Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
J Immunol Methods ; 532: 113716, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960065

RESUMO

The human monocytic THP-1 cell line is the most routinely employed in vitro model for studying monocyte-to-macrophage differentiation. Despite the wide use of this model, differentiation protocols using phorbol 12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D3 (1,25D3) vary drastically between studies. Given that differences in differentiation protocols have the potential to impact the characteristics of the macrophages produced, we aimed to assess the efficacy of three different THP-1 differentiation protocols by assessing changes in morphology and gene- and cell surface macrophage marker expression. THP-1 cells were differentiated with either 5 nM PMA, 10 nM 1,25D3, or a combination thereof, followed by a rest period. The results indicated that all three protocols significantly increased the expression of the macrophage markers, CD11b (p < 0.001) and CD14 (p < 0.010). Despite this, THP-1 cells exposed to 1,25D3 alone did not adopt the morphological and expression characteristics associated with macrophages. PMA was required to produce these characteristics, which were found to be more pronounced in the presence of 1,25D3. Both PMA- and PMA with 1,25D3-differentiated THP-1 cells were capable of M1 and M2 macrophage polarization, though the gene expression of polarization-associated markers was most pronounced in PMA with 1,25D3-differentiated THP-1 cells. Moreover, the combination of PMA with 1,25D3 appeared to support the process of commitment to a particular polarization state.

2.
Heliyon ; 10(11): e32023, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867997

RESUMO

The NLRP3 inflammasome is an intracellular multiprotein complex described to be involved in both an effective host response to infectious agents and various diseases. Investigation into the NLRP3 inflammasome has been extensive in the past two decades, and often revolves around the analysis of a few specific readouts, including ASC-speck formation, caspase-1 cleavage or activation, and cleavage and release of IL-1ß and/or IL-18. Quantification of these readouts is commonly undertaken as an endpoint analysis, where the presence of each positive outcome is assessed independently of the others. In this study, we apply time-resolved analysis of a human macrophage model (differentiated THP-1-ASC-GFP cells) to commonly accessible methods. This approach yields the additional quantifiable metrics time-resolved absolute change and acceleration, allowing comparisons between readouts. Using this methodological approach, we reveal (potential) discrepancies between inflammasome-related readouts that otherwise might go undiscovered. The study highlights the importance of time-resolved data in general and may be further extended as well as incorporated into other areas of research.

3.
Environ Toxicol Pharmacol ; 108: 104469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759848

RESUMO

We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO2 (NM-100), ZnO (NM-110), SiO2 (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein-protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.


Assuntos
Mapas de Interação de Proteínas , Prata , Titânio , Humanos , Titânio/toxicidade , Células THP-1 , Mapas de Interação de Proteínas/efeitos dos fármacos , Prata/toxicidade , Nanoestruturas/toxicidade , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Dióxido de Silício/toxicidade , Interleucina-8/metabolismo , Interleucina-8/genética , Heme Oxigenase-1
4.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677784

RESUMO

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Assuntos
Inflamassomos , Macrófagos , Mitocôndrias , Triazinas , Humanos , Anti-Inflamatórios/farmacologia , Hipoglicemiantes/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Triazinas/farmacologia
5.
mSystems ; 9(5): e0017924, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38656122

RESUMO

The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE: This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.


Assuntos
Trifosfato de Adenosina , Interações Hospedeiro-Patógeno , Queratinócitos , Macrófagos , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Trifosfato de Adenosina/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/imunologia , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Queratinócitos/imunologia , Células THP-1 , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Células HaCaT
6.
FASEB J ; 38(7): e23569, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551610

