Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.375
Filtrar
1.
Cell Commun Signal ; 22(1): 459, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342337

RESUMO

BACKGROUND: Clinical trials have shown that immunotherapy based on Vγ9Vδ2 T cells (Vδ2 T cells) is safe and well-tolerated for various cancers including cervical cancer (CC), but its overall treatment efficacy remains limited. Therefore, exploring the mechanisms underlying the suboptimal efficacy of Vδ2 T cell-based cancer immunotherapy is crucial for enabling its successful clinical translation. METHODS: Tumor samples from CC patients and CC cell line-derived xenograft (CDX) mice were analyzed using flow cytometry to examine the exhausted phenotype of tumor-infiltrating Vδ2 T cells. The interrelationship between BTN3A1 expression and Vδ2 T cells in CC, along with their correlation with patient prognosis, was analyzed using data from The Cancer Genome Atlas (TCGA) database. CC cell lines with BTN3A1 knockout (KO) and overexpression (OE) were constructed through lentivirus transduction, which were then co-cultured with expanded Vδ2 T cells, followed by detecting the function of Vδ2 T cells using flow cytometry. The pathways and transcription factors (TFs) related to BTN3A1-induced Vδ2 T cells exhaustion and the factors affecting BTN3A1 expression were identified by RNA-seq analysis, which was confirmed by flow cytometry, Western Blot, and gene manipulation. RESULTS: Tumor-infiltrating Vδ2 T cells exhibited an exhausted phenotype in both CC patients and CDX mice. BTN3A1 expressed in CC is highly enhancing exhaustion markers, while reducing the secretion of effector molecules in Vδ2 T cells. Blocking TCR or knocking down nuclear receptor subfamily 4 group A (NR4A) 2/3 can reverse BTN3A1-induced exhaustion in Vδ2 T cells. On the other hand, IFN-γ secreted by Vδ2 T cells promoted the expression of BTN3A1 and PD-L1. CONCLUSIONS: Through binding γδ TCRs, BTN3A1 expressed on tumor cells, which is induced by IFN-γ, can promote Vδ2 T cells to upregulate the expression of TFs NR4A2/3, thereby affecting their activation and expression of exhaustion-related molecules in the tumor microenvironment (TME). Therefore, targeting BTN3A1 might overcome the immunosuppressive effect of the TME on Vδ2 T cells in CC.


Assuntos
Butirofilinas , Transdução de Sinais , Regulação para Cima , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Butirofilinas/genética , Butirofilinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Esteroides
2.
J Exp Clin Cancer Res ; 43(1): 266, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342365

RESUMO

Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Fenótipo , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Imunoterapia/métodos , Microambiente Tumoral/imunologia
3.
Clin Transl Oncol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294514

RESUMO

Targeting tumor angiogenesis, the formation of new blood vessels supporting cancer growth and spread, has been an intense focus for therapy development. However, benefits from anti-angiogenic drugs like bevacizumab have been limited by resistance stemming from activation of compensatory pathways. Recent immunotherapy advances have sparked interest in novel immunologic approaches that can induce more durable vascular pruning and overcome limitations of existing angiogenesis inhibitors. This review comprehensively examines these emerging strategies, including modulating tumor-associated macrophages, therapeutic cancer vaccines, engineered nanobodies and T cells, anti-angiogenic cytokines/chemokines, and immunomodulatory drugs like thalidomide analogs. For each approach, the molecular mechanisms, preclinical/clinical data, and potential advantages over conventional drugs are discussed. Innovative therapeutic platforms like nanoparticle delivery systems are explored. Moreover, the importance of combining agents with distinct mechanisms to prevent resistance is evaluated. As tumors hijack angiogenesis for growth, harnessing the immune system's specificity to disrupt this process represents a promising anti-cancer strategy covered by this review.

4.
Mol Med Rep ; 30(5)2024 11.
Artigo em Inglês | MEDLINE | ID: mdl-39239742

RESUMO

The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system­related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.


Assuntos
Neoplasias do Sistema Digestório , Tetraspaninas , Humanos , Tetraspaninas/metabolismo , Tetraspaninas/genética , Neoplasias do Sistema Digestório/metabolismo , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais
5.
JHEP Rep ; 6(9): 101121, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39282227

RESUMO

Background & Aims: HBV treatment is challenging due to the persistence of the covalently closed circular DNA replication pool, which remains unaffected by antiviral intervention. In this study, we determined whether targeting antigen-presenting cells via CD40 stimulation represents an appropriate therapeutic approach for achieving sustained HBV control in a mouse model of HBV replication. Methods: Mice were transduced with an adeno-associated virus encoding the HBV genome (AAV-HBV) to initiate HBV replication and were administered agonistic CD40 antibody. CD4-depleting antibody was administered in addition to the CD40 antibody. Viral antigens in the blood were measured over time to determine HBV control. HBV-specific CD8+ T cells were quantified in the spleen and liver at the experimental endpoint. Results: CD40 stimulation in CD4-depleted AAV-HBV mice resulted in the clearance of HBsAg and HBeAg, along with a reduction in liver HBV mRNA, contrasting with CD4-competent counterparts. CD8+ T cells were indispensable for CD40-mediated HBV control, determined by HBV persistence following their depletion. In CD4-replete mice, CD40 stimulation initially facilitated the expansion of HBV-specific CD8+ T cells, which subsequently could not control HBV. Finally, α-CD4/CD40 treatment reduced antigenemia and liver HBV mRNA levels in chronic AAV-HBV mice, with further enhancement through synergy with immunization by VSV-MHBs (vesicular stomatitis virus expressing middle HBsAg). Conclusions: Our findings underscore the potential of CD40 stimulation as a targeted therapeutic strategy for achieving sustained HBV control and reveal a CD4+ T cell-dependent limitation on CD40-mediated antiviral efficacy. Impact and implications: Immunotherapy has the potential to overcome immune dysfunction in chronic HBV infection. Using a mouse model of HBV replication, this study shows that CD40 stimulation can induce sustained HBV control, which is dependent on CD8+ T cells and further enhanced by co-immunization. Unexpectedly, CD40-mediated HBV reduction was improved by the depletion of CD4+ cells. These findings suggest potential strategies for reversing HBV persistence in infected individuals.

6.
BMC Pediatr ; 24(1): 587, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285316

RESUMO

BACKGROUND: Congenital cytomegalovirus (cCMV) infection can lead to a range of adverse outcomes. The majority of cCMV neonates with clinical symptoms are infected postnatally; however, established cases of intrauterine infection are uncommon, resulting in a paucity of reports on clinical findings and lymphocytes expression in CMV-infected neonates. CASE PRESENTATION: We followed a neonate with cCMV infection from the onset of hospitalization to several months of follow-up. This infant was intrauterine CMV-positive in the amniotic fluid of the mother at 21 weeks' gestation and received intravenous ganciclovir infusion and sequential oral valganciclovir after birth. The typical clinical signs manifested in the nervous system, liver, and peripheral blood and were documented during the hospitalizaion period and up to the follow-up visit. Flow cytometry was employed to examine the expression of T cells, their subsets, and the associated cytokines in peripheral blood samples at various time points. The flow data for the cCMV neonate were compared with those of the controls at each time point. Following treatment, clinical symptoms improved and the infant became CMV negative. However, developmental delays occurred later in life. The proportion of CD8+CD28- Tregs in the peripheral blood of the neonate with congenital CMV infection was higher than that in the controls at the three time points. The expression levels of perforin and granzyme B secreted by γδ T cells (Vδ1 and Vδ2 T cells), increased during the course of hospitalization until follow-up and were higher than those in the controls at the three time points. CONCLUSIONS: Despite the alleviation of clinical symptoms, developmental delay in later life remains inevitable in this intrauterine cCMV neonate. CD8+CD28- Tregs and Vδ1 and Vδ2 T cells secreting perforin and granzyme B may be involved in congenital CMV infection, although this hypothesis requires validation in a larger study. This report may contribute to our understanding of the effect of current treatment and the immune status of intrauterine cCMV-infected neonates.


Assuntos
Infecções por Citomegalovirus , Linfócitos T Reguladores , Humanos , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/tratamento farmacológico , Recém-Nascido , Feminino , Linfócitos T Reguladores/imunologia , Gravidez , Linfócitos T CD8-Positivos/imunologia , Antígenos CD28 , Complicações Infecciosas na Gravidez , Perforina/metabolismo , Antivirais/uso terapêutico , Masculino , Ganciclovir/uso terapêutico , Granzimas/metabolismo
7.
J Infect Dis ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250505

