Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1414422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040903

RESUMO

Codon usage bias (CUB) has been described in viruses, prokaryotes, and eukaryotes and has been linked to several cellular and environmental factors, such as the organism's growth temperature, gene expression levels, and regulation of protein synthesis and folding. Most of the studies in this area have been conducted in bacteria and higher eukaryotes, in some cases with different results. In this study, a comparative analysis of CUB in yeasts isolated from cold and template environments was performed in order to evaluate the correlation of CUB with yeast optimal temperature of growth (OTG), gene expression levels, cellular function, and structure of encoded proteins. Among the main findings, highly expressed ORFs tend to have a more similar CUB within and between yeasts, and a direct correlation between codons ending in C and expression level was generally found. A low correspondence between CUB and OTG was observed, with an inverse correlation for some codons ending in C. The clustering of yeasts based on their CUB partially aligns with their OTG, being more consistent for yeasts with lower OTG. In most yeasts, the abundance of preferred codons was generally lower at the 5' end of ORFs, higher in segments encoding beta strand, lower in segments encoding extracellular and transmembrane regions, and higher in "translation" and "energy metabolism" pathways, especially in highly expressed ORFs. Based on our findings, it is suggested that the abundance and distribution of preferred and non-preferred codons along mRNAs contribute to proper protein folding and functionality by regulating protein synthesis rates, becoming a more important factor under conditions that require faster protein synthesis in yeasts.

2.
Mol Biochem Parasitol ; 247: 111445, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942292

RESUMO

Schistosoma mansoni is a trematode flatworm that parasitizes humans and produces a disease called bilharzia. At the genomic level, it is characterized by a low genomic GC content and an "isochore-like" structure, where GC-richest regions, mainly placed at the extremes of the chromosomes, are interspersed with low GC-regions. Furthermore, the GC-richest regions are at the same time the gene-richest, and where the most heavily expressed genes are placed. Taking these features into account, we decided to reanalyze the codon usage of this flatworm. Our results show that a) when all genes are considered together, the strong mutational bias towards A + T leads to a predominance of A/T-ending codons, b) a multivariate analysis discriminates between highly and lowly expressed genes, c) the sequences expressed at highest levels display a significant increase in G/C-ending codons, d) when comparing the molecular distances with a closely related species the synonymous distance in highly expressed genes is significantly lower than in lowly expressed sequences. Therefore, we conclude that despite previous results, which were performed with a small sample of genes, codon usage in S. mansoni is the result of two forces that operate in opposite directions: while mutational bias leads to a predominance of A/T codons, translational selection, working at the level of speed, increment G/C ending triplets.


Assuntos
Uso do Códon , Platelmintos , Animais , Composição de Bases , Códon , Platelmintos/genética , Schistosoma mansoni/genética
3.
Front Plant Sci ; 12: 771983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804105

RESUMO

The genus Cilevirus groups enveloped single-stranded (+) RNA virus members of the family Kitaviridae, order Martellivirales. Proteins P15, scarcely conserved polypeptides encoded by cileviruses, have no apparent homologs in public databases. Accordingly, the open reading frames (ORFs) p15, located at the 5'-end of the viral RNA2 molecules, are considered orphan genes (ORFans). In this study, we have delved into ORFs p15 and the relatively poorly understood biochemical properties of the proteins P15 to posit their importance for viruses across the genus and theorize on their origin. We detected that the ORFs p15 are under purifying selection and that, in some viral strains, the use of synonymous codons is biased, which might be a sign of adaptation to their plant hosts. Despite the high amino acid sequence divergence, proteins P15 show the conserved motif [FY]-L-x(3)-[FL]-H-x-x-[LIV]-S-C-x-C-x(2)-C-x-G-x-C, which occurs exclusively in members of this protein family. Proteins P15 also show a common predicted 3D structure that resembles the helical scaffold of the protein ORF49 encoded by radinoviruses and the phosphoprotein C-terminal domain of mononegavirids. Based on the 3D structural similarities of P15, we suggest elements of common ancestry, conserved functionality, and relevant amino acid residues. We conclude by postulating a plausible evolutionary trajectory of ORFans p15 and the 5'-end of the RNA2 of cileviruses considering both protein fold superpositions and comparative genomic analyses with the closest kitaviruses, negeviruses, nege/kita-like viruses, and unrelated viruses that share the ecological niches of cileviruses.

4.
BMC Genomics ; 18(1): 227, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28288557

RESUMO

BACKGROUND: For a long time synonymous single nucleotide polymorphisms were considered as silent mutations. However, nowadays it is well known that they can affect protein conformation and function, leading to altered disease susceptibilities, differential prognosis and/or drug responses, among other clinically relevant genetic traits. This occurs through different mechanisms: by disrupting the splicing signals of precursor mRNAs, affecting regulatory binding-sites of transcription factors and miRNAs, or by modifying the secondary structure of mRNAs. RESULTS: In this paper we considered 22 human genetic diseases or traits, linked to 35 synonymous single nucleotide polymorphisms in 27 different genes. We performed a local sequence context analysis in terms of the ribosomal pause propensity affected by synonymous single nucleotide polymorphisms. We found that synonymous mutations related to the above mentioned mechanisms presented small pause propensity changes, whereas synonymous mutations that were not related to those mechanisms presented large pause propensity changes. On the other hand, we did not observe large variations in the codon usage of codons associated with these mutations. Furthermore, we showed that the changes in the pause propensity associated with benign sSNPs are significantly lower than the pause propensity changes related to sSNPs associated to diseases. CONCLUSIONS: These results suggest that the genetic diseases or traits related to synonymous mutations with large pause propensity changes, could be the consequence of another mechanism underlying non-silent synonymous mutations. Namely, alternative protein configuration related, in turn, to alterations in the ribosome-mediated translational attenuation program encoded by pairs of consecutive codons, not codons. These findings shed light on the latter mechanism based on the perturbation of the co-translational folding process.


Assuntos
Códon , Suscetibilidade a Doenças , Polimorfismo de Nucleotídeo Único , Mutação Silenciosa , Estudos de Associação Genética , Genoma Humano , Humanos , Modelos Biológicos , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/metabolismo
5.
PeerJ ; 5: e3081, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289571

RESUMO

Degeneracy in the genetic code implies that different codons can encode the same amino acid. Usage preference of synonymous codons has been observed in all domains of life. There is much evidence suggesting that this bias has a major role on protein elongation rate, contributing to differential expression and to co-translational folding. In addition to codon usage bias, other preference variations have been observed such as codon pairs. In this paper, I report that codon pairs have significant different frequency usage for coding either lowly or highly abundant proteins. These usage preferences cannot be explained by the frequency usage of the single codons. The statistical analysis of coding sequences of nine organisms reveals that in many cases bicodon preferences are shared between related organisms. Furthermore, it is observed that misfolding in the drug-transport protein, encoded by MDR1 gene, is better explained by a big change in the pause propensity due to the synonymous bicodon variant, rather than by a relatively small change in codon usage. These findings suggest that codon pair usage can be a more powerful framework to understand translation elongation rate, protein folding efficiency, and to improve protocols to optimize heterologous gene expression.

6.
Comput Struct Biotechnol J ; 13: 352-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029354

RESUMO

A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of "genomic dark matter" with no significant similarity - and, consequently, no inferred homology to any other known sequence - from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA