Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38960140

RESUMO

OBJECTIVE: Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS: Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS: In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION: The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.

2.
Regen Ther ; 26: 124-131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883147

RESUMO

Treatments for articular cartilage injuries are still challenging, due in part to its avascular and aneural surroundings. Since the first report of autologous chondrocyte implantation, cell-based therapies have been extensively studied with a variety of cell sources, including chondrocytes and mesenchymal stem/stromal cells (MSCs). Recently, MSC-based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation. Using such cells, we have originally developed a 3-dimensional scaffold-free tissue-engineered construct (TEC) through simple-cell culture methods and demonstrated its feasibility for cartilage repair and regeneration in the first-in-human clinical trial. This review summarizes our novel scaffold-free approaches to use MSC for the restoration of damaged articular cartilage, documenting the progression from basic to clinical studies.

3.
J Oral Rehabil ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717032

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) derived from the synovium, known as synovium mesenchymal stem cells (SMSCs), exhibit significant potential for articular cartilage regeneration owing to their capacity for chondrogenic differentiation. However, the microRNAs (miRNAs) governing this process and the associated mechanisms remain unclear. While mechanical stress positively influences chondrogenesis in MSCs, the miRNA-mediated response of SMSCs to mechanical stimuli is not well understood. OBJECTIVE: This study explores the miRNA-driven mechano-transduction in SMSCs chondrogenesis under mechanical stress. METHODS: The surface phenotype of SMSCs was analysed by flow cytometry. Chondrogenesis capacities of SMSCs were examined by Alcian blue staining. High throughput sequencing was used to screen mechano-sensitive miRNAs of SMSCs. The RNA expression level of COL2A1, ACAN, SOX9, BMPR2 and miR-143-3p of SMSCs were tested by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-143-3p and TLR4 was confirmed by luciferase reporter assays. The protein expression levels of related genes were assessed by western blot. RESULTS: High-throughput sequencing revealed a notable reduction in miR-143-3p levels in mechanically stressed SMSCs. Gain- or loss-of-function strategies introduced by lentivirus demonstrated that miR-143-3p overexpression hindered chondrogenic differentiation, whereas its knockdown promoted this process. Bioinformatics scrutiny and luciferase reporter assays pinpointed a potential binding site for miR-143-3p within the 3'-UTR of bone morphogenetic protein receptor type 2 (BMPR2). MiR-143-3p overexpression decreased BMPR2 expression and phosphorylated Smad1, 5 and 8 levels, while its inhibition activated BMPR2-Smad pathway. CONCLUSION: This study elucidated that miR-143-3p negatively regulates SMSCs chondrogenic differentiation through the BMPR2-Smad pathway under mechanical tensile stress. The direct targeting of BMPR2 by miR-143-3p established a novel dimension to our understanding of mechano-transduction mechanism during SMSC chondrogenesis. This understanding is crucial for advancing strategies in articular cartilage regeneration.

4.
Regen Ther ; 27: 488-495, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38756702

RESUMO

Introduction: Mesenchymal stem cells (MSCs) are increasingly used for intra-articular injections in the treatment of knee osteoarthritis. The aim of this study was to use scanning electron microscopy (SEM) to compare the morphological characteristics of synovial and adipose MSCs. Methods: Synovium and adipose tissues were concurrently harvested from eight patients with knee osteoarthritis. Suspensions of both synovial and adipose MSCs were examined to identify the presence of microspikes. In addition to this study, the MSC suspensions in four patients were applied to abraded porcine cartilage discs and observed 10 s, 10 min, and 1 h later. Results: The median percentage of cells exhibiting microspikes was 14% for synovial MSC suspensions and 13% for adipose MSC suspensions; this difference was not statistically significant (n = 8). No notable differences were detected in the number of adherent cells or in the proportion of cells displaying microspikes or pseudopodia. Strong correlations were found between the proportion of cells with pseudopodia and the number of attached cells for both synovial (r = 0.92, n = 12) and adipose (r = 0.86, n = 12) MSCs, with no significant difference in the correlation coefficients between the two groups. Conclusion: SEM analysis revealed no obvious differences in morphological characteristics during MSC adhesion to cartilage for either synovial or adipose MSCs.

5.
FASEB J ; 38(10): e23636, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752683

RESUMO

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide , Osteoartrite , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Fatores de Transcrição/metabolismo , Animais , Artrite Reumatoide/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Sinalização YAP/metabolismo , Osteoartrite/metabolismo , Osteoartrite/etiologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Articulações/metabolismo , Articulações/patologia , Transativadores/metabolismo , Transativadores/genética
6.
Oral Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720613

RESUMO

BACKGROUND: Insufficient occlusal support (IOS) frequently causes subchondral bone absorption in temporomandibular joint osteoarthritis, and the underlying mechanism requires further investigation. METHODS: An IOS model was established by abrading rat molars. Micro-computed tomography was used to evaluate subchondral bone changes. Osteoclastogenesis of synovium-derived macrophages (SDMs) was confirmed by TRAP staining. Cartilage-specific TNFα depletion was achieved by intra-articular injection of adeno-associated virus carrying shRNA against murine TNFα under control of collagen type II. In vitro, chondrocytes were mechanically compressed and conditioned medium (CM) was collected to detect its ability to induce osteoclastogenesis of SDMs. RESULTS: Synovial osteoclastogenesis and condyle resorption were observed following IOS. TNFα level was elevated in hypertrophic chondrocytes after IOS. Synovial Wnt5a level increased, but Wnt3a level decreased after IOS. Depletion of TNFα in chondrocytes alleviated the synovial osteoclastogenesis and condyle bone resorption. In vitro compression of chondrocytes potentiated TNFα expression and secretion. The CM promoted osteoclastogenesis of SDMs, which were partially prohibited by TNFα neutralizing antibody. Furthermore, inhibition of Wnt3a facilitated osteoclastogenesis, whereas inhibition of Wnt5a partially suppressed osteoclastogenesis, of SDMs cultured in CM. CONCLUSION: Chondrocyte-secreted TNFα induced by IOS is a critical regulator of synovial osteoclastogenesis and subsequent condylar resorption, partially through non-canonical Wnt5a pathway.

7.
Immune Netw ; 24(2): e17, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725672

RESUMO

We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.

8.
Heliyon ; 10(7): e28330, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571590

RESUMO

Objective: OA was generally considered as a non-inflammatory disease dominated by articular cartilage degeneration. However, the role of synovitis in OA pathogenesis has received increasing attention. Recent studies support that OA patients have a pro-inflammatory/catabolic synovial environment similar to RA patients, promoting the occurrence and development of OA. Therefore, we investigated the co-immune-related genes and pathways of OA and RA to explore whether part of the pathogenesis of RA synovitis can be used to explain OA synovitis. Methods: Data of GSE29746 and GSE12021 were downloaded from the Gene Expression Omnibus (GEO) database. Compared with control group, differentially expressed genes (DEGs) of OA and RA groups were screened separately by R software, Venny website was used to screen co-DEGs. Metascape was used to screen the common enriched terms and pathways between OA and RA. STRING website and Cytoscape software were used to map protein-protein interaction (PPI) networks and screen co-hub genes. GSE29746 was selected as the test dataset, and GSE12021 as the validation dataset for validate the co-hub genes. The results were validated by western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) of clinical synovial samples. Results: We identified 573 OA-related DEGs, 148 RA-related DEGs, and 52 co-DEGs, revealing 14 common enriched terms, most of which were related to immune inflammation. IL7R was the only upregulated co-hub gene between OA and RA in the PPI network, consistent with the validation dataset. IL7R was highly expressed in clinical osteoarthritic synovial samples (P < 0.001). Conclusion: Our findings suggested that IL7R is a critical co-DEG in OA and RA and confirmed the involvement of immune inflammation in disease pathogenesis. Furthermore, it confirms the role of IL7R in synovial inflammation in RA and OA synovitis and provides evidence for further investigation of OA immune inflammation.

9.
Cell Tissue Res ; 397(1): 37-50, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38602543

RESUMO

Synovial chondromatosis (SC) is a disorder of the synovium characterized by the formation of osteochondral nodules within the synovium. This study aimed to identify the abnormally differentiated progenitor cells and possible pathogenic signaling pathways. Loose bodies and synovium were obtained from patients with SC during knee arthroplasty. Single-cell RNA sequencing was used to identify cell subsets and their gene signatures in SC synovium. Cells derived from osteoarthritis (OA) synovium were used as controls. Multi-differentiation and colony-forming assays were used to identify progenitor cells. The roles of transcription factors and signaling pathways were investigated through computational analysis and experimental verification. We identified an increased proportion of CD34+ sublining fibroblasts in SC synovium. CD34+CD31- cells and CD34-CD31- cells were sorted from SC synovium. Compared with CD34- cells, CD34+ cells had larger alkaline phosphatase (ALP)-stained area and calcified area after osteogenic induction. In addition, CD34+ cells exhibited a stronger tube formation ability than CD34- cells. Our bioinformatic analysis suggested the expression of TWIST1, a negative regulator of osteogenesis, in CD34- sublining fibroblasts and was regulated by the TGF-ß signaling pathway. The experiment showed that CD34+ cells acquired the TWIST1 expression during culture and the combination of TGF-ß1 and harmine, an inhibitor of Twist1, could further stimulate the osteogenesis of CD34+ cells. Overall, CD34+ synovial fibroblasts in SC synovium have multiple differentiation potentials, especially osteogenic differentiation potential, and might be responsible for the pathogenesis of SC.


Assuntos
Antígenos CD34 , Condromatose Sinovial , Fibroblastos , Osteogênese , Membrana Sinovial , Humanos , Antígenos CD34/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Condromatose Sinovial/patologia , Condromatose Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Diferenciação Celular , Idoso , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteínas Nucleares
10.
Int J Rheum Dis ; 27(2): e15061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465833

RESUMO

INTRODUCTION: Hemophilia is a rare constitutional bleeding disorder due to a deficiency in Factor VIII or Factor IX. Recurrent hemarthroses, one of the major complications of the disease, lead to hemophilic arthropathy, a disabling condition that requires early diagnosis. Traditionally, clinical examination and plain film radiography have been used to diagnose hemophilic arthropathy. Magnetic resonance imaging (MRI) and ultrasound can be more useful for diagnosing soft-tissue changes. However, but each of these methods has limitations and diagnosis of arthropathy can be delayed. AIM: The aim of this project was to assess plasmatic biomolecules indicative of osteo-cartilaginous damage in patients with hemophilia with or without known arthropathy, in order to improve the diagnosis of this major complication of the disease. METHODS: In this monocentric retrospective study, 40 patients with hemophilia A or B, for whom a plasma sample was available, provided informed consent for further analyses (multiplex immunoassays and ELISA) and collection of relevant clinical information in their medical files. Correlations were sought for between biomarkers of interest and the severity of joint lesions assessed according to Pettersson's radiologic score. RESULTS: Two biomarkers were identified, respectively SDF-1α and COMP. Their plasmatic levels were significantly increased in patients with arthropathy compared to controls and patients without arthropathy. These values correlated significantly with the Pettersson score in patients under regular prophylaxis. CONCLUSION: Two plasma biomarkers have been identified that could help assess the presence and severity of hemophilic arthropathy.


Assuntos
Artrite , Hemofilia A , Humanos , Hemofilia A/complicações , Hemofilia A/diagnóstico , Hemofilia A/patologia , Quimiocina CXCL12 , Proteína de Matriz Oligomérica de Cartilagem , Estudos Retrospectivos , Hemartrose/diagnóstico por imagem , Hemartrose/etiologia , Artrite/complicações , Radiografia , Biomarcadores
11.
Cells ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534328

RESUMO

During the progression of knee osteoarthritis (OA), the synovium and infrapatellar fat pad (IFP) can serve as source for Substance P (SP) and calcitonin gene-related peptide (CGRP), two important pain-transmitting, immune, and inflammation modulating neuropeptides. Our previous studies showed that infrapatellar fat pad-derived mesenchymal stem/stromal cells (MSC) acquire a potent immunomodulatory phenotype and actively degrade Substance P via CD10 both in vitro and in vivo. On this basis, our hypothesis is that CD10-bound IFP-MSC sEVs can be engineered to target CGRP while retaining their anti-inflammatory phenotype. Herein, human IFP-MSC cultures were transduced with an adeno-associated virus (AAV) vector carrying a GFP-labelled gene for a CGRP antagonist peptide (aCGRP). The GFP positive aCGRP IFP-MSC were isolated and their sEVs' miRNA and protein cargos were assessed using multiplex methods. Our results showed that purified aCGRP IFP-MSC cultures yielded sEVs with cargo of 147 distinct MSC-related miRNAs. Reactome analysis of miRNAs detected in these sEVs revealed strong involvement in the regulation of target genes involved in pathways that control pain, inflammation and cartilage homeostasis. Protein array of the sEVs cargo demonstrated high presence of key immunomodulatory and reparative proteins. Stimulated macrophages exposed to aCGRP IFP-MSC sEVs demonstrated a switch towards an alternate M2 status. Also, stimulated cortical neurons exposed to aCGRP IFP-MSC sEVs modulate their molecular pain signaling profile. Collectively, our data suggest that yielded sEVs can putatively target CGRP in vivo, while containing potent anti-inflammatory and analgesic cargo, suggesting the promise for novel sEVs-based therapeutic approaches to diseases such as OA.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Substância P , Inflamação , Dor , Vesículas Extracelulares/metabolismo , Anti-Inflamatórios , Células Estromais/metabolismo
12.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Membrana Sinovial , Animais , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Camundongos , Osteoartrite/patologia , Osteoartrite/metabolismo , Patela/patologia , Patela/metabolismo
13.
J Inflamm Res ; 17: 791-803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348279

RESUMO

Osteoarthritis (OA) is a chronic disease that causes pain and functional impairment by affecting joint tissue. Its global impact is noteworthy, causing significant economic losses and property damage. Despite extensive research, the underlying pathogenesis of OA remain an area of ongoing investigation. It has recently been discovered that the OA progression is significantly influenced by pyroptosis. Pyroptosis is a complex process that involves three pathways culminating in the assembly of Gasdermin-D (GSDMD)-N-terminal (GSDMD-NT) into pores through aggregation on the plasma membrane. The aggregation of GSDMD-NT proteins stimulates the release of inflammatory mediators, such as Interleukin-1ß (IL-1ß), Interleukin-18 (IL-18), and Matrix Metallopeptidase 13 (MMP13), ultimately leading to cellular lysis. The pyroptosis process in specific cells, including synovial macrophages, fibroblast-like synoviocytes (FLS), chondrocytes, and subchondral osteoblasts, contributs factor to the development of OA. Currently, the specific cells that undergo pyroptosis first are not yet fully understood, and it remains unknown whether pyroptosis in one cell can trigger the same process in other cells. Therefore, targeting pyroptosis could potentially offer a novel treatment approach for OA patients. We present a comprehensive analysis of the molecular mechanisms and key features of pyroptosis. We also outline the current research progress on various aspects, including synovial tissue, articular cartilage, extracellular matrix (ECM), and subchondral bone, with a focus on pyroptosis. The aim is to provide theoretical references for the effective management of OA.

15.
Exp Cell Res ; 436(2): 113981, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387697

RESUMO

Osteoarthritis (OA) is the most common type of joint disease and the leading cause of chronic disability among older adults. As an important component of the joint, synovium influences the inflammatory and degenerative process of OA. This study found that miRNA 182 (miR-182) in synovium-specific exosomes can modulate inflammation and apoptotic signaling. It also regulated different biological functions to promote the progression of OA. Experiments based on rat OA model and synovium samples from OA patients, we found that synovium-derived miR-182 regulates inflammatory response in the early stage of OA by regulating the expression level of forkhead box O-3 (FOXO3). However, the expression of miR-182 was significantly increased in synovial tissue of advanced OA, which was involved in the apoptotic signal of severe OA. These findings suggest that miR-182 may directly regulate OA progression by modulating FOXO3 production inflammation, and apoptosis.


Assuntos
Exossomos , MicroRNAs , Osteoartrite , Humanos , Ratos , Animais , Idoso , Líquido Sinovial/metabolismo , Exossomos/genética , Exossomos/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Condrócitos/metabolismo
16.
Methods Mol Biol ; 2766: 55-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38270867

RESUMO

Since mice are widely used to establish rheumatoid arthritis models, assessment of the pathogenesis of local arthritis is fundamental. Proteins are the most diverse group of biologically important molecules and are essential for cellular structure and function. The first step in pathogenesis-related protein analysis is joint tissue extraction. Unlike other large rodents, obtaining synovium from model mice is challenging since it is so small and fragile. In this chapter, methods for harvesting synovium through a quadriceps approach and preparing protein extracts are introduced.


Assuntos
Artrite Reumatoide , Animais , Camundongos , Membrana Sinovial
17.
Artigo em Inglês | MEDLINE | ID: mdl-38216750

RESUMO

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

19.
Immunol Med ; 47(2): 58-67, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168669

RESUMO

Synovial tissue-resident macrophages (STRMs) maintain normal joint homeostasis in a steady state. However, it is unclear whether STRMs still play homeostatic roles or change the functions in the joint of rheumatoid arthritis (RA), where infiltrating peripheral blood monocyte-derived macrophages (PBMoMs) play proinflammatory roles. In the present study, we examined changes in the phenotypes and functions of STRMs in response to RA-related stimuli in vitro. STRMs were prepared from non-inflammatory osteoarthritis (OA) joint synovium, which is histologically indistinguishable from normal joint synovium. PBMoMs were prepared and used for comparison. After stimulation with plate-bound IgG, which mimics anti-citrullinated protein antibody immunocomplex formed in RA joints, or with combinations of RA-related inflammatory mediators, namely tumor necrosis factor-α (TNF-α) and prostaglandin E2 or interferon-γ, PBMoMs downregulated surface markers and genes associated with anti-inflammatory macrophages, and upregulated cytokine and marker genes of proinflammatory macrophages in RA. On the other hand, STRMs hardly changed the expression of surface molecules and marker genes but altered the pattern of cytokine gene expression after stimulation like PBMoMs. Furthermore, in vitro stimulated STRMs promote proinflammatory functions of cocultured synovial fibroblasts. Thus, STRMs might play proinflammatory roles in RA joints, while maintaining their phenotypes in the steady state.


Assuntos
Artrite Reumatoide , Macrófagos , Fenótipo , Membrana Sinovial , Humanos , Membrana Sinovial/imunologia , Macrófagos/imunologia , Macrófagos/fisiologia , Artrite Reumatoide/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Masculino , Fibroblastos/imunologia , Osteoartrite/imunologia , Osteoartrite/etiologia , Células Cultivadas , Feminino , Dinoprostona/metabolismo , Pessoa de Meia-Idade , Idoso , Inflamação/imunologia , Mediadores da Inflamação/metabolismo
20.
Rheumatology (Oxford) ; 63(3): 874-881, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471609

RESUMO

OBJECTIVE: To investigate whether serum Col 3-4, a new biochemical marker of synovial tissue turnover, was associated with progression of joint damage in patients with early arthritis. METHODS: A total of 788 early arthritis patients (<6 months of symptoms, 82% diagnosis of RA, 18% undifferentiated arthritis) from the prospective ESPOIR study were investigated. Progression was defined as an increase of 1 or 5 unit(s) in radiographic van der Heijde modified Sharp score between baseline and 1 or 5 years, respectively. Associations between baseline Col 3-4 and progression were assessed by logistic regression. RESULTS: Each standard deviation increase of baseline Col 3-4 levels was associated with an increased 5-yr total damage progression with an odds ratio (OR, 95% CI) of 1.51 (1.21, 1.88), which remained significant when DAS28, C-reactive protein and anti-citrullinated protein antibodies positivity were included in the model [OR (95% CI): 1.34 (1.01, 1.76)]. Further adjustment for bone erosion did not modify the association. Patients with both Col 3-4 in the highest quintile and bone erosion had a >2-fold higher risk of progression [OR (95% CI): 7.16 (2.31, 22)] than patients with either high Col 3-4 [2.91 (1.79, 4.73)] or bone erosion [2.36 (2.38, 3.70)] alone. Similar associations were observed for prediction of 12 months progression. CONCLUSIONS: Increased serum Col 3-4 is associated with a higher risk of structural progression, independently of major risk factors. Col 3-4 may be useful in association with bone erosion to identify patients with early arthritis at higher risk.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/complicações , Estudos Prospectivos , Progressão da Doença , Membrana Sinovial/diagnóstico por imagem , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...