RESUMO

Early in sepsis, a hyperinflammatory response is dominant, but later, an immunosuppressive phase dominates, and the host is susceptible to opportunistic infections. Anti-inflammatory agents may accelerate the host into immunosuppression, and few agents can reverse immunosuppression without causing inflammation. Specialized pro-resolving mediators (SPMs) such as resolvin D2 (RvD2) have been reported to resolve inflammation without being immunosuppressive, but little work has been conducted to examine their effects on immunosuppression. To assess the effects of RvD2 on immunosuppression, we established a model of macrophage exhaustion using two lipopolysaccharide (LPS) treatments or hits. THP-1 monocyte-derived macrophages were first treated with RvD2 or vehicle for 1 h. One LPS hit increased NF-κB activity 11-fold and TNF-α release 60-fold compared to unstimulated macrophages. RvD2 decreased LPS-induced NF-κB activity and TNF-α production but increased bacterial clearance. Two LPS hits reduced macrophage bacterial clearance and decreased macrophage NF-κB activity (45%) and TNF-α release (75%) compared to one LPS hit, demonstrating exhaustion. RvD2 increased NF-κB activity, TNF-α release, and bacterial clearance following two LPS hits compared to controls. TLR2 inhibition abolished RvD2-mediated changes. In a mouse sepsis model, splenic macrophage response to exogenous LPS was reduced compared to controls and was restored by in vivo administration of RvD2, supporting the in vitro results. If RvD2 was added to monocytes before differentiation into macrophages, however, RvD2 reduced LPS responses and increased bacterial clearance following both one and two LPS hits. The results show that RvD2 attenuated macrophage suppression in vitro and in vivo and that this effect was macrophage-specific.


Assuntos
Ácidos Docosa-Hexaenoicos , Lipopolissacarídeos , Sepse , Camundongos , Animais , Lipopolissacarídeos/toxicidade , NF-kappa B/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Macrófagos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
7.
Exp Parasitol ; 260: 108745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521196

RESUMO

Autophagy is a key step involved in many unicellular eukaryotic diseases, including leishmaniasis, for cellular remodelling and differentiation during parasite's lifecycle. Lipids play a significant role in the infection process that begins with Leishmania major invading host cells. MicroRNAs (miRNAs), a family of small, 22-24 nucleotide noncoding regulatory RNAs, target mRNAs to modify gene expression and, subsequently, proteome output may have a regulatory role in altering the host cell processes. We observed miR-146a-3p expression increases in a time-dependent manner post Leishmania major infection. Transfecting miR-146a-3p mimic increases the expression of ATG7, an autophagy gene that encodes an E1-like enzyme in two ubiquitin-like conjugation systems required for autophagosome progression. HPGD (15-hydroxyprostaglandin dehydrogenase) operates as an enzyme, converting prostaglandin to its non-active form. Microarray data and western studies reveal that miR-146a-3p targets and inhibits HPGD, thereby increasing prostaglandin activity in lipid droplets. Herein, our research focuses on miR-146a-3p, which boosts ATG7 expression while reducing HPGD post Leishmania major infections helping us comprehend the intricate network of microRNA, autophagy, and lipid metabolism in leishmaniasis.


Assuntos
Autofagia , Leishmania major , Leishmaniose Cutânea , Metabolismo dos Lipídeos , MicroRNAs , MicroRNAs/metabolismo , MicroRNAs/genética , Leishmania major/genética , Leishmania major/fisiologia , Leishmania major/metabolismo , Leishmaniose Cutânea/parasitologia , Animais , Camundongos , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Camundongos Endogâmicos BALB C , Macrófagos/parasitologia , Macrófagos/metabolismo , Humanos , Transfecção , Western Blotting
8.
Infect Immun ; 92(4): e0050323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38451079

RESUMO

Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.


Assuntos
Infecções por Chlamydia , Receptores Fc , Humanos , Fagocitose , Neutrófilos , Anticorpos Antibacterianos , Chlamydia trachomatis
9.
J Immunol Methods ; 528: 113652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458312

RESUMO

Streptococcus pyogenes, commonly referred to as Group A Streptococcus (Strep A), causes a spectrum of diseases, with the potential to progress into life-threatening illnesses and autoimmune complications. The escalating threat of antimicrobial resistance, stemming from the prevalent reliance on antibiotic therapies to manage Strep A infections, underscores the critical need for the development of disease control strategies centred around vaccination. Phagocytes play a critical role in controlling Strep A infections, and phagocytosis-replicating assays are essential for vaccine development. Traditionally, such assays have employed whole-blood killing or opsonophagocytic methods using HL-60 cells as neutrophil surrogates. However, assays mimicking Fcγ receptors- phagocytosis in clinical contexts are lacking. Therefore, here we introduce a flow cytometry-based method employing undifferentiated THP-1 cells as monocytic/macrophage model to swiftly evaluate the ability of human sera to induce phagocytosis of Strep A. We extensively characterize the assay's precision, linearity, and quantification limit, ensuring robustness. By testing human pooled serum, the assay proved to be suitable for the comparison of human sera's phagocytic capability against Strep A. This method offers a valuable complementary assay for clinical studies, addressing the gap in assessing FcγR-mediated phagocytosis. By facilitating efficient evaluation of Strep A -phagocyte interactions, it may contribute to elucidating the mechanisms required for the prevention of infections and inform the development of future vaccines and therapeutic advancements against Strep A infections.


Assuntos
Fagocitose , Infecções Estreptocócicas , Humanos , Citometria de Fluxo/métodos , Anticorpos Antibacterianos , Neutrófilos , Streptococcus pyogenes
10.
Biology (Basel) ; 13(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38392305

RESUMO

TREM2 is a critical innate immune receptor primarily expressed on myeloid-derived cells, such as microglia and macrophages. Mutations in TREM2 are linked to several neurodegenerative diseases including Alzheimer's disease (AD). TREM2 can be cleaved from the cell membrane and released as soluble TREM2 (sTREM2). sTREM2 levels are shown to peak prior to AD, with its levels fluctuating throughout disease progression. However, the mechanism by which sTREM2 may affect innate immune responses is largely uncharacterized. In this study, we investigated whether sTREM2 can induce inflammatory response in myeloid-derived THP-1 monocytes and macrophages and characterized the signaling mechanisms involved. Our results show that sTREM2 was capable of stimulating the expression of several inflammatory cytokines in THP-1 cells throughout the time course of 2 h to 8 h but inducing anti-inflammatory cytokine expression at later time points. A TREM2 antibody was capable of inhibiting the expression of some cytokines induced by sTREM2 but enhancing others. The complex of sTREM2/TREM2 antibody was shown to enhance IL-1ß expression, which was partially blocked by an NLRP3 specific inhibitor, indicating that the complex activated the NRLP3 inflammasome pathway. sTREM2 was also shown to have differential effects on cytokine expression in M0, M1, and M2 macrophages differentiated from THP-1 cells. sTREM2 has a more stimulating effect on cytokine expression in M0 macrophages, less of an effect on M2 macrophages, and some inhibitory effects on cytokine expression in M1 macrophages at early time points. Analyses of several signaling pathways revealed that sTREM2-induced expression of cytokines occurs mainly through MAPK-JNK signaling. Our work reveals differential effects of sTREM2 on cytokine expression profiles of THP-1 cells and macrophages and demonstrates that the MAPK-JNK signaling pathway is mainly responsible for sTREM2-induced cytokine expression.

11.
Cell Biochem Biophys ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388989

RESUMO

While acute inflammation is an essential physical response to harmful external influences, the transition to chronic inflammation is problematic and associated with the development and worsening of many deadly diseases. Until now, established pharmaceutical agents have had many side effects when used for long periods. In this study, a possible anti-inflammatory effect of the sesquiterpene α-humulene on lipopolysaccharide (LPS) induction was tested. Herein, human THP-1-derived macrophages were used and their pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1ß (IL-1ß) cytokine release was measured by means of enzyme-linked immunosorbent assay. A dose-dependent effect of α-humulene on IL-6 release was observed at 0.5 and 100 µM α-humulene, with a maximum IL-6 inhibition of 60% compared to the LPS reference value after the addition of 100 µM α-humulene. TNF-α as well as IL-1ß cytokine concentrations were not reduced by the addition of 0.5 and 100 µM α-humulene. This study suggests that α-humulene has potential as a promising natural alternative to established pharmaceuticals for the treatment of elevated IL-6 levels and chronic inflammation in humans.

12.
Microorganisms ; 12(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399674

RESUMO

Visceral leishmaniasis (VL) is a chronic systemic disease. In Brazil this infection is caused by Leishmania (Leishmania) infantum. Extracellular vesicles (EVs) released by Leishmania species have different functions like the modulation of host immune systems and inflammatory responses, among others. This study evaluated the participation of EVs from L. (L.) infantum (Leish-EVs) in recognition of the humoral and cellular immune response of hosts with VL. Promastigotes were cultivated in 199 medium and, in the log phase of growth, they were centrifuged, washed, resus-pended in RPMI medium, and incubated for 2 to 24 h, at 25 °C or 37 °C to release Leish-EVs. This dynamic was evaluated using transmission (TEM) and scanning (SEM) electron microscopies, as well as nanoparticle tracking analysis (NTA). The results suggested that parasite penetration in mammal macrophages requires more Leish-EVs than those living in insect vectors, since promastigotes incubated at 37 °C released more Leish-EVs than those incubated at 25 °C. Infected THP-1 cells produced high EV concentration (THP-1 cells-EVs) when compared with those from the control group. The same results were obtained when THP-1 cells were treated with Leish-EVs or a crude Leishmania antigen. These data indicated that host-EV concentrations could be used to distinguish infected from uninfected hosts. THP-1 cells treated with Leish-EVs expressed more IL-12 than control THP-1 cells, but were unable to express IFN-γ. These same cells highly expressed IL-10, which inhibited TNF-α and IL-6. Equally, THP-1 cells treated with Leish-EVs up-expressed miR-21-5p and miR-146a-5p. In conclusion, THP-1 cells treated with Leish-EVs highly expressed miR-21-5p and miR-146a-5p and caused the dysregulation of IL-10. Indirectly, these results suggest that high expression of these miRNAs species is caused by Leish-EVs. Consequently, this molecular via can contribute to immunosuppression causing enhanced immunopathology in infected hosts.

13.
Int Immunopharmacol ; 129: 111607, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38330798

RESUMO

Novel allergen immunotherapy (AIT) approaches necessitate the use of more effective and safe therapeutics, which can be accomplished by employing novel adjuvants for improved innate immune cell activation, as well as hypoallergenic allergen forms. In this study, we investigate the immunomodulatory effects of a chimera rBet v 1a-BanLecwt (rBv1a-BLwt; Cwt) composed of the major birch pollen allergen Bet v 1a and banana lectin (BanLecwt; BLwt) and two novel chimeras, rBv1l-BLH84T (rBet v 1l-BanLecH84T; C1) and rBLH84T-Bv1l (rBanLecH84T-Bet v 1l; C2), both composed of BLH84T and hypoallergenic birch pollen allergen Bv1l in the co-culture model Caco-2/THP-1, and PBMCs from donors with birch pollen allergy. The chimeric molecules rBv1l-BLH84T (C1) and rBLH84T-Bv1l (C2) were created in silico and then produced in E. coli using recombinant DNA technology. Real-time PCR analysis of gene expression following compound treatment in the co-culture model revealed that all three chimeras have the potential to induce the anti-inflammatory cytokine IL-10 gene expression in Caco-2 cells and IFN-γ gene expression in THP-1 cells. Sandwich ELISA revealed that Cwt increased IL-10 secretion and IFN-/IL-4 levels in PBMCs from birch pollen allergic donors, whereas C1 and C2 were less effective. The findings suggest that Cwt should be analyzed further due to its potential benefit in AIT.


Assuntos
Betula , Hipersensibilidade , Humanos , Betula/genética , Células CACO-2 , Interleucina-4/genética , Pólen , Interleucina-10/genética , Técnicas de Cocultura , Regulação para Cima , Escherichia coli/genética , Proteínas de Plantas/genética , Antígenos de Plantas/genética , Alérgenos/genética , Expressão Gênica , Proteínas Recombinantes
14.
Cytokine ; 175: 156502, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237388

RESUMO

BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.


Assuntos
Hiperuricemia , Ácido Úrico , Humanos , Ácido Úrico/farmacologia , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Leucócitos Mononucleares/metabolismo , Hidróxido de Sódio/metabolismo , Hidróxido de Sódio/farmacologia , Monócitos , Mediadores da Inflamação/metabolismo
15.
Cancer Med ; 12(23): 21172-21187, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037545

RESUMO

AIMS: Macrophages play an essential role in cancer development. Tumor-associated macrophages (TAMs) have predominantly M2-like attributes that are associated with tumor progression and poor patient survival. Numerous methods have been reported for differentiating and polarizing macrophages in vitro, but there is no standardized and validated model for creating TAMs. Primary cells show varying cytokine responses depending on their origin and functional studies utilizing these cells may lack generalization and validity. A distinct cell line-derived TAM-like M2 subtype is required to investigate the mechanisms mediated by anti-inflammatory TAMs in vitro. Our previous work demonstrated a standardized protocol for creating an M2 subtype derived from a human THP-1 cell line. The cell expression profile, however, has not been validated. The aim of this study was to characterize and validate the TAM-like M2 subtype macrophage created based on our protocol to introduce them as a standardized model for cancer research. METHODS AND RESULTS: Using qRT-PCR and ELISA, we demonstrated that proinflammatory, anti-inflammatory, and tumor-associated marker expression changed during THP-1-derived marcrophage development in vitro, mimicking a TAM-related profile (e.g., TNFα, IL-1ß). The anti-inflammatory marker IL-8/CXCL8, however, is most highly expressed in young M0 macrophages. Flow cytometry showed increased expression of CD206 in the final TAM-like M2 macrophage. Single-cell RNA-sequencing analysis of primary human monocytes and colon cancer tissue macrophages demonstrated that cell line-derived M2 macrophages resembled a TAM-related gene profile. CONCLUSIONS: The THP-1-derived M2 macrophage based on a standardized cell line model represents a distinct anti-inflammatory TAM-like phenotype with an M2a subtype profile. This model may provide a basis for in vitro investigation of functional mechanisms in a variety of anti-inflammatory settings, particularly colon cancer development.


Assuntos
Neoplasias do Colo , Macrófagos , Humanos , Células THP-1 , Linhagem Celular Tumoral , Macrófagos/metabolismo , Neoplasias do Colo/patologia , Anti-Inflamatórios
16.
Microorganisms ; 11(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38138142

RESUMO

Apart from being preventable and treatable, tuberculosis is the deadliest bacterial disease afflicting humankind owing to its ability to evade host defence responses, many of which are controlled by epigenetic mechanisms. Here, we report the temporal dynamics of the proteome of macrophage-like host cells after infecting them for 6, 18, 30, and 42 h with two laboratory strains (H37Ra and H37Rv) and two clinical strains (BND433 and JAL2287) of Mycobacterium tuberculosis (MTB). Using SWATH-MS, the proteins characterized at the onset of infection broadly represented oxidative stress and cell cytoskeleton processes. Intermediary and later stages of infection are accompanied by a reshaping of the combination of proteins implicated in histone stability, gene expression, and protein trafficking. This study provides strain-specific and time-specific variations in the proteome of the host, which might further the development of host-directed therapeutics and diagnostic tools against the pathogen. Also, our findings accentuate the importance of proteomic tools in delineating the complex recalibration of the host defence enabled as an effect of MTB infection. To the best of our knowledge, this is the first comprehensive proteomic account of the host response to avirulent and virulent strains of MTB at different time periods of the life span of macrophage-like cells. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD022352.

17.
EBioMedicine ; 98: 104869, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967509

RESUMO

BACKGROUND: SARS-CoV-2 infects host cells via an ACE2/TMPRSS2 entry mechanism. Monocytes and macrophages, which play a key role during severe COVID-19 express only low or no ACE2, suggesting alternative entry mechanisms in these cells. In silico analyses predicted GRP78, which is constitutively expressed on monocytes and macrophages, to be a potential candidate receptor for SARS-CoV-2 virus entry. METHODS: Hospitalized COVID-19 patients were characterized regarding their pro-inflammatory state and cell surface GRP78 (csGRP78) expression in comparison to healthy controls. RNA from CD14+ monocytes of patients and controls were subjected to transcriptome analysis that was specifically complemented by bioinformatic re-analyses of bronchoalveolar lavage fluid (BALF) datasets of COVID-19 patients with a focus on monocyte/macrophage subsets, SARS-CoV-2 infection state as well as GRP78 gene expression. Monocyte and macrophage immunohistocytochemistry on GRP78 was conducted in post-mortem lung tissues. SARS-CoV-2 spike and GRP78 protein interaction was analyzed by surface plasmon resonance, GST Pull-down and Co-Immunoprecipitation. SARS-CoV-2 pseudovirus or single spike protein uptake was quantified in csGRP78high THP-1 cells. FINDINGS: Cytokine patterns, monocyte activation markers and transcriptomic changes indicated typical COVID-19 associated inflammation accompanied by upregulated csGRP78 expression on peripheral blood and lung monocytes/macrophages. Subsequent cell culture experiments confirmed an association between elevated pro-inflammatory cytokine levels and upregulation of csGRP78. Interaction of csGRP78 and SARS-CoV-2 spike protein with a dissociation constant of KD = 55.2 nM was validated in vitro. Infection rate analyses in ACE2low and GRP78high THP-1 cells showed increased uptake of pseudovirus expressing SARS-CoV-2 spike protein. INTERPRETATION: Our results demonstrate that csGRP78 acts as a receptor for SARS-CoV-2 spike protein to mediate ACE2-independent virus entry into monocytes. FUNDING: Funded by the Sino-German-Center for Science Promotion (C-0040) and the Germany Ministry BMWi/K [DLR-grant 50WB1931 and RP1920 to AC, DM, TW].


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Monócitos/metabolismo , Chaperona BiP do Retículo Endoplasmático , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Citocinas , Internalização do Vírus
18.
Toxicol Sci ; 197(1): 27-37, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37831906

RESUMO

Some rare earth elements are occupational and environmental toxicants and can cause organ and systemic damage; therefore, they have attracted global attention. Neodymium oxide (Nd2O3) is a rare earth element that is refined and significantly utilized in China. The long noncoding RNA (lncRNA) H19 is encoded by the H19/IGF2 imprinted gene cluster located on human chromosome 11p15.5. H19 has become a research focus due to its ectopic expression leading to the promotion of fibrosis. However, the mechanisms by which it causes pulmonary fibrosis are elusive. This investigation indicates that biologically active Nd2O3 increases H19, SNIP1, and c-myc, decreases miR-29a-3p, accelerates macrophage M2 polarization, and causes pulmonary fibrosis in mice lung tissues. In macrophage-differentiated THP-1 cells, Nd2O3 (25 µg/ml) enhanced H19, SNIP1, and c-myc, reduced miR-29a-3p, accelerated macrophages M2 polarization, and stimulated fibrogenic cytokine (TGF-ß1) secretion. Furthermore, the coculturing of Nd2O3-treated macrophage-differentiated THP-1 cells. And human embryonic lung fibroblast cells activated lung fibroblast, which increases the levels of collagen I, α-SMA, p-Smad2/3, and Smad4, whereas H19 knockdown or miR-29a-3p upregulation in macrophages had opposite effects. Moreover, it was revealed that H19/miR-29a-3p/SNIP1/c-myc regulatory axis is involved in pulmonary fibrosis induced by Nd2O3. Therefore, this study provides new molecular insights into the mechanism of pulmonary fibrosis by Nd2O3.


Assuntos
MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Óxidos , Proteínas de Ligação a RNA
19.
Immunobiology ; 228(6): 152752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813017

RESUMO

Tissue transglutaminase (TG2) expressed in monocytes and macrophage is known to participate in processes during either early and resolution stages of inflammation. The alternative splicing of tissue transglutaminase gene is a mechanism that increases its functional diversity. Four spliced variants are known with truncated C-terminal domains (TGM2_v2, TGM2_v3, TGM2_v4a, TGM2_v4b) but scarce information is available about its expression in human monocyte and macrophages. We studied the expression of canonical TG2 (TGM2_v1) and its short spliced variants by RT-PCR during differentiation of TPH-1 derived macrophages (dTHP-1) using two protocols (condition I and II) that differ in Phorbol-12-myristate-13-acetate dose and time schedule. The production of TNF-α and IL-1ß in supernatant of dTHP-1, measured by ELISA in supernatants showed higher proinflammatory milieu in condition I. We found that the expression of all mRNA TG2 spliced variants were up-regulated during macrophage differentiation and after IFN-γ treatment of dTHP-1 cells in both conditions. Nevertheless, the relative fold increase or TGM2_v3 in relation with TGM2_v1 was higher only with the condition I. M1/M2-like THP-1 macrophages obtained with IFN-γ/IL-4 treatments showed that the up-regulation of TGM2_v1 induced by IL-4 was higher in relation with any short spliced variants. The qualitative profile of relative contribution of spliced variants in M1/M2-like THP-1 cells showed a trend to higher expression of TGM2_v3 in the inflammatory functional phenotype. Our results contribute to the knowledge about TG2 spliced variants in the biology of monocyte/macrophage cells and show how the differentiation conditions can alter their expression and cell function.


Assuntos
Macrófagos , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Interleucina-4/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fenótipo , Células THP-1/metabolismo
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1263-1271, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37846670

RESUMO

OBJECTIVE: To investigate the effects of the immunoglobulin G1 heavy chain constant region (IGHG1) on the proliferation and apoptosis of acute myeloid leukemia (AML) THP-1 cells and its possible mechanism of action. METHODS: Human AML THP-1 cells were cultured in vitro and divided into control (normally cultured THP-1 cells), pcDNA3.1 ï¼»THP-1 cells transfected with IGHG1 overexpression (pcDNA3.1-IGHG1) negative control plasmidï¼½, pcDNA3.1-IGHG1 (THP-1 cells transfected with plasmid containing pcDNA3.1-IGHG1), LY364947 ï¼»transforming growth factor-ß (TGF-ß)/signal transduction protein (Smad) inhibitor LY364947 20 µmol/L treated THP-1 cellsï¼½, si-NC ï¼»THP-1 cells transfected with IGHG1-small interfering RNA (siRNA) negative controlï¼½, si-IGHG1 (THP-1 cells transfected with IGHG1-siRNA), and si-IGHG1+LY364947 (IGHG1-siRNA and LY364947 co-treated THP-1 cells) a total of 7 groups. Fluorescence quantitative PCR was used to detect the expression of IGHG1 and immunoglobulin G (IgG) mRNA of THP-1 cells in each group; CCK-8 was used to detect THP-1 cells proliferation activity; flow cytometry was used to detect THP-1 cells apoptosis and cell cycle in each group; Western blot was used to detect the THP-1 cells proliferation, apoptosis and the expression of TGF-ß/Smad signaling pathway related proteins. RESULTS: Compared with the control group, after overexpression of IGHG1, the expression of IGHG1 and IgG mRNA, cell proliferation viability, S phase cell ratio, expressions of Cyclin D1, B cell lymphoma-2 (Bcl-2), IgG, TGF-ß1, phosphorylated Smad3 (p-Smad3)/Smad3 protein in THP-1 cells were significantly increased (P<0.05), the apoptosis rate, G0/