RESUMO

BACKGROUND: Chlamydia trachomatis (CT) is a globally prevalent sexually transmitted infection (STI) that can result in pelvic inflammatory disease, ectopic pregnancy and infertility in women. Currently, there is no prophylactic vaccine. METHODS: This study examined T cell immunity in a cohort of women recently infected with CT. Participants were screened against peptides spanning 33 of 894 possible CT proteins, either ex vivo or using short-term cell lines (STCL). CT-specific T cells were characterized by IFN-γ ELISpot and flow cytometry. RESULTS: Ex vivo CT-specific T cells were rarely detected; however, following in vitro expanded CT-specific T cells were detected by IFN-γ ELISpot in 90% (27/30) of participants. Notably, over 50% of participants had T cell responses targeting chlamydial protease-like activity factor (CPAF). T cell epitopes were dispersed across the CPAF protein. Flow cytometry analysis of STCL found CT-specific cells, were mainly CD4+, produced IFN-γ and TNF-α and were sustained over 12 months. Ex vivo analysis suggested CT-specific T cells mostly exhibited a central memory phenotype. CONCLUSION: Our results indicate that CT infection elicits low-frequency, persistent CD4 T cell responses in most women and that the secreted protein, CPAF, is an immunoprevalent CT antigen. Altogether, these data support development and testing of CT vaccines that enhance CD4 T cells against CPAF.

8.
Eur J Pharmacol ; 983: 176996, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277095

RESUMO

Immune-mediated inflammatory disease (IMID) is a complex disorder characterized by excessive immune responses involving T cells and their subsets, leading to direct tissue damage. T cells can be broadly categorized into CD4+ T cells and CD8+ T cells. CD4+ T cells are composed of several subsets, including T helper (Th)1, Th2, Th9, Th17, Th22, follicular helper T cells (Tfhs), and regulatory T cells (Tregs), while effector CD8+ T cells consist mainly of cytotoxic T cells (CTLs). Current therapies for IMID are ineffective, prompting exploration into mesenchymal stem cells (MSCs) as a promising clinical treatment due to their immunomodulatory effects and self-renewal potential. Recent studies have shown that MSCs can suppress T cells through direct cell-to-cell contact or secretion of soluble cytokines. Nevertheless, the precise effects of MSCs on T cell subsets remain inadequately defined. In this review, we summarize the most recent studies that have examined how MSCs modulate one or more effector T-cell subsets and the mechanisms behind these modifications in vitro and several mouse models of clinical inflammation. This also provides theoretical support and novel insights into the efficacy of clinical treatments involving MSCs. However, the efficacy of MSC therapies in clinical models of inflammation varies, showing effective remission in most cases, but also with exacerbation of T-cell-mediated inflammatory damage in some instances.

9.
Mol Ther ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245938

RESUMO

Intratumoral regulatory T cells (Tregs) express high levels of CD25 and TIGIT, which are also recognized as markers of effector T cell (Teff) activation. Targeting these molecules each alone with monoclonal antibodies (mAbs) poses a risk of concurrently depleting both Teffs and peripheral Tregs, thereby compromising the effectiveness and selectivity of intratumoral Treg depletion. Here, leveraging the increased abundance of CD25+ TIGIT+ double-positive Tregs in the solid tumor microenvironment (but not in peripheral tissues), we explore the feasibility of using a CD25×TIGIT bispecific antibody (bsAb) to selectively deplete intratumoral Tregs. We initially constructed a bsAb co-targeting mouse CD25 and TIGIT, NSWm7210, and found that NSWm7210 conferred enhanced intratumoral Treg depletion, Teff activation, and tumor suppression as compared to the parental monotherapies in mouse models. We subsequently constructed a bsAb co-targeting human CD25 and TIGIT (NSWh7216), which preferentially eliminated CD25+ TIGIT+ double-positive cells over single-positive cells in vitro. NSWh7216 exhibited enhanced anti-tumor activity without toxicity of peripheral Tregs in CD25 humanized mice compared to the parental monotherapies. Our study illustrates the use of CD25×TIGIT bsAbs as effective agents against solid tumors based on selective depletion of intratumoral Tregs.

10.
Oncol Rep ; 52(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39301655

RESUMO

Lung cancer is increasingly recognized as a leading cause of cancer­related mortality. Immunotherapy has emerged as a promising therapeutic approach for lung cancer, particularly non­small cell lung cancer (NSCLC). Nonetheless, the response rate to programmed cell death 1 (PD­1) inhibitors remains less than optimal. It has been suggested that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in the development and progression of cancer by facilitating T cell expansion and cytotoxicity. Our previous research demonstrated that the combination of tumor necrosis factor receptor 2 (TNFR2) with immune activity treatments synergistically suppresses tumor growth. This insight led to exploring the efficacy of a combined treatment strategy involving PD­1 inhibitors, PTP1B inhibitors and TNFR2 antibodies (triple therapy) in NSCLC. In this context, the therapeutic effectiveness of these combination immunotherapies was validated in mouse models with NSCLC by analyzing the expansion and function of immune cells, thereby assessing their impact on tumor growth. The results indicated that inhibiting PTP1B decreases the expression of PD­L1 and TNFR2 on LLC cells, along with an increase in the proportion of CD4+T and CD8+T cells. Compared with other treatment groups, the triple therapy significantly reduced tumor volume in mice with NSCLC and extended their survival. Moreover, this combination therapy altered the distribution of myeloid­derived suppressor cells, dendritic cells, B cells and M1 macrophages, while increasing the proportion of CD8+T cells and reducing the proportion of Treg cells in the spleens, lymph nodes, and tumors of NSCLC models. The triple therapy also resulted in a decrease in PD­L1, PTP1B and TNFR2 expression within NSCLC tumor tissues in mice. Overall, the triple therapy effectively suppressed tumor growth and improved outcomes in mice with NSCLC by modulating immune cell distribution and reducing levels of target immune proteins.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Receptores Tipo II do Fator de Necrose Tumoral , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Camundongos , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Imunoterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia
11.
Allergy ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250135

RESUMO

BACKGROUND: Reasons for Th2 skewing in IgE-mediated food allergies remains unclear. Clinical observations suggest impaired T cell activation may drive Th2 responses evidenced by increased atopic manifestations in liver transplant patients on tacrolimus (a calcineurin inhibitor). We aimed to assess differentiation potential, T cell activation and calcium influx of naïve CD4+ T cells in children with IgE-mediated food allergies. METHODS: Peripheral blood mononuclear cells from infants in the Starting Time for Egg Protein (STEP) Trial were analyzed by flow cytometry to assess Th1/Th2/Treg development. Naïve CD4+ T cells from children with and without food allergies were stimulated for 7 days to assess Th1/Th2/Treg transcriptional factors and cytokines. Store operated calcium entry (SOCE) was measured in children with and without food allergies. The effect of tacrolimus on CD4+ T cell differentiation was assessed by treating stimulated naïve CD4+ T cells from healthy volunteers with tacrolimus for 7 days. RESULTS: Egg allergic infants had impaired development of IFNγ+ Th1 cells and FoxP3+ transitional CD4+ T cells compared with non-allergic infants. This parallels reduced T-bet, IFNγ and FoxP3 expression in naïve CD4+ T cells from food allergic children after in vitro culture. SOCE of naïve CD4+ T cells was impaired in food allergic children. Naïve CD4+ T cells treated with tacrolimus had reduced IFNγ, T-bet, and FoxP3, but preserved IL-4 expression. CONCLUSIONS: In children with IgE-mediated food allergies, dysregulation of T helper cell development is associated with impaired SOCE, which underlies an intrinsic impairment in Th1 and Treg differentiation. Along with tacrolimus-induced Th2 skewing, this highlights an important role of SOCE/calcineurin pathway in T helper cell differentiation.

12.
medRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39228728

RESUMO

Background: Delayed cerebral ischemia (DCI) is a significant complication of aneurysmal subarachnoid hemorrhage (aSAH). This study profiled immune responses after aSAH and evaluated their association with DCI onset. Methods: Twelve aSAH patients were enrolled. Leukocyte populations and cytokine levels were analyzed in cerebrospinal fluid (CSF) and peripheral blood (PB) on days 3, 5, 7, 10, and 14 post-aSAH. Peripheral blood mononuclear cells (PBMCs) were collected and their cytokine production quantified following stimulation. Results: Mixed-effects models revealed distinct immune cell dynamics in CSF compared to blood. Natural killer T cell frequency increased over time in CSF only, while monocyte/macrophage numbers increased in both CSF and PBMCs. CD4+ HLA II+ T cells increased in circulation. Unstimulated PBMCs showed increased IL-1ß, IL-6, and TNFα production, peaking at 7 days post-aSAH, coinciding with typical DCI onset. Ex vivo stimulation of PBMCs showed that only IL-6 significantly changed over time. In CSF, cytokines peaked 5 days post-injury, preceding immune cell profile alterations. Conclusions: Our findings reveal a time-dependent immune response following aSAH, with distinct within-patient patterns in CSF and PB. The early CSF cytokine peak preceding immune cell changes suggests a potential mechanistic link and identifies the cytokine response as a promising therapeutic target. This cytokine surge may drive immune cell expansion and prime PBMCs for increased inflammatory activity, potentially contributing to DCI risk. Future studies should explore the importance and sources of specific cytokines in driving immune activation. These insights may inform the development of targeted immunomodulatory strategies for preventing or managing DCI in aSAH patients.

13.
Heliyon ; 10(17): e36512, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319132

RESUMO

Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.

14.
Mol Ther Methods Clin Dev ; 32(3): 101324, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39319301

RESUMO

In vivo expansion of genetically modified T cells in cancer patients following adoptive transfer has been linked to both anti-tumor activity and T cell-mediated toxicities. The development of digital PCR has improved the accuracy in quantifying the in vivo status of adoptively infused T cells compared to qPCR or flow cytometry. Here, we developed and evaluated the feasibility and performance of nanoplate-based digital PCR (ndPCR) to quantify adoptively infused T cells engineered with a T cell receptor (TCR) that recognizes a human endogenous retrovirus type E (HERV-E) antigen. Analysis of blood samples collected from patients with metastatic kidney cancer following the infusion of HERV-E TCR-transduced T cells established the limit of detection of ndPCR to be 0.3 transgene copies/µL of reaction. The lower limit of quantification for ndPCR was one engineered T cell per 10,000 PBMCs, which outperformed both qPCR and flow cytometry by 1 log. High inter-test and test-retest reliability was confirmed by analyzing blood samples collected from multiple patients. In conclusion, we demonstrated the feasibility of ndPCR for detecting and monitoring the fate of TCR-engineered T cells in adoptive cell therapy.

15.
EMBO Mol Med ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322862

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor involved in innate immunity, but its role in adaptive immunity, specifically in the context of CD8+ T-cell antitumour immunity, remains unclear. Here, we demonstrate that RIG-I is upregulated in tumour-infiltrating CD8+ T cells, where it functions as an intracellular checkpoint to negatively regulate CD8+ T-cell function and limit antitumour immunity. Mechanistically, the upregulation of RIG-I in CD8+ T cells is induced by activated T cells, and directly inhibits the AKT/glycolysis signalling pathway. In addition, knocking out RIG-I enhances the efficacy of adoptively transferred T cells against solid tumours, and inhibiting RIG-I enhances the response to PD-1 blockade. Overall, our study identifies RIG-I as an intracellular checkpoint and a potential target for alleviating inhibitory constraints on T cells in cancer immunotherapy, either alone or in combination with an immune checkpoint inhibitor.

16.
Proc Natl Acad Sci U S A ; 121(38): e2322929121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39259591

RESUMO

Chaperone-mediated autophagy (CMA) is a selective form of autophagy that contributes to the maintenance of cellular homeostasis. CMA activity declines with age in most tissues and systems, including the immune system, due to a reduction in levels of lysosome-associated membrane protein type 2A (LAMP2A), an essential CMA component. In this study, we show that overexpressing a copy of hLAMP2A within T cells since middle-age can prevent some of their age-associated loss of function. Our data support the idea that preserving LAMP2A expression with age through genetic means leads to enhanced proliferative responses, decreased number of regulatory T cell populations, and down-regulated expression of inhibitory receptors by T cells. During aging, elevated numbers of these immunosuppressive T cell populations significantly contribute to the age-associated downregulation of T cell responses. Using comparative proteomics, we confirm that preservation of CMA activity in old mice prevents age-related changes in both the resting and the activated T cell proteome. We also explore the effect of using first-in-class small molecule activators of CMA and demonstrate improved T cell response upon their administration to old mice. We conclude that sustaining CMA activity constitutes a potentially viable therapeutic approach to improving T cell function with age.


Assuntos
Envelhecimento , Autofagia Mediada por Chaperonas , Proteína 2 de Membrana Associada ao Lisossomo , Animais , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Camundongos , Envelhecimento/imunologia , Envelhecimento/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos Endogâmicos C57BL , Ativação Linfocitária
17.
Cell ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288764

RESUMO

TGF-ß, essential for development and immunity, is expressed as a latent complex (L-TGF-ß) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvß8 activates L-TGF-ß1/GARP. The dogma is that mature TGF-ß must physically dissociate from L-TGF-ß1 for signaling to occur. Our previous studies discovered that αvß8-mediated TGF-ß autocrine signaling can occur without TGF-ß1 release from its latent form. Here, we show that mice engineered to express TGF-ß1 that cannot release from L-TGF-ß1 survive without early lethal tissue inflammation, unlike those with TGF-ß1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-ß1 signaling without release where αvß8 binding redistributes the intrinsic flexibility of L-TGF-ß1 to expose TGF-ß1 to its receptors. Dynamic allostery explains the TGF-ß3 latency/activation mechanism and why TGF-ß3 functions distinctly from TGF-ß1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.

18.
Eur J Pharmacol ; 983: 177008, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304109

RESUMO

Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1ß and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.

19.
Chem Biol Interact ; 403: 111239, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306268

RESUMO

The microsatellite stable (MSS) colon cancer (CC) has long been considered resistant to immunotherapy. Cuproptosis, as a novel form of cell death, may interact with tumor immunity. This project focused on the impact of cuproptosis on the cytotoxicity of CD8+T in MSS CC, aiming to provide effective clues for improving the treatment strategy of MSS CC. The study developed an MSS CC cuproptosis model using 50 nM elesclomol and 1 µM CuCl2. Cuproptotic SW480 cells were directly co-cultured with CD8+ T cells. Cuproptosis levels were assessed via intracellular copper ion detection, Western blot, and confocal laser scanning microscopy. CCK-8, Hochest/PI staining, CFSE cell proliferation assay, LDH cytotoxicity detection, and ELISA were used to evaluate CD8+ T cell immune activity and cytotoxicity. Transcriptome sequencing and bioinformatics analysis identified regulated signals in cuproptotic SW480 cells. A rescue experiment utilized a WNT pathway activator (BML-284). PD-L1 expression in cells/membranes was analyzed using qRT-PCR, Western blot, and flow cytometry. NSG mice were immunoreconstituted, and the effects of cuproptosis on immune infiltration and cancer progression in MSS CC mice were assessed using ELISA and immunohistochemistry (IHC). Treatment with 50 nM elesclomol and 1 µM CuCl2 significantly increased cuproptosis in SW480 cells. Co-culture with CD8+ T cells enhanced their cytotoxicity. Sequencing revealed cuproptosis-mediated modulation of immune and inflammatory pathways, including WNT signaling. Rescue experiments showed downregulation of WNT signaling in cuproptotic SW480 cells. Indirectly, CD8+ T cell immune function was enhanced by reducing PD-L1 expression. In mice, cuproptosis resulted in increased infiltration of CD8+ T cells in tumor tissue, leading to delayed cancer progression compared to the control group. Cuproptosis in MSS CC cells enhances the cytotoxicity of CD8+ T cells, which may be achieved through downregulation of the WNT signaling pathway and decreased expression of PD-L1. In the future, drugs that can induce cuproptosis may be a promising approach to improve MSS CC immunotherapy.

20.
J Extracell Biol ; 3(9): e70011, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328262

RESUMO

Cancer therapy is a dynamically evolving field, witnessing the emergence of innovative approaches that offer a promising outlook for patients grappling with persistent disease. Within the realm of therapeutic exploration, chimeric antigen receptor (CAR) T cells as well as CAR NK cells, have surfaced as novel approaches, each possessing unique attributes and transformative potential. Immune cells engineered to express CARs recognizing tumour-specific antigens, have shown remarkable promise in treating terminal cancers by combining the precision of antibody specificity with the potent cytotoxic function of T cells. However, their application in solid tumours is still in its nascent stages, presenting unique major challenges. On the same note, CAR NK cells offer a distinct immunotherapeutic approach, utilizing CARs on NK cells, providing advantages in safety, manufacturing simplicity, and a broader scope for cancer treatment. Extracellular vesicles (EVs) have emerged as promising therapeutic agents due to their ability to carry crucial biomarkers and biologically active molecules, serving as vital messengers in the intercellular communication network. In the context of cancer, the therapeutic potential of EVs lies in delivering tumour-suppressing proteins, nucleic acid components, or targeting drugs with precision, thereby redefining the paradigm of precision medicine. The fusion of CAR technology with the capabilities of EVs has given rise to a new therapeutic frontier. CAR T EVs and CAR NK EVs, leveraging the power of EVs, have the potential to alleviate challenges associated with live-cell therapies. EVs are suggested to reduce the side effects linked to CAR T cell therapy and hold the potential to revolutionize the penetrance in solid tumours. EVs act as carriers of pro-apoptotic molecules and RNA components, enhancing immune responses and thereby expanding their therapeutic potential. In this review article, we navigate dynamic landscapes, with our objective being to evaluate comparative efficacy, safety profiles, manufacturing complexities, and clinical applicability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA