Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
Cell Mol Immunol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961265

RESUMO

Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.

2.
J Ethnopharmacol ; 334: 118523, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY: To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS: Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS: Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION: The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.

3.
Int J Cancer ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005114

RESUMO

Little is known about the efficacy of COVID-19 vaccines during acute lymphoblastic leukemia therapy (ALL); data for COVID-19 vaccine immune responses in pediatric leukemia remain sparse. We conducted a single center study of patients aged 5-25 years undergoing ALL chemotherapy who received COVID-19 vaccination. Twenty-one patients were enrolled; efficacy was evaluable in 20. Twenty were vaccinated while receiving chemotherapy. Twenty received the BNT162b2 mRNA vaccine. Spike reactive antibodies (S-IgG) and/or T-cells (SRT) were detected in 16 of 20 (80%) vaccinated patients; 13 (65%) and 9 (45%) were positive for S-IgG and SRT, respectively. Six (30%) showed both spike reactive B and T-cell responses. Eleven of the 13 with S-IgG positivity were negative for anti-Nucleocapsid IgG, an antibody profile consistent with a vaccine induced immune response. All 13S-IgG+ patients showed neutralizing antibodies. SRT included CD4+ (7) and CD8+ (6) T-cells; both CD4+ and CD8+ SRT were seen in 4. SRT were multifunctional (producing multiple cytokines) in most patients (8 of 9); 4 showed SRT with triple cytokine and B-cell co-stimulatory responses, indicating a multimodal adaptive immune response. Immune responses were seen among patients vaccinated in the settings of lymphopenia (6 of 12) intensive chemotherapy (3 of 4), and Peg allergy (6 of 8). Sequencing revealed public CD4+ and CD8+ TCR sequences reactive to epitopes across the spike protein. In conclusion, COVID-19 vaccination induced B and/or T-cell responses in a majority of children and young adults undergoing ALL chemotherapy.

4.
Antiviral Res ; 229: 105954, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964615

RESUMO

Selecting appropriate adjuvants is crucial for developing an effective vaccine. However, studies on the immune responses triggered by different adjuvants in COVID-19 inactivated vaccines are scarce. Herein, we evaluated the efficacy of Alum, CpG HP021, Alum combined with CpG HP021 (Alum/CpG), or MF-59 adjuvants with COVID-19 inactivated vaccines in K18-hACE2 mice, and compared the different immune responses between K18-hACE2 and BALB/c mice. In K18-hACE2 mice, the Alum/CpG group produced a 6.5-fold increase in anti-receptor-binding domain (RBD) IgG antibody titers compared to the Alum group, and generated a comparable level of antibodies even when the antigen amount was reduced by two-thirds, possibly due to the significant activation of germinal center (GC) structures in the central region of the spleen. Different adjuvants induced a variety of binding antibody isotypes. CpG HP021 and Alum/CpG were biased towards Th1/IgG2c, while Alum and MF-59 were biased toward Th2/IgG1. Cytokines IFN-γ, IL-2, and TNF-α were significantly increased in the culture supernatants of splenocytes specifically stimulated in the Alum/CpG group. The antibody responses in BALB/c mice were similar to those in K18-hACE2 mice, but with lower levels of neutralizing antibodies (NAbs). Notably, the Alum/CpG-adjuvanted inactivated vaccine induced a higher number of T cells secreting IFN-γ and IL-2, increased the percentage of effector memory T (TEM) cells among CD8+ T cells, and effectively protected K18-hACE2 mice from Delta variant challenge. Our results showed that Alum/CpG complex adjuvant significantly enhanced the immune response to inactivated COVID-19 antigens and could induce a long-lasting immune response.

5.
Clin Transl Med ; 14(7): e1765, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031979

RESUMO

BACKGROUND: The meticulous selection of appropriate vaccine adjuvants is crucial for optimizing immune responses. Traditionally, pemphigus vulgaris (PV), an autoimmune disorder, has been modelled using complete Freund's adjuvant (CFA). In this study, we aimed to discern potential variations in immune responses elicited by Toll-like receptor (TLR) ligands as compared to CFA. METHODS: A comprehensive investigation was conducted, comparing the effects of these adjuvants in conjunction with ovalbumin or desmoglein-3. Flow cytometry was employed to analyse distinct cell subsets, while enzyme-linked immunosorbent assay quantified antigen-specific antibodies and cytokine levels. Histological examination of harvested skin tissues and transcriptome analysis of skin lesions were performed to identify differentially expressed genes. RESULTS: TLR ligands demonstrated efficacy in inducing PV-like symptoms in wild-type mice, in contrast to CFA. This underscored the substantial impact of the adjuvant on self-antigen tolerance. Furthermore, we proposed an enhanced method for establishing a PV model through adoptive transfer, substituting CFA with TLR ligands. Our results revealed that in contrast to the perception that CFA being the most potent immunopotentiator reported, CFA promoted regulatory T cells (Treg), follicular regulatory T cells and IL-10-producing neutrophils, whereas TLR ligands downregulated CCL17 and IL-10. This suggested potential implications for the recruitment and activation of Treg subsets. While B cell and CD8+ T cell responses exhibited similarity, CFA induced less activation in dendritic cell subsets. A novel mouse model of PV and systemic comparison of immunostimulatory effects of adjuvants were provided by this study. CONCLUSIONS: The systematic comparison of CFA and TLR ligands shed light on the distinctive properties of these adjuvants, presenting innovative mouse models for the investigation of pemphigus. This study significantly contributes to adjuvant research and advances our understanding of PV pathogenesis. KEY POINTS/HIGHLIGHTS: Immunization with desmoglein 3 and Toll-like receptor (TLR) ligands effectively induces pemphigus symptoms in wild-type mice, whereas complete Freund's adjuvant (CFA) fails. TLR ligands heightened the autoreactivity of donor cells in the adoptive transfer pemphigus model. CFA promoted regulatory T cells and IL-10-producing neutrophils, whereas TLR ligands downregulated CCL17 and IL-10, leading to more effective immune responses.


Assuntos
Adjuvantes Imunológicos , Modelos Animais de Doenças , Pênfigo , Receptores Toll-Like , Animais , Pênfigo/imunologia , Camundongos , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/agonistas , Adjuvantes Imunológicos/farmacologia , Adjuvante de Freund/imunologia , Camundongos Endogâmicos C57BL , Ligantes , Ovalbumina/imunologia , Feminino
6.
Virol J ; 21(1): 139, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877590

RESUMO

BACKGROUND: Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS: We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS: All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS: All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.


Assuntos
Antígenos Virais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Herpesvirus Humano 4 , Mononucleose Infecciosa , Humanos , Mononucleose Infecciosa/imunologia , Mononucleose Infecciosa/virologia , Antígenos Virais/imunologia , Herpesvirus Humano 4/imunologia , Criança , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Masculino , Adolescente , Pré-Escolar , Epitopos de Linfócito T/imunologia
7.
Cancers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893156

RESUMO

Immune check-point blockade (ICB) has revitalized cancer immunotherapy, showing unprecedented efficacy despite only a narrow number of indications and with limited long-term protection. Cancer vaccines are promising combination partners for ICB to widen the patient population profiting from these treatments. Therapeutic heterologous prime-boost vaccination with KISIMATM protein vaccine and VSV-GP-TAg oncolytic virus was shown to inflame the tumor microenvironment, promoting significant infiltration of antigen-specific CD8 T cells resulting in robust antitumoral efficacy in mouse tumor models, and clinical trials are currently ongoing. Here, we report the impact of NKG2A blockade on antitumoral CD8 T cell immune response elicited by KISIMA-VSV-GP-TAg vaccination in tumor mouse models. Combination therapy significantly reduced the amount of vaccine-induced exhausted CD8 T cells infiltrating the tumor, resulting in short-term improved tumor growth control and prolonged mouse survival, while it also influenced the establishment of systemic effector memory CD8 T cell response. Taken together, these data show a compartment-dependent effect of NKG2A blockade on cancer vaccine-induced T cell immunity, increasing intratumoral T cell efficacy and attenuating the development of peripheral effector memory CD8 T cell response.

8.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891837

RESUMO

The proteasome generates the majority of peptides presented on MHC class I molecules. The cleavage pattern of the proteasome has been shown to be changed via the proteasome activator (PA)28 alpha beta (PA28αß). In particular, several immunogenic peptides have been reported to be PA28αß-dependent. In contrast, we did not observe a major impact of PA28αß on the generation of different major histocompatibility complex (MHC) classI ligands. PA28αß-knockout mice infected with the lymphocytic choriomeningitis virus (LCMV) or vaccinia virus showed a normal cluster of differentiation (CD) 8 response and viral clearance. However, we observed that the adoptive transfer of wild-type cells into PA28αß-knockout mice led to graft rejection, but not vice versa. Depletion experiments showed that the observed rejection was mediated by CD8+ cytotoxic T cells. These data indicate that PA28αß might be involved in the development of the CD8+ T cell repertoire in the thymus. Taken together, our data suggest that PA28αß is a crucial factor determining T cell selection and, therefore, impacts graft acceptance.


Assuntos
Linfócitos T CD8-Positivos , Rejeição de Enxerto , Antígenos de Histocompatibilidade Classe I , Camundongos Knockout , Animais , Rejeição de Enxerto/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Ligantes , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica/imunologia , Vaccinia virus/imunologia
9.
Immunol Lett ; 268: 106886, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906482

RESUMO

OBJECTIVE: Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2 protecting individuals, especially the immunocompromised, from COVID-19. Still, it remains largely unknown how solid organ transplant and different immunosuppressive medications affect development of vaccine-induced immunity. METHODS: In this work, we monitored humoral and cellular memory responses after mRNA SARS-CoV-2 two-doses and booster doses vaccination in cystic fibrosis lung transplanted patients (CFT) and compared them with both cystic fibrosis patients without lung transplant (CF) and with kidney transplant recipients (KT). In particular, we investigated the effects of immunosuppressive regimens on immune memory to SARS-CoV-2 after mRNA SARS-CoV-2 vaccine in transplanted patients. RESULTS: Our results showed that immunocompromised transplanted patients displayed a weak cellular and humoral memory to SARS-CoV-2 mRNA vaccination. In addition, obtained data clearly demonstrate that immunosuppressive therapy regimen including antimetabolites, further reduces patients' ability to respond to vaccination at both humoral and cell-mediated level. Notably, patient treated with antimetabolites showed a lower humoral and cellular response also after a booster dose vaccination. CONCLUSION: These results, even if obtained on a small patient's cohort, question whether immunocompromised patients need interventions to improve vaccine SARS-CoV-2 mRNA vaccine response such as additional jab or modulation of immunosuppressive therapy.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Imunidade Humoral , Hospedeiro Imunocomprometido , Imunossupressores , SARS-CoV-2 , Transplantados , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Masculino , Feminino , Imunossupressores/uso terapêutico , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adulto , Vacinação , Pessoa de Meia-Idade , Fibrose Cística/imunologia , Memória Imunológica , Transplante de Órgãos/efeitos adversos , Transplante de Rim/efeitos adversos , Transplante de Pulmão/efeitos adversos , Imunização Secundária
10.
J Immunol Methods ; 531: 113712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906414

RESUMO

During SARS-CoV-2 pandemic, the assessment of immune protection of people at risk of severe infection was an important goal. The appearance of VOCs (Variant of Concern) highlighted the limits of evaluating immune protection through the humoral response. While the humoral response partly loses its neutralizing activity, the anti-SARS-CoV-2 memory T cell response strongly cross protects against VOCs becoming an indispensable tool to assess immune protection. We compared two techniques available in laboratory to evaluate anti-SARS-CoV-2 memory T cell response in a cohort of infected or vaccinated patients with different levels of risk to develop a severe disease: the ELISpot assay and the T-Cell Lymphocyte Proliferation Assay respectively exploring IFNγ production and cell proliferation. We showed that the ELISpot assay detected more anti-Spike memory T cell response than the Lymphocyte Proliferation Assay. We next observed that the use of two different suppliers as antigenic source in the ELISpot assay did not affect the detection of anti-Spike memory T cell response. Finally, we explored a new approach for defining the positivity threshold, using unsupervised mixed Gaussian modeling, challenging the traditional ROC curve used by the supplier. That will be helpful in endemic situation where it could be difficult to recruit "negative" patients.


Assuntos
COVID-19 , ELISPOT , Células T de Memória , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Células T de Memória/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Proliferação de Células , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Adulto , Idoso , Interferon gama/imunologia , Interferon gama/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Memória Imunológica
11.
Immunol Cell Biol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855806

RESUMO

CD8+ T cells recognizing their cognate antigen are typically recruited as a polyclonal population consisting of multiple clonotypes with varying T-cell receptor (TCR) affinity to the target peptide-major histocompatibility complex (pMHC) complex. Advances in single-cell sequencing have increased accessibility toward identifying TCRs with matched antigens. Here we present the discovery of a monoclonal CD8+ T-cell population with specificity for a hepatitis C virus (HCV)-derived human leukocyte antigen (HLA) class I epitope (HLA-B*07:02 GPRLGVRAT) which was isolated directly ex vivo from an individual with an episode of acutely resolved HCV infection. This population was absent before infection and underwent expansion and stable maintenance for at least 2 years after infection as measured by HLA-multimer staining. Furthermore, the monoclonal clonotype was characterized by an unusually long dissociation time (half-life = 794 s and koff = 5.73 × 10-4) for its target antigen when compared with previously published results. A comparison with related populations of HCV-specific populations derived from the same individual and a second individual suggested that high-affinity TCR-pMHC interactions may be inherent to epitope identity and shape the phenotype of responses which has implications for rational TCR selection and design in the age of personalized immunotherapies.

12.
Front Immunol ; 15: 1347926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903517

RESUMO

Introduction: The HVTN 105 vaccine clinical trial tested four combinations of two immunogens - the DNA vaccine DNA-HIV-PT123, and the protein vaccine AIDSVAX B/E. All combinations induced substantial antibody and CD4+ T cell responses in many participants. We have now re-examined the intracellular cytokine staining flow cytometry data using the high-resolution SWIFT clustering algorithm, which is very effective for enumerating rare populations such as antigen-responsive T cells, and also determined correlations between the antibody and T cell responses. Methods: Flow cytometry samples across all the analysis batches were registered using the swiftReg registration tool, which reduces batch variation without compromising biological variation. Registered data were clustered using the SWIFT algorithm, and cluster template competition was used to identify clusters of antigen-responsive T cells and to separate these from constitutive cytokine producing cell clusters. Results: Registration strongly reduced batch variation among batches analyzed across several months. This in-depth clustering analysis identified a greater proportion of responders than the original analysis. A subset of antigen-responsive clusters producing IL-21 was identified. The cytokine patterns in each vaccine group were related to the type of vaccine - protein antigens tended to induce more cells producing IL-2 but not IFN-γ, whereas DNA vaccines tended to induce more IL-2+ IFN-γ+ CD4 T cells. Several significant correlations were identified between specific antibody responses and antigen-responsive T cell clusters. The best correlations were not necessarily observed with the strongest antibody or T cell responses. Conclusion: In the complex HVTN105 dataset, alternative analysis methods increased sensitivity of the detection of antigen-specific T cells; increased the number of identified vaccine responders; identified a small IL-21-producing T cell population; and demonstrated significant correlations between specific T cell populations and serum antibody responses. Multiple analysis strategies may be valuable for extracting the most information from large, complex studies.


Assuntos
Vacinas contra a AIDS , Linfócitos T CD4-Positivos , Citocinas , Citometria de Fluxo , Infecções por HIV , Humanos , Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Citometria de Fluxo/métodos , Análise por Conglomerados , Infecções por HIV/imunologia , Infecções por HIV/virologia , Citocinas/metabolismo , Citocinas/imunologia , Imunidade Humoral , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , Vacinas de DNA/imunologia , Interleucinas/imunologia
13.
CNS Neurosci Ther ; 30(6): e14781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887195

RESUMO

BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE: This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS: We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS: This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS: The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.


Assuntos
Lesões Encefálicas Traumáticas , Quimiocinas C , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Animais , Quimiocinas C/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Doenças Neuroinflamatórias/imunologia
14.
Elife ; 122024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716629

RESUMO

SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αß sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as 'sustainers'), but not in 'decliners'. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Masculino , Epitopos de Linfócito T/imunologia , Adulto , Linfócitos T Auxiliares-Indutores/imunologia , Pessoa de Meia-Idade
15.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
16.
Front Immunol ; 15: 1392477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774878

RESUMO

Introduction: Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods: Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNÉ£ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results: Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion: Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.


Assuntos
COVID-19 , Reações Cruzadas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Humanos , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Idoso , Masculino , Linfócitos T/imunologia , Feminino , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores Etários , Adulto Jovem , Vacinas contra COVID-19/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Imunização Secundária , Citomegalovirus/imunologia , Vacina BNT162/imunologia , Vacinação , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , ChAdOx1 nCoV-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Idoso de 80 Anos ou mais
17.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709874

RESUMO

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Assuntos
Exossomos , Glioblastoma , Imunoterapia , Linfonodos , Exossomos/química , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Linfonodos/imunologia , Linfonodos/patologia , Animais , Camundongos , Géis/química , Células Dendríticas/imunologia , Linfócitos T/imunologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Camundongos Endogâmicos C57BL
18.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793588

RESUMO

This systematic review investigates the immunosuppressive environment in HBV-associated hepatocellular carcinoma (HCC), characterized by dysfunctional and exhausted HBV-specific T cells alongside an increased infiltration of HBV-specific CD4+ T cells, particularly regulatory T cells (Tregs). Heightened expression of checkpoint inhibitors, notably PD-1, is linked with disease progression and recurrence, indicating its potential as both a prognostic indicator and a target for immunotherapy. Nevertheless, using PD-1 inhibitors has shown limited effectiveness. In a future perspective, understanding the intricate interplay between innate and adaptive immune responses holds promise for pinpointing predictive biomarkers and crafting novel treatment approaches for HBV-associated HCC.


Assuntos
Imunidade Adaptativa , Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Vírus da Hepatite B/imunologia , Linfócitos T Reguladores/imunologia , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Hepatite B/imunologia , Hepatite B/virologia , Hepatite B/complicações , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatite B Crônica/complicações , Linfócitos T CD4-Positivos/imunologia , Linfócitos T/imunologia , Imunoterapia
19.
Microbiol Spectr ; 12(6): e0000424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38747636

RESUMO

Kidney transplant recipients (KTRs) have been identified as a population at increased risk for severe SARS-CoV-2 infection outcomes. This study focused on understanding the immune response of KTRs post-vaccination, specifically examining both serological and cellular responses to the SARS-CoV-2 vaccine. Thirteen individuals, including seven KTRs and six healthy donors, were evaluated for antibody levels and T cell responses post-vaccination. The study revealed that KTRs had significantly lower serological responses, including reduced anti-receptor binding domain (RBD) binding antibodies and neutralizing antibodies against the Wuhan, Delta, and Omicron BA.2 strains. Additionally, KTRs demonstrated weaker CD8 T cell cytotoxic responses and lower Th1 cytokine secretion, particularly IFN-γ, after stimulation with variant spike peptide pools. These findings highlight the compromised immunity in KTRs post-vaccination and underscore the need for tailored strategies to bolster immune responses in this vulnerable group. Further investigations are warranted into the mechanisms underlying reduced vaccine efficacy in KTRs and potential therapeutic interventions. IMPORTANCE: Some studies have revealed that KTRs had lower serological response against SARS-CoV-2 than healthy people. Nevertheless, limited studies investigate the cellular response against SARS-CoV-2 in KTRs receiving SARS-CoV-2 vaccines. Here, we found that KTRs have lower serological and cellular responses. Moreover, we found that KTRs had a significantly lower IFN-γ secretion than healthy individuals when their PBMCs were stimulated with SARS-CoV-2 spike peptide pools. Thus, our findings suggested that additional strategies are needed to enhance KTR immunity triggered by the vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Transplante de Rim , SARS-CoV-2 , Transplantados , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Transplante de Rim/efeitos adversos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Masculino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adulto , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Linfócitos T CD8-Positivos/imunologia , Vacinação , Interferon gama/imunologia , Interferon gama/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-38718950

RESUMO

BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES: We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS: Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...