Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.433
Filtrar
1.
Sci Rep ; 14(1): 15713, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977811

RESUMO

Matching of various chalcogenide films shows the advantage of delivering multilayer heterostructures whose physical properties can be tuned with respect to the ones of the constituent single films. In this work, (Ge-Sb-Te)-based heterostructures were deposited by radio frequency sputtering on Si(100) substrates and annealed up to 400 °C. The as-deposited and annealed samples were studied by means of X-ray fluorescence, X-ray diffraction, scanning transmission electron microscopy, electron energy loss spectroscopy and Raman spectroscopy. The heterostructures, combining thermally stable thin layers (i. e. Ge-rich Ge5.5Sb2Te5, Ge) and films exhibiting fast switching dynamics (i. e. Sb2Te3), show, on the one side, higher crystallization-onset temperatures than the standard Ge2Sb2Te5 alloy and, on the other side, none to minimal Ge-segregation.

2.
Natl Sci Rev ; 11(6): nwae188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962716

RESUMO

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

3.
Appl Radiat Isot ; 211: 111424, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38970986

RESUMO

Naturally Occurring Radioactive Materials (NORM) contribute to everyone's natural background radiation dose. The technologically advanced activities of the gas and oil sectors produce considerable amounts of radioactive materials as industrial by-products or waste products. The goal of the current study is to estimate the danger of long-term liability to Technologically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) on blood indices, neurotransmitters, oxidative stress markers, and ß-amyloid in the cerebral cortex of rats' brains. Twenty adult male albino rats were divided into two equal groups (n = 10): control and irradiated. Irradiated rats were exposed to a total dose of 0.016 Gy of TE-NORM as a whole-body chronic exposure over a period of two months. It should be ''The results showed no significant changes in RBC count, Hb concentration, hematocrit percentage (HCT%), and Mean Corpuscular Hemoglobin Concentration (MCHC). However, there was a significant increase in the Mean Corpuscular Volume of RBCs (MCV) and a significant decrease in cell distribution width (RDW%) compared to the control. Alteration in neurotransmitters is noticeable by a significant increase in glutamic acid and significant decreases in serotonin and dopamine. Increased lipid peroxidation, decreased glutathione content, superoxide dismutase, catalase, and glutathione peroxidase activities indicating oxidative stress were accompanied by increased ß-amyloid in the cerebral cortex of rats' brains. The findings of the present study showed that chronic radiation liability has some harmful effects, that may predict the risks of future health problems in occupational radiation exposure in the oil industries. Therefore, the control of exposure and application of sample dosimetry is recommended for health and safety.

4.
Beilstein J Org Chem ; 20: 1292-1297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887568

RESUMO

Redox active phenotellurazine catalysts have been recently utilized in two different cross-dehydrogenative coupling reactions. In this study, we revisit the design of the phenotellurazine redox catalysts. In particular, we investigate the level of cooperativity between the Te- and N-centers, the effect of secondary versus tertiary N-centers, the effect of heterocyclic versus non-heterocyclic structures, and the effect of substitution patterns on the redox catalytic activity.

5.
ACS Nano ; 18(26): 17100-17110, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38902201

RESUMO

Two-dimensional (2D) van der Waals (vdWs) heterojunctions have been actively investigated in low-power-consumption and fast-response photodiodes owing to their atomically smooth interfaces and ultrafast interfacial charge transfer. However, achieving ultralow dark current and ultrafast photoresponse in the reported photovoltaic devices remains a challenge as the large built-in electric field in a heterojunction can not only speed up photocarrier transport but also increase the minority-carrier dark current. Here, we propose a high-spike barrier photodiode that can achieve both an ultralow dark current and an ultrafast response. The device is fabricated by the Te/WS2 heterojunction, while the band alignment can transition from type-II to type-I with a high electron barrier and a large hole built-in electronic field. The high electron barrier can greatly reduce the drift current of minority carriers and the generation current of the thermal carriers, while the large built-in electronic field can still speed up the photocarrier transport. The designed Te/WS2 vdWs photodiode yields an ultralow dark current of 8 × 10-14 A and an ultrafast photoresponse of 10/13 µs. Furthermore, a high-performance visible-light imager with a pixel resolution of 100 × 40 is demonstrated using the Te/WS2 vdWs photodiode. This work provides a comprehensive understanding of designing 2D-material-based photovoltaics with excellent overall performance.

6.
Nutrients ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38892518

RESUMO

There is currently no available information on the correlation between abdominal obesity indices and the risk of liver fibrosis progression. We aimed to investigate the relationship between the body mass index (BMI), waist circumference (WC), and the visceral adiposity index (VAI) with the progression of liver fibrosis. The study also evaluated the association between these indices and the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and liver fibrosis. A total of 1403 subjects participated in the cross-sectional and longitudinal population-based study. Liver stiffness was assessed via transient elastography, at baseline and follow-up (median: 4.2 years). The subgroup with dysglycemia was also analyzed. In the cross-sectional study, the highest quartile of VAI, BMI ≥ 30 kg/m2, and abdominal obesity showed significant associations with the prevalence of MASLD and liver fibrosis, as well as with fibrosis progression. However, VAI showed no association with MASLD incidence. Among the dysglycemic subjects, there was no observed association between VAI and the incidence of MASLD or the progression of fibrosis. In conclusion, the BMI, WC, and the VAI are associated with an increased risk of progression to moderate-to-advanced liver fibrosis in the general population. However, the VAI does not perform better than the BMI and WC measurement.


Assuntos
Índice de Massa Corporal , Progressão da Doença , Cirrose Hepática , Obesidade Abdominal , Circunferência da Cintura , Humanos , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/complicações , Masculino , Cirrose Hepática/epidemiologia , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Adulto , Estudos Longitudinais , Prevalência , Fatores de Risco , Gordura Intra-Abdominal , Idoso
7.
Materials (Basel) ; 17(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893794

RESUMO

A series of lead-free Rb2ZrCl6:xTe4+ (x = 0%, 0.1%, 0.5%, 1.0%, 2.0%, 3.0%, 5.0%, 10.0%) perovskite materials were synthesized through a hydrothermal method in this work. The substitution of Te4+ for Zr in Rb2ZrCl6 was investigated to examine the effect of Te4+ doping on the spectral properties of Rb2ZrCl6 and its potential applications. The incorporation of Te4+ induced yellow emission of triplet self-trapped emission (STE). Different luminescence wavelengths were regulated by Te4+ concentration and excitation wavelength, and under a low concentration of Te4+ doping (x ≤ 0.1%), different types of host STE emission and Te4+ triplet state emission could be achieved through various excitation energies. These luminescent properties made it suitable for applications in information encryption. When Te4+ was doped at high concentrations (x ≥ 1%), yellow triplet state emission of Te4+ predominated, resulting in intense yellow emission, which stemmed from strong exciton binding energy and intense electron-phonon coupling. In addition, a Rb2ZrCl6:2%Te4+@RTV scintillating film was fabricated and a spatial resolution of 3.7 lp/mm was achieved, demonstrating the potential applications of Rb2ZrCl6:xTe4+ in nondestructive detection and bioimaging.

8.
Materials (Basel) ; 17(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894046

RESUMO

Ag-Sn-In-Ni-Te alloy ingots were produced through a heating-cooling combined mold continuous casting technique; they were then drawn into wires. However, during the drawing process, the alloy wires tended to harden, making further diameter reduction challenging. To overcome this, heat treatment was necessary to soften the previously drawn wires. The study investigated how variations in heat treatment temperature and holding time affected the microstructure, microhardness and corrosion resistance of the alloy wires. The results indicate that the alloy wires subjected to heat treatment at 700 °C for 2 h not only exhibited a uniform microstructure distribution, but also demonstrated low microhardness and excellent corrosion resistance.

9.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894270

RESUMO

The ground surface and subsurface of green parks in arid and desert areas may be subjected to desiccation as a result of weather and hot temperatures. It is not wise to wait until plants are turning pale and yellow before watering is resumed. Given the scarcity of water in typical desert zones, we recommend full control of irrigation water. This study presents a method of recycling irrigation water using 5TE sensors, employing time-domain reflectometry (TDR) technology. A trial test section was constructed along the coast of the eastern province of Saudi Arabia. Water recycling involves using clay-sand liners placed below the top agricultural soils to intercept excess water and direct it towards a collection tank, and then it is pumped out to a major water supply tank. The main properties of soils and clay-sand liners normally taken into account include moisture content, density, and hydraulic conductivity. An assessment of geotechnical properties of clay-sand mixtures containing 20% clay content was conducted. The profiles of moisture and temperature changes were monitored using 5TE sensors and data loggers. The 5TE sensors provided continuous measurements at varying temperatures and watering cycles. Twenty-nine watering cycles were conducted over a six-month period. An additional section was considered with a liner consisting of the same clay but enhanced with bentonite as one-third of the clay content. The volumetric water content was found to vary from 0.150 to 0.565 following changing weather and direct watering cycles. The results indicated that the use of a TDR instrumentation is a cost-effective and time-saving technique to construct a system for saving irrigation water.

10.
Small ; : e2401929, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934508

RESUMO

Defective bismuth telluride (Bi2Te3) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H2O2. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi2Te3 nanosheets creates controlled defects (d), such as Bi3+species, in d-Bi2Te3-X that induces enhanced hPOD activity. d-Bi2Te3-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi2Te3 nanosheets. The antibacterial activity of d-Bi2Te3-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi2Te3-250 nanozyme has been studied on Pseudomonas aeruginosa biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.

11.
Nano Lett ; 24(25): 7672-7680, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869481

RESUMO

Kagome materials have recently garnered substantial attention due to the intrinsic flat band feature and the stimulated magnetic and spin-related many-body physics. In contrast to their bulk counterparts, two-dimensional (2D) kagome materials feature more distinct kagome bands, beneficial for exploring novel quantum phenomena. Herein, we report the direct synthesis of an ultrathin kagome-structured Co-telluride (Co9Te16) via a molecular beam epitaxy (MBE) route and clarify its formation mechanism from the Co-intercalation in the 1T-CoTe2 layers. More significantly, we unveil the flat band states in the ultrathin Co9Te16 and identify the real-space localization of the flat band states by in situ scanning tunneling microscopy/spectroscopy (STM/STS) combined with first-principles calculations. A ferrimagnetic order is also predicted in kagome-Co9Te16. This work should provide a novel route for the direct synthesis of ultrathin kagome materials via a metal self-intercalation route, which should shed light on the exploration of the intriguing flat band physics in the related systems.

12.
Nano Lett ; 24(25): 7741-7747, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870320

RESUMO

The existence of fractionally quantized topological corner charge serves as a key indicator for two-dimensional (2D) second-order topological insulators (SOTIs), yet it has not been experimentally observed in realistic materials. Here, based on effective model analysis and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in 2D systems with antiferromagnetic (AFM) order. We discover that the band topology originates from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Using first-principles calculations, we show that the 2D AFM SOTI phase can be realized in (MnBi2Te4)(Bi2Te3)m films. Moreover, we demonstrate that the SOTI states are linked to rotation topological invariants under 3-fold rotation symmetry C3, resulting in fractionally quantized corner charge, i.e., n3|e| (mod e). Due to the great achievements in (MnBi2Te4)(Bi2Te3)m systems, our results providing reliable material candidates for experimentally accessible AFM SOTIs should draw intense attention.

13.
Biomater Adv ; 162: 213923, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875803

RESUMO

Bioengineering seeks to replicate biological tissues exploiting scaffolds often based on polymeric biomaterials. Digital light processing (DLP) has emerged as a potent technique to fabricate tissue engineering (TE) scaffolds. However, the scarcity of suitable biomaterials with desired physico-chemical properties along with processing capabilities limits DLP's potential. Herein, we introduce acrylate-endcapped urethane-based polymers (AUPs) for precise physico-chemical tuning while ensuring optimal computer-aided design/computer-aided manufacturing (CAD/CAM) mimicry. Varying the polymer backbone (i.e. poly(ethylene glycol) (PEG) versus poly(propylene glycol) (PPG)) and photo-crosslinkable endcap (i.e. di-acrylate versus hexa-acrylate), we synthesized a series of photo-crosslinkable materials labeled as UPEG2, UPEG6, UPPG2 and UPPG6. Comprehensive material characterization including physico-chemical and biological evaluations, was followed by a DLP processing parametric study for each material. The impact of the number of acrylate groups per polymer (2 to 6) on the physico-chemical properties was pronounced, as reflected by a reduced swelling, lower water contact angles, accelerated crosslinking kinetics, and increased Young's moduli upon increasing the acrylate content. Furthermore, the different polymer backbones also exerted a substantial effect on the properties, including the absence of crystallinity, remarkably reduced swelling behaviors, a slight reduction in Young's modulus, and slower crosslinking kinetics for UPPG vs UPEG. The mechanical characteristics of DLP-printed samples showcased the ability to tailor the materials' stiffness (ranging from 0.4 to 5.3 MPa) by varying endcap chemistry and/or backbone. The in vitro cell assays confirmed biocompatibility of the material as such and the DLP-printed discs. Furthermore, the structural integrity of 3D scaffolds was preserved both in dry and swollen state. By adjusting the backbone chemistry or acrylate content, the post-swelling dimensions could be customized towards the targeted application. This study showcases the potential of these materials offering tailorable properties to serve many biomedical applications such as cartilage TE.


Assuntos
Acrilatos , Materiais Biocompatíveis , Polietilenoglicóis , Uretana , Acrilatos/química , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Uretana/química , Engenharia Tecidual/métodos , Humanos , Alicerces Teciduais/química , Luz , Teste de Materiais/métodos , Polímeros/química , Propilenoglicóis/química , Poliuretanos/química
14.
J Endocr Soc ; 8(7): bvae107, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38883397

RESUMO

The role of estradiol (E2; an estrogen) in men needs to be more appreciated. In this review, we address the clinical situations that allow the study of the clinical consequences of E2 deficiency in men and discuss the effects of restoration of levels of this reproductive steroid hormone. In men with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT), E2 is suppressed along with testosterone, leading to side effects affecting the quality of life. These include hot flashes, arthralgia, fatigue, mood changes, cognition problems, weight gain, bone loss, and increased risk of cardiovascular disease. Transdermal E2 alone for ADT has shown equivalent testosterone suppression compared to gonadotropin-releasing hormone (GnRH) agonists while also preventing estrogen-deficiency side effects, including hot flashes and bone loss. Co-treatment of ADT with fetal estrogen estetrol (E4) has shown significant improvements of estrogen-deficiency symptoms. These observations emphasize the need to raise awareness of the importance of estrogens in men among clinicians and the lay public.

15.
J Colloid Interface Sci ; 672: 1-11, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823218

RESUMO

In this work, we reported that by using a strong thiol ligand as the morphology-directing reagent, a series of Au nanoparticles with plate-like surface sub-structures could be successfully obtained via a one-pot seedless synthesis. The size and the density of the plates on the surface of Au can be readily tuned with the amount of the thiol ligand, resembling different roughness of the surface. Arising from the different surface roughness, the localized surface plasmon resonance (LSPR) of these shape and morphological alike Au nanoparticles can be continuously tuned within the visible-NIR region. The broad LSPR absorptions and feasible tunability make the Au nanoparticles suitable candidate for plasmonic-related applications. Interestingly, huge SERS enhancement was simultaneously achieved based on the specific surface roughness. Our results demonstrate the great potentials for tuning the LSPR and SERS of Au nanostructures through the engineering of the surface morphologies, which would assist for the design, synthesis, and applications of Au-based plasmonic nanomaterials in various fields.

16.
ACS Nano ; 18(27): 17500-17508, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38919047

RESUMO

Atomic layer deposition (ALD) is an effective technique for depositing thin films with precise control of layer thickness and functional properties. In this work, Sb2Te3-Sb2Se3 nanostructures were synthesized using thermal ALD. A decrease in the Sb2Te3 layer thickness led to the emergence of distinct peaks from the Laue rings, indicative of a highly textured film structure with optimized crystallinity. Density functional theory simulations revealed that carrier redistribution occurs at the interface to establish charge equilibrium. By carefully optimizing the layer thicknesses, we achieved an obvious enhancement in the Seebeck coefficient, reaching a peak figure of merit (zT) value of 0.38 at room temperature. These investigations not only provide strong evidence for the potential of ALD manipulation to improve the electrical performance of metal chalcogenides but also offer valuable insights into achieving high performance in two-dimensional materials.

17.
ACS Appl Mater Interfaces ; 16(24): 31447-31456, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38833624

RESUMO

As a non-volatile semiconductor memory technology, phase-change memory has a wide range of application prospects as a result of the excellent comprehensive performance. In this paper, multilayer thin films based on Sb2Te3 material were designed and prepared by inserting the Sn15Sb85 layer. The thermal and electrical properties of superlattice-like Sb2Te3/Sn15Sb85 phase-change films can be adjusted by controlling the thickness ratio of Sb2Te3/Sn15Sb85. In comparison to the monolayer Sb2Te3 film, the multilayer layer Sb2Te3/Sn15Sb85 materials have a higher crystallization temperature, larger crystallization activation energy, and longer data lifetime, indicating the great improvement of thermal stability. The changes in the phase structure and vibrational modes of multilayer Sb2Te3/Sn15Sb85 films were characterized by X-ray diffraction and Raman spectroscopy, respectively. The presence of Sn15Sb85 layers restrains grain growth and refines the grain size. The multilayer Sb2Te3/Sn15Sb85 films exhibit better surface flatness, smaller surface potential undulation, and lower thickness variations than single-layer Sb2Te3. Phase-change memory cells based on the [Sb2Te3 (1 nm)/Sn15Sb85 (9 nm)]5 thin film has a lower threshold voltage (1.9 V) and threshold current (3.1 µA) compared to the Ge2Sb2Te5 film. Meanwhile, the electrical heating model of a phase-change memory cell based on a [Sb2Te3 (1 nm)/Sn15Sb85 (9 nm)]5 multilayer structure was established by multiphysics coupling analysis, proving the great improvement in heat transfer performance and efficiency. The experimental and theoretical studies confirm that the insertion of the Sn15Sb85 layer can significantly improve the crystallization properties of Sb2Te3 films, paving the way for optimizing the phase-change materials by regulating the microstructural parameters.

18.
ACS Appl Mater Interfaces ; 16(26): 33688-33695, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900983

RESUMO

Small Cu clusters are excellent candidates for the electrocatalytic reduction of carbon dioxide (CO2RR), and their catalytic performance is expected to be significantly influenced by the interaction between the substrate and cluster. In this study, we systematically investigate the CO2RR for a Cu3 cluster anchored on Janus MoSX (X = Se, Te) substrates using density functional theory calculations. These substrates feature a broken vertical mirror symmetry, which generates spontaneous out-of-plane polarization and offers two distinct polar surfaces to support the Cu3 cluster. Our findings reveal that the CO2RR performance on the Cu3 cluster is strongly influenced by the polarization direction and strength of the MoSX (X = Se, Te) substrates. Notably, the Cu3 cluster supported on the S-terminated MoSTe surface (Cu3(S)@MoSTe) demonstrates the highest CO2RR activity, producing methane. These results underscore the pivotal role of substrate polarization in modulating the binding strength of reactants and reaction intermediates, thereby enhancing the CO2RR efficiency.

19.
Angew Chem Int Ed Engl ; : e202407772, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872256

RESUMO

Electrocatalytic conversion of CO2 into formate is recognized an economically-viable route to upgrade CO2, but requires high overpotential to realize the high selectivity owing to high energy barrier for driving the involved proton-coupled electron transfer (PCET) processes and serious ignorance of the second PCET. Herein, we surmount the challenge through sequential regulation of the potential-determining step (PDS) over Te-doped Bi (TeBi) nanotips. Computational studies unravel the incorporation of Te heteroatoms alters the PDS from the first PCET to the second one by substantially lowering the formation barrier for *OCHO intermediate, and the high-curvature nanotips induce enhanced electric field that can steer the formation of asymmetric *HCOOH. In this scenario, the thermodynamic barrier for *OCHO and *HCOOH can be sequentially decreased, thus enabling a high formate selectivity at low overpotential. Experimentally, distinct TeBi nanostructures are obtained via controlling Te content in the precursor and TeBi nanotips achieve >90% of Faradaic efficiency for formate production over a comparatively positive potential window (-0.57 V to -1.08 V). The strong Bi-Te covalent bonds also afford a robust stability. In an optimized membrane electrode assembly device, the formate production rate at 3.2 V reaches 10.1 mmol h-1 cm-2, demonstrating great potential for practical application.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38940362

RESUMO

In this study, the impact of codoping Mg and Ti on the thermoelectric performance of AgSbTe2 materials was investigated. Through a two-step synthesis process involving slow cooling and spark plasma sintering, AgSb0.98-xMg0.02TixTe2 samples were prepared. The introduction of Mg and Ti dopants effectively suppressed the formation of the undesirable Ag2Te phase. Density functional theory (DFT) calculations confirmed that Ti doping facilitated the band convergence, leading to a reduction in the effective mass of the carriers. This optimization enhanced carrier mobility and, consequently, electrical conductivity. Additionally, the codoping strategy resulted in the reinforcement of point defects, which contributed to a decrease in lattice thermal conductivity. The AgSb0.98-xMg0.02TixTe2 sample achieved a maximum figure of merit (ZT) value of 1.45 at 523 K, representing an 87% improvement over the undoped AgSbTe2 sample. The average ZT value over the temperature range of 323-573 K was 1.09, marking a significant enhancement in thermoelectric performance. This research demonstrates the potential of Mg and Ti codoping as a strategy to improve the thermoelectric properties of AgSbTe2-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...