Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Biochem ; 125(3): e30523, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38239037

RESUMO

Parkinson's disease (PD) is among the most prevalent neurodegenerative disorders, affecting over 10 million people worldwide. The protein encoded by the SNCA gene, alpha-synuclein (ASYN), is the major component of Lewy body (LB) aggregates, a histopathological hallmark of PD. Mutations and posttranslational modifications (PTMs) in ASYN are known to influence protein aggregation and LB formation, possibly playing a crucial role in PD pathogenesis. In this work, we applied computational methods to characterize the effects of missense mutations and PTMs on the structure and function of ASYN. Missense mutations in ASYN were compiled from the literature/databases and underwent a comprehensive predictive analysis. Phosphorylation and SUMOylation sites of ASYN were retrieved from databases and predicted by algorithms. ConSurf was used to estimate the evolutionary conservation of ASYN amino acids. Molecular dynamics (MD) simulations of ASYN wild-type and variants A30G, A30P, A53T, and G51D were performed using the GROMACS package. Seventy-seven missense mutations in ASYN were compiled. Although most mutations were not predicted to affect ASYN stability, aggregation propensity, amyloid formation, and chaperone binding, the analyzed mutations received relatively high rates of deleterious predictions and predominantly occurred at evolutionarily conserved sites within the protein. Moreover, our predictive analyses suggested that the following mutations may be possibly harmful to ASYN and, consequently, potential targets for future investigation: K6N, T22I, K34E, G36R, G36S, V37F, L38P, G41D, and K102E. The MD analyses pointed to remarkable flexibility and essential dynamics alterations at nearly all domains of the studied variants, which could lead to impaired contact between NAC and the C-terminal domain triggering protein aggregation. These alterations may have functional implications for ASYN and provide important insight into the molecular mechanism of PD, supporting the design of future biomedical research and improvements in existing therapies for the disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Processamento de Proteína Pós-Traducional/genética , Mutação
2.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;81(12): 1179-1193, Dec. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1527900

RESUMO

Abstract REM sleep behavior disorder (RBD) is characterized by a loss of atonia of skeletal muscles during REM sleep, associated with acting out behaviors during dreams. Knowledge of this pathology is important to predict neurodegenerative diseases since there is a strong association of RBD with diseases caused by the deposition of alpha-synuclein in neurons (synucleinopathies), such as Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Proper diagnosis of this condition will enable the use of future neuroprotective strategies before motor and cognitive symptoms. Diagnostic assessment should begin with a detailed clinical history with the patient and bed partner or roommate and the examination of any recorded home videos. Polysomnography (PSG) is necessary to verify the loss of sleep atonia and, when documented, the behaviors during sleep. Technical recommendations for PSG acquisition and analysis are defined in the AASM Manual for the scoring of sleep and associated events, and the PSG report should describe the percentage of REM sleep epochs that meet the criteria for RWA (REM without atonia) to better distinguish patients with and without RBD. Additionally, PSG helps rule out conditions that may mimic RBD, such as obstructive sleep apnea, non-REM sleep parasomnias, nocturnal epileptic seizures, periodic limb movements, and psychiatric disorders. Treatment of RBD involves guidance on protecting the environment and avoiding injuries to the patient and bed partner/roommate. Use of medications are also reviewed in the article. The development of neuroprotective medications will be crucial for future RBD therapy.


Resumo O transtorno comportamental do sono REM (TCSREM) é caracterizado por uma perda de atonia dos músculos esqueléticos durante o sono REM, associada a comportamentos de atuação durante os sonhos. O conhecimento desse transtorno é importante como preditor de doenças neurodegenerativas, uma vez que existe uma forte associação de TCSREM com doenças causadas pela deposição de alfa-sinucleína nos neurônios, como a doença de Parkinson (DP), atrofia de múltiplos sistemas (MSA) e demência com corpos de Lewy (DLB). O diagnóstico adequado dessa condição permitirá o uso de futuras estratégias neuroprotetoras antes do aparecimento dos sintomas motores e cognitivos. A avaliação diagnóstica deve começar com uma história clínica detalhada com o paciente e acompanhante, além de exame de vídeos. A polissonografia (PSG) é necessária para verificar a perda da atonia do sono e, quando documentados, os comportamentos durante o sono. As recomendações técnicas para aquisição e análise de PSG são definidas no Manual da AASM (Scoring of sleep and associated events) e o relatório de PSG deve descrever a porcentagem de períodos de sono REM que atendem aos critérios para REM sem atonia. Além disso, a PSG ajuda a descartar condições que podem mimetizar o TCSREM, como apneia obstrutiva do sono, parassonias do sono não REM, crises epilépticas noturnas, movimentos periódicos dos membros e transtornos psiquiátricos. O tratamento do TCSREM envolve orientações sobre adaptações do ambiente para evitar lesões ao paciente e ao colega de quarto. Medicamentos utilizados são revistos no artigo, assim como o crucial desenvolvimento de medicamentos neuroprotetores.

3.
Biotechnol Prog ; 39(6): e3390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37702113

RESUMO

The aggregation and spread of alpha-synuclein (αSyn) is associated with several pathogenic pathways that lead to neurodegeneration and, ultimately, to synucleinopathies development. Hence, the establishment of a safe and effective disease-modifying therapy that limits or prevents the spread of toxic αSyn aggregation could lead to positive clinical outcomes. A rational vaccine design can be focused on the selection of specific epitopes able to induce the immune response desired, for example, antibodies able to mediate the clearance of αSyn aggregates without the induction of inflammatory responses. To develop a rapid system for the evaluation of a vaccine candidate against synucleinopathies, rLTB-Syn (an antigen based on three B cell epitopes from αSyn and the B subunit of the heat-labile Escherichia coli enterotoxin [LTB] as adjuvant/carrier) was produced using recombinant E. coli (Rosetta DE3) as the expression host. The bacterial version of rLTB-Syn was produced as soluble protein at yields up to 1.72 mg/g biomass. A method for the purification of rLTB-Syn (~18 kDa) was developed based on ion exchange chromatography, reaching purity >93% with a final concentration of 82.6 µg/mL. Furthermore, the purified soluble rLTB-Syn retained GM1 binding activity, suggesting proper folding and pentameric structure. The results from this study establish a fast and effective method to obtain rLTB-Syn, making it useful in the design of novel vaccine formulations targeting synucleinopathies.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Sinucleinopatias , Vacinas , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Epitopos , Proteínas Recombinantes/metabolismo , Imunoterapia , Proteínas Recombinantes de Fusão/genética
4.
Microorganisms ; 11(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630602

RESUMO

Intestinal dysbiosis seems to play a role in neurodegenerative pathologies. Parkinson's disease (PD) patients have an altered gut microbiota. Moreover, mice treated orally with the gut microbe Proteus mirabilis developed Parkinson's-like symptoms. Here, the possible involvement of P. mirabilis urease (PMU) and its B subunit (PmUreß) in the pathogenesis of PD was assessed. Purified proteins were given to mice intraperitoneally (20 µg/animal/day) for one week. Behavioral tests were conducted, and brain homogenates of the treated animals were subjected to immunoassays. After treatment with PMU, the levels of TNF-α and IL-1ß were measured in Caco2 cells and cellular permeability was assayed in Hek 293. The proteins were incubated in vitro with α-synuclein and examined via transmission electron microscopy. Our results showed that PMU treatment induced depressive-like behavior in mice. No motor deficits were observed. The brain homogenates had an increased content of caspase-9, while the levels of α-synuclein and tyrosine hydroxylase decreased. PMU increased the pro-inflammatory cytokines and altered the cellular permeability in cultured cells. The urease, but not the PmUreß, altered the morphology of α-synuclein aggregates in vitro, forming fragmented aggregates. We concluded that PMU promotes pro-inflammatory effects in cultured cells. In vivo, PMU induces neuroinflammation and a depressive-like phenotype compatible with the first stages of PD development.

5.
J Parkinsons Dis ; 13(5): 717-728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270812

RESUMO

Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , alfa-Sinucleína/metabolismo , Lisina , Reação de Maillard , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Receptor para Produtos Finais de Glicação Avançada
6.
J Neurochem ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358003

RESUMO

The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.

7.
Brain Sci ; 13(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37239269

RESUMO

Dream-enactment behavior that emerges during episodes of rapid eye movement (REM) sleep without muscle atonia is a parasomnia known as REM sleep behavior disorder (RBD). RBD constitutes a prodromal marker of α-synucleinopathies and serves as one of the best biomarkers available to predict diseases such as Parkinson disease, multiple system atrophy and dementia with Lewy bodies. Most patients showing RBD will convert to an α-synucleinopathy about 10 years after diagnosis. The diagnostic advantage of RBD relies on the prolonged prodromal time, its predictive power and the absence of disease-related treatments that could act as confounders. Therefore, patients with RBD are candidates for neuroprotection trials that delay or prevent conversion to a pathology with abnormal α-synuclein metabolism. The administration of melatonin in doses exhibiting a chronobiotic/hypnotic effect (less than 10 mg daily) is commonly used as a first line treatment (together with clonazepam) of RBD. At a higher dose, melatonin may also be an effective cytoprotector to halt α-synucleinopathy progression. However, allometric conversion doses derived from animal studies (in the 100 mg/day range) are rarely employed clinically regardless of the demonstrated absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers. This review discusses the application of melatonin in RBD: (a) as a symptomatic treatment in RBD; (b) as a possible disease-modifying treatment in α-synucleinopathies. To what degree melatonin has therapeutic efficacy in the prevention of α-synucleinopathies awaits further investigation, in particular multicenter double-blind trials.

8.
Mol Neurobiol ; 59(1): 620-642, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750787

RESUMO

The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Humanos , Neurônios/patologia , Doença de Parkinson/patologia , Sinucleinopatias/patologia
9.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948050

RESUMO

α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson's Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aß) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.


Assuntos
Isoquinolinas/farmacologia , Neurônios/citologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Benzotiazóis/farmacologia , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Ratos , Transmissão Sináptica
10.
Am J Hypertens ; 34(2): 125-133, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33705537

RESUMO

Maintenance of upright blood pressure critically depends on the autonomic nervous system and its failure leads to neurogenic orthostatic hypotension (NOH). The most severe cases are seen in neurodegenerative disorders caused by abnormal α-synuclein deposits: multiple system atrophy (MSA), Parkinson's disease, Lewy body dementia, and pure autonomic failure (PAF). The development of novel treatments for NOH derives from research in these disorders. We provide a brief review of their underlying pathophysiology relevant to understand the rationale behind treatment options for NOH. The goal of treatment is not to normalize blood pressure but rather to improve quality of life and prevent syncope and falls by reducing symptoms of cerebral hypoperfusion. Patients not able to recognize NOH symptoms are at a higher risk for falls. The first step in the management of NOH is to educate patients on how to avoid high-risk situations and providers to identify medications that trigger or worsen NOH. Conservative countermeasures, including diet and compression garments, should always precede pharmacologic therapies. Volume expanders (fludrocortisone and desmopressin) should be used with caution. Drugs that enhance residual sympathetic tone (pyridostigmine and atomoxetine) are more effective in patients with mild disease and in MSA patients with spared postganglionic fibers. Norepinephrine replacement therapy (midodrine and droxidopa) is more effective in patients with neurodegeneration of peripheral noradrenergic fibers like PAF. NOH is often associated with other cardiovascular diseases, most notably supine hypertension, and treatment should be adapted to their presence.


Assuntos
Hipotensão Ortostática , Humanos , Hipotensão Ortostática/fisiopatologia , Hipotensão Ortostática/terapia , Sinucleinopatias
11.
Environ Res ; 191: 110139, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888951

RESUMO

Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.


Assuntos
Doença de Alzheimer , Nanopartículas de Magnetita , Nanotubos , Tronco Encefálico , Criança , Cidades , Trato Gastrointestinal , Humanos , México , Agregados Proteicos , Titânio/toxicidade , Adulto Jovem , alfa-Sinucleína
12.
J Biotechnol ; 309: 75-80, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31843518

RESUMO

Synucleinopathies are conditions that remain with no available effective treatments thus far. Immunotherapy is a possible path to fight against such pathologies by inducing antibodies against alpha-synuclein (α-Syn), which could induce the clearance of its pathologic form. Looking to develop a new low-cost, effective vaccine against synucleinopathies; we have designed a chimeric plant-made antigen comprising the subunit B of the enterotoxin from enterotoxigenic E. coli and three B cell epitopes from α-Syn, which is named LTB-Syn. In the present study, LTB-Syn was produced in carrot cell lines as appropriate platform for the formulation of oral vaccines not requiring purification. The development of transgenic carrot cell lines took 8 months and the LTB-Syn yield reached 2.3 µg/g dry biomass. The antigen encapsulated in lyophilized carrot cells was highly stable at room temperature over a six-month period and upon heating at 50 °C for 2 h. Moreover, LTB-Syn was able to prime immune responses that, in combination with parenteral boosting using an OVA-Syn conjugate, induced significant humoral resposes in mice. Thus the carrot-made oral LTB-Syn vaccine is a promising candidate that deserves further analyses to advance in its preclinical evaluation.


Assuntos
Daucus carota/química , Plantas Geneticamente Modificadas/metabolismo , Sinucleinopatias/prevenção & controle , Vacinas/imunologia , alfa-Sinucleína/imunologia , Animais , Biomassa , Linhagem Celular , Daucus carota/genética , Modelos Animais de Doenças , Enterotoxinas/imunologia , Epitopos de Linfócito B , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Feminino , Imunogenicidade da Vacina/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Sinucleinopatias/imunologia , Vacinas/economia , alfa-Sinucleína/genética
13.
Glia ; 67(8): 1598-1619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31033038

RESUMO

Diverse studies have suggested that cytoplasmic inclusions of misfolded α-synuclein in neuronal and glial cells are main pathological features of different α-synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α-synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron-glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α-synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+ ]i ), and purinergic and glutamatergic signaling. Relevantly, the α-synuclein-induced opening of hemichannels and pannexons resulted in alterations in [Ca2+ ]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α-synuclein-mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α-synucleinopathies.


Assuntos
Astrócitos/patologia , Morte Celular/genética , Conexina 43/genética , Conexinas/genética , Proteínas do Tecido Nervoso/genética , alfa-Sinucleína/genética , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Comunicação Celular/genética , Células Cultivadas , Citocinas/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Neurotransmissores/metabolismo , Óxido Nítrico/biossíntese , RNA Interferente Pequeno/genética
14.
Front Immunol ; 10: 80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761145

RESUMO

Innate immune activation and chronic neuroinflammation are characteristic features of many neurodegenerative diseases including Parkinson's disease (PD) and may contribute to the pathophysiology of the disease. The discovery of misfolded alpha-synuclein (αSYN) protein aggregates, which amplify in a "prion-like" fashion, has led us to consider that pathogenic αSYN might be hijacking the activation and mobilization mechanism of the peripheral immune system to reach and disseminate within the CNS. Furthermore, our lab and other groups have recently shown that αSYN can adopt distinct fibril conformations or "strains" with varying levels of pathogenic impact. Therefore, the aim of this study was to assess the impact of peripheral inflammation on αSYN spreading in order to better understand the participation of the immune system in the progression of PD. The results presented here show that intraperitoneal LPS injection prior to systemic intravenous recombinant administration of two different αSYN pathogenic strains (fibrils or ribbons) in wild type mice, induces an increase in brain resident microglia and promotes the recruitment of leukocytes toward the brain and the spinal cord. Our findings show for the first time that αSYN can be internalized by LPS-primed inflammatory monocytes, which in turn favors the dissemination from the periphery toward the brain and spinal cord. Further, we found a differential recruitment of CD4+ and CD8+ T cells after LPS priming and subsequent administration of the αSYN ribbons strain. Together, these data argue for a role of the peripheral immune system in αSYN pathology.


Assuntos
Encéfalo/imunologia , Vigilância Imunológica , Inflamação/imunologia , Monócitos/metabolismo , Medula Espinal/imunologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Administração Intravenosa , Animais , Encéfalo/patologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doença de Parkinson/imunologia , Agregados Proteicos , Medula Espinal/patologia , alfa-Sinucleína/administração & dosagem
15.
Expert Opin Pharmacother ; 20(6): 635-645, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30730771

RESUMO

INTRODUCTION: L-threo-3,4-dihydroxyphenylserine (droxidopa), a pro-drug metabolized to norepinephrine in nerve endings and other tissues, has been commercially available in Japan since 1989 for treating orthostatic hypotension symptoms in Parkinson's disease (PD) patients with a Hoehn & Yahr stage III rating, as well as patients with Multiple System Atrophy (MSA), familial amyloid polyneuropathy, and hemodialysis. Recently, the FDA has approved its use in symptomatic neurogenic orthostatic hypotension (NOH). Areas covered: The authors review the effects of droxidopa in NOH with a focus on the neurodegenerative diseases PD, MSA, and pure autonomic failure (PAF). Expert opinion: A few small and short placebo-controlled clinical trials in NOH showed significant reductions in the manometric drop in blood pressure (BP) after posture changes or meals. Larger Phase III studies showed conflicting results, with two out of four trials meeting their primary outcome and thus suggesting a positive yet short-lasting effect of the drug on OH Questionnaire composite score, light-headedness/dizziness score, and standing BP during the first two treatment-weeks. Results appear essentially similar in PD, MSA, and PAF. The FDA granted droxidopa approval in the frame of an 'accelerated approval program' provided further studies are conducted to assess its long-term effects on OH symptoms.


Assuntos
Droxidopa/uso terapêutico , Hipotensão Ortostática/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Neuropatias Amiloides Familiares/tratamento farmacológico , Pressão Sanguínea , Humanos , Japão , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Diálise Renal , Inquéritos e Questionários
16.
Front Neurosci ; 13: 1399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038126

RESUMO

Alpha-synuclein (α-syn) is localized in cellular organelles of most neurons, but many of its physiological functions are only partially understood. α-syn accumulation is associated with Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy as well as other synucleinopathies; however, the exact pathomechanisms that underlie these neurodegenerative diseases remain elusive. In this review, we describe what is known about α-syn function and pathophysiological changes in different cellular structures and organelles, including what is known about its behavior as a prion-like protein. We summarize current knowledge of α-syn and its pathological forms, covering its effect on each organelle, including aggregation and toxicity in different model systems, with special interest on the mitochondria due to its relevance during the apoptotic process of dopaminergic neurons. Moreover, we explore the effect that α-syn exerts by interacting with chromatin remodeling proteins that add or remove histone marks, up-regulate its own expression, and resume the impairment that α-syn induces in vesicular traffic by interacting with the endoplasmic reticulum. We then recapitulate the events that lead to Golgi apparatus fragmentation, caused by the presence of α-syn. Finally, we report the recent findings about the accumulation of α-syn, indirectly produced by the endolysosomal system. In conclusion, many important steps into the understanding of α-syn have been made using in vivo and in vitro models; however, the time is right to start integrating observational studies with mechanistic models of α-syn interactions, in order to look at a more complete picture of the pathophysiological processes underlying α-synucleinopathies.

17.
J Neurochem ; 147(4): 541-556, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142705

RESUMO

The amyloid aggregation of the presynaptic protein α-synuclein (AS) is pathognomonic of Parkinson's disease and other neurodegenerative disorders. Physiologically, AS contributes to synaptic homeostasis by participating in vesicle maintenance, trafficking, and release. Its avidity for highly curved acidic membranes has been related to the distinct chemistry of the N-terminal amphipathic helix adopted upon binding to appropriated lipid interfaces. Pathologically, AS populate a myriad of toxic aggregates ranging from soluble oligomers to insoluble amyloid fibrils. Different gain-of-toxic function mechanisms are linked to prefibrillar oligomers which are considered as the most neurotoxic species. Here, we investigated if amyloid oligomerization could hamper AS function as a membrane curvature sensor. We used fluorescence correlation spectroscopy to quantitatively evaluate the interaction of oligomeric species, produced using a popular method based on lyophilization and rehydration, to lipid vesicles of different curvatures and compositions. We found that AS oligomerization has a profound impact on protein-lipid interaction, altering binding affinity and/or curvature sensitivity depending on membrane composition. Our work provides novel insights into how the formation of prefibrillar intermediate species could contribute to neurodegeneration due to a loss-of-function mechanism. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Membrana Celular/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Humanos , Bicamadas Lipídicas , Degeneração Neural/patologia , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Vesículas Sinápticas/química , Vesículas Sinápticas/ultraestrutura , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura
18.
Environ Res ; 166: 348-362, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935448

RESUMO

There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover, results strongly support early neuroprotective interventions in fine particulate matter (PM2.5) and CDNP's exposed individuals ≤ 20 years of age, and the critical need for air pollution control.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Bulbo Olfatório/patologia , Suicídio , alfa-Sinucleína/genética , Adolescente , Adulto , Doença de Alzheimer/genética , Pré-Escolar , Cidades , Humanos , Lactente , México , Adulto Jovem
19.
J Parkinsons Dis ; 4(4): 693-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25213997

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is an adult-onset and rapidly progressive, neurodegenerative condition that presents with autonomic dysfunction, parkinsonism, cerebellar ataxia and corticospinal deficits. Clinical, demographic and epidemiological data from different regions have provided valuable information concerning the natural history of MSA. There are no published data of Multiple System Atrophy (MSA) in Latin American countries. OBJECTIVE: To describe clinical and epidemiological data of patients with "possible" MSA from seven referral movement disorders centers from Argentina, Chile, Mexico, Peru and United States. METHODS: We conducted a retrospective, observational, cross-sectional Pan-American multicentre cohort study of MSA. RESULTS: The sample was composed of 82 females and 77 men with the diagnosis of "possible" MSA with a mean age at onset of 65 ± 10 years. 67.29% of the individuals had a MSA-P variant with a mean age at onset of 61.47 ± 10.28 years, whereas the mean age at onset in the MSA-C patients was 57.44 ± 10.58 years. Interestingly, MSA-C-was more prevalent in Non-Caucasian (50-Mestizo and 2 Asian patients) than Caucasians (51.92% vs. 20.79%, p = 0.0001). Dysautonomic symptoms were present in 95.6% of the patients, parkinsonism in 85.5%, pyramidal signs in 25.8% and depression in 48.4% of the patients. CONCLUSIONS: Our epidemiological and clinical data appears to be similar to other Western international series, however, of note, the MSA-C phenotype was predominant in Non-Caucasians, more specifically the Mestizo population. This observation opens a new path to explore. Larger prospective epidemiologic studies in Latin America may provide valuable information concerning MSA in the region.


Assuntos
Atrofia de Múltiplos Sistemas/epidemiologia , Idoso , América/epidemiologia , Cérebro/patologia , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/etiologia , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/complicações , Atrofia de Múltiplos Sistemas/diagnóstico
20.
Front Aging Neurosci ; 6: 340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25620929

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder, which is characterized by neuroinflammation, dopaminergic neuronal cell death and motor dysfunction, and for which there are no proven effective treatments. The negative correlation between tobacco consumption and PD suggests that tobacco-derived compounds can be beneficial against PD. Nicotine, the more studied alkaloid derived from tobacco, is considered to be responsible for the beneficial behavioral and neurological effects of tobacco use in PD. However, several metabolites of nicotine, such as cotinine, also increase in the brain after nicotine administration. The effect of nicotine and some of its derivatives on dopaminergic neurons viability, neuroinflammation, and motor and memory functions, have been investigated using cellular and rodent models of PD. Current evidence shows that nicotine, and some of its derivatives diminish oxidative stress and neuroinflammation in the brain and improve synaptic plasticity and neuronal survival of dopaminergic neurons. In vivo these effects resulted in improvements in mood, motor skills and memory in subjects suffering from PD pathology. In this review, we discuss the potential benefits of nicotine and its derivatives for treating PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA