosity data are adequately described by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) under different conditions are determined and discussed in detail.

10.
Plants (Basel) ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999714

RESUMO

Plants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response. This study examined changes in the soluble extracellular sub-proteome of sorghum cell cultures exposed to a combination of sorbitol-induced osmotic stress and heat at 40 °C. The combined stress significantly reduced metabolic activity and altered protein secretion. While cells treated with osmotic stress alone had elevated proline content, the osmoprotectant in the combined treatment remained unchanged, confirming that sorghum cells exposed to combined stress utilise adaptive processes distinct from those invoked by the single stresses applied separately. Reactive oxygen species (ROS)-metabolising proteins and proteases dominated differentially expressed proteins identified in cells subjected to combined stress. ROS-generating peroxidases were suppressed, while ROS-degrading proteins were upregulated for protection from oxidative damage. Overall, our study provides protein candidates that could be used to develop crops better suited for an increasingly hot and dry climate.

11.
Pathol Res Pract ; 260: 155439, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968667

RESUMO

We present herein an extension to our recently developed and published method termed "Fractionation of Nodal Cell Suspension" (FNCS). The method enables efficient subcellular fractionation into nuclear (N) and cytosolic (C) compartments of extremely fibrous and problematic metastatic axillary lymph node (mALN) tissue, using the entire nodule. For the purpose of the present study, a case of invasive lobular breast cancer (BC) patient with pT2N3aMx status and defined primary tumor markers (ERα 8, PR-B 8, and HER2 score 0) was available. Initially, the mALN tissue of this patient was analyzed by immunohistochemistry (IHC), and a positive correlation of nodal ERα, PR-B and HER2 biomarkers to those of the primary tumor was obtained. Subsequently, the mALN was FNCS fractionated into N and C, and Western blot (WB) analysis demonstrated a single band for ERα, PR-B and nuclear loading control (HDAC1) in nuclear, but not in the cytosolic compartments, confirming the efficiency of our fractionation protocol. At the same time, HER2 bands were not observed in either compartment, in accordance with HER2 negativity determined by IHC in both primary tumor and mALN tissue. In conclusion, by confirming the nuclear expression of ERα and PR-B biomarkers in metastatic loci, we demonstrate the purity of the FNCS-generated compartments - the protocol that offers a reliable tool for further analysis of nuclear versus cytosolic content in downstream analysis of novel biomarkers in the whole mALN of BC patients.

12.
Stem Cell Res Ther ; 15(1): 191, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956608

RESUMO

BACKGROUND: Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS: Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS: Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION: This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.


Assuntos
Reatores Biológicos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Agregação Celular/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Diferenciação Celular
13.
Artigo em Inglês | MEDLINE | ID: mdl-38959415

RESUMO

The human lung is a complex organ comprised of diverse populations of epithelial, mesenchymal, vascular and immune cells, which gains even greater complexity during disease states. To effectively study the lung at a single cell level, a dissociation protocol that achieves the highest yield of viable cells of interest with minimal dissociation-associated protein or transcription changes key. Here, we detail a rapid collagenase-based dissociation protocol (Col-Short), which provides a high-yield single cell suspension suitable for a variety of downstream applications. Diseased human lung explants were obtained and dissociated through the Col-Short protocol and compared to four other dissociation protocols. Resulting single cell suspensions were then assessed with flow cytometry, differential staining, and quantitative real-time PCR to identify major hematopoietic and non-hematopoietic cell populations, as well as their activation states. We observed that the Col-Short protocol provides the greatest number of cells per gram of lung tissue with no reduction in viability when compared to previously described dissociation protocols. Col-Short had no observable surface protein marker cleavage as well as lower expression of protein activation markers and stress-related transcripts compared to four other protocols. The Col-Short dissociation protocol can be used as a rapid strategy to generate single cells for respiratory cell biology research.

14.
Mol Pharm ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958508

RESUMO

Crystalline suspensions of monoclonal antibodies (mAbs) have great potential to improve drug substance isolation and purification on a large scale and to be used for drug delivery via high-concentration formulations. Crystalline mAb suspensions are expected to have enhanced chemical and physical properties relative to mAb solutions delivered intravenously, making them attractive candidates for subcutaneous delivery. In contrast to small molecules, the development of protein crystalline suspensions is not a widely used approach in the pharmaceutical industry. This is mainly due to the challenges in finding crystalline hits and the suboptimal physical properties of the resulting crystallites when hits are found. Modern advances in instrumentation and increased knowledge of mAb crystallization have, however, resulted in higher probabilities of discovering crystal forms and improving their particle properties and characterization. In this regard, physical, analytical characterization plays a central role in the initial steps of understanding and later optimizing the crystallization of mAbs and requires careful selection of the appropriate tools. This contribution describes a novel crystal structure of the antibody pembrolizumab and demonstrates the usefulness of small-angle X-ray scattering (SAXS) for characterizing its crystalline suspensions. It illustrates the advantages of SAXS when used to (i) confirm crystallinity and crystal phase of crystallites produced in batch mode; (ii) confirm crystallinity under various conditions and detect variations in crystal phases, enabling fine-tuning of the crystallizations for phase control across multiple batches; (iii) monitor the physical response and stability of the crystallites in suspension with regard to filtration and washing; and (iv) monitor the physical stability of the crystallites upon drying. Overall, this work highlights how SAXS is an essential tool for mAb crystallization characterization.

15.
J Perianesth Nurs ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980239

RESUMO

PURPOSE: To study the analgesic effects and side effects of a transdermal lappaconitine (TLA) patch, ibuprofen suspension (IS), and TLA combined with IS (TLACIS) after adenoidectomy and tonsillectomy. DESIGN: Prospective, randomized clinical trial. METHODS: The patients were randomized into three groups defined by different analgesic drug regimens: the TLA group, the IS group, and the TLACIS group. Pain scores at 2, 12, and 24 hours after surgery and adverse-event reports within the first postoperative week were collected. RESULTS: Ultimately, this study included 102 cases in the TLA group, 101 cases in the IS group, and 101 cases in the TLACIS group. At 2 hours after surgery, the pain scores of the TLA and the TLACIS groups were both significantly lower than that of the IS group (all P < .05). At 12 and 24 hours after surgery, the pain score of the TLACIS group was significantly lower than those of the TLA and IS groups (all P < .05); furthermore, the pain score of the IS group was significantly lower than that of the TLA group (P < .05). Within 1 week after the operation, there was no significant difference in the incidence of adverse events. CONCLUSIONS: The addition of a TLA patch can speed the onset of analgesia. In terms of analgesic effects, IS alone is more advantageous than TLA alone, while the combination of TLA and IS has the best analgesic effect. No significant differences were found in the incidence of adverse events among the three regimens.

16.
Adv Colloid Interface Sci ; 331: 103165, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38964197

RESUMO

Colloid particles (CP, 10-8-10-6 m = 10-1000 nm) are used as models for atom scale processes, such as crystallization since the process is experimentally observable. Packing of atoms in crystals resemble mono-, bi-, and trimodal packing of noncharged hard spheres (particles). When the size of one particle exceeds the two others an excluded volume consisting of small particles is created around large particles. This is also the case when colloid particles are dispersed in water. The formation of an excluded volume does not require attraction forces, but it is enforced by the presence of dissolved primary (cations) and secondary (protons of surface hydroxyls) potential determining ions. The outcome is an interfacial solid-liquid charge. This excluded volume, denoted Stern layer is characterized by the surface potential and charge density. Charge neutrality is identified by point of zero charge (pHpzc and pcpzc). Outside Stern layer another excluded volume is formed of loosely bound counterions which interact with Stern layer. The extent of this diffuse layer is given by inverse Debye length and effective ζ-potential. The overall balance between attractive and repulsive energies is provided by Derjaguin-Landau-Veerwey-Overbeek (DLVO) model. Charge neutrality is identified at isoelectric point (pHiep and pciep). The dependence of viscosity and yield stress on shear rate may be modeled by von Smoluchowski's volumetric collision frequency multiplied by some total interaction energy given by DLVO model. Equilibrium and dynamic models for settling and enforced particle movement (viscosity) are presented. Both compressive yield stress (sedimentation) and cohesive energy (viscoelasticity) are characterized by power law exponents of volume fraction. The transition of disperse suspensions (sols) to spanning clusters (gels) is identified by oscillatory rheology. The slope of linear plots of logarithmic storage (G´) and loss (G") moduli against logarithm of frequency or logarithm of volume fraction provide power law exponents from the slopes. These exponents relate to percolation and fractal dimensions characterizing the particle network. Moreover, it identifies the structure formation process either as diffusion limited cluster-cluster (DLCCA) or as reaction limited cluster-cluster (RLCCA) aggregation.

17.
Methods Mol Biol ; 2833: 11-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949696

RESUMO

In vitro biofilm models have allowed researchers to investigate the role biofilms play in the pathogenesis, virulence, and antimicrobial drug susceptibility of a wide range of bacterial pathogens. Rotary cell culture systems create three-dimensional cellular structures, primarily applied to eukaryotic organoids, that better capture characteristics of the cells in vivo. Here, we describe how to apply a low-shear, detergent-free rotary cell culture system to generate biofilms of Mycobacterium bovis BCG. The three-dimensional biofilm model forms mycobacterial cell aggregates in suspension as surface-detached biomass, without severe nutrient starvation or environmental stress, that can be harvested for downstream experiments. Mycobacterium bovis BCG derived from cell clusters display antimicrobial drug tolerance, presence of an extracellular matrix, and evidence of cell wall remodeling, all features of biofilm-associated bacteria that may be relevant to the treatment of tuberculosis.


Assuntos
Biofilmes , Mycobacterium bovis , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/fisiologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos
18.
Front Surg ; 11: 1396438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948480

RESUMO

Introduction: Pelvic organs prolapse remains a significant health concern affecting millions of women worldwide. The use of native tissues to suspend the apex has acquired relevance in urogynecologic surgery. One of the most commonly used procedures performed without mesh is the technique described by Shull, consisting of suturing the vaginal apex to the uterosacral ligaments. The objective of the study is to evaluate the learning curve of laparoscopic Shull's repair for the correction of pelvic floor defects, including the surgery time and surgical outcomes. Materials and methods: This is a retrospective study conducted at the Policlinico G. Martino, University of Messina, Messina, Italy, and Policlinico Vanvitelli, Vanvitelli University, Naples, Italy. All patients affected by grade I-IV POP, consisting of apical prolapse with or without cystocele, and who underwent laparoscopic Shull's technique for prolapse correction were enrolled. The endpoints to estimate the learning curve for the procedure were the percentage of laparoscopic procedures completed, operative time, and the early complication rate. Results: A total of 31 laparoscopic Shull repairs were collected for the study. To evaluate the learning curve of the technique, we divided the 31 cases into three different groups: Procedures 0-10; 11-20; 21-31. The parameter for evaluating technique learning was the operative time. Group 21-31 demonstrated an operative time of 97 min (SD 20), compared with 121 min (SD 23) in group 0-10 and 120 min (SD 13) in group 11-20. A comparison of these means through ANOVA showed a p-value of 0.01 for the entire system, and 0.95 for the comparison between 0 and 10 and 11-20, 0.04 for 0-10 vs. 21-31, and 0.02 between 11 and 20 and 21-31. Conclusions: The rate of surgical improvement in terms of time became effective after an average of 20 procedures. However, the improvement seems to be effective case by case for surgeons skilled in basic endoscopy.

19.
J Neurosci Methods ; 409: 110212, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960331

RESUMO

BACKGROUND: The forced swim test (FST) and tail suspension test (TST) are widely used to assess depressive-like behaviors in animals. Immobility time is used as an important parameter in both FST and TST. Traditional methods for analyzing FST and TST rely on manually setting the threshold for immobility, which is time-consuming and subjective. NEW METHOD: We proposed a threshold-free method for automated analysis of mice in these tests using a Dual-Stream Activity Analysis Network (DSAAN). Specifically, this network extracted spatial information of mice using a limited number of video frames and combined it with temporal information extracted from differential feature maps to determine the mouse's state. To do so, we developed the Mouse FSTST dataset, which consisted of annotated video recordings of FST and TST. RESULTS: By using DSAAN methods, we identify immobility states at accuracies of 92.51 % and 88.70 % for the TST and FST, respectively. The predicted immobility time from DSAAN is nicely correlated with a manual score, which indicates the reliability of the proposed method. Importantly, the DSAAN achieved over 80 % accuracy for both FST and TST by utilizing only 94 annotated images, suggesting that even a very limited training dataset can yield good performance in our model. COMPARISON WITH EXISTING METHOD(S): Compared with DBscorer and EthoVision XT, our method exhibits the highest Pearson correlation coefficient with manual annotation results on the Mouse FSTST dataset. CONCLUSIONS: We established a powerful tool for analyzing depressive-like behavior independent of threshold, which is capable of freeing users from time-consuming manual analysis.

20.
Methods Mol Biol ; 2827: 303-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985279

RESUMO

For centuries plants have been intensively utilized as reliable sources of food, flavoring, and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to the climate change and agriculture. Plant biotechnology offers a sustainable approach for the bioproduction of specialized plant metabolites. The unique structural features of plant-derived specialized metabolites, such as their safety profile and multi-target spectrum, have led to the establishment of many plant-derived drugs. However, there are still many challenges to overcome regarding the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant specialized metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this book chapter, we attempted to focus on the advantages of plant in vitro systems and in particular plant cell suspensions for their cultivation as a source of plant-derived specialized metabolites. A state-of-the-art technological platform for plant cell suspension cultivation from callus induction to lab-scale cultivation, extraction, and purification is presented. Possibilities for bioreactor cultivation of plant cell suspensions in benchtop and large-scale volumes are highlighted, including several examples and patents for industrial production of specialized metabolites.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Células Vegetais , Técnicas de Cultura de Células/métodos , Células Vegetais/metabolismo , Plantas/metabolismo , Biotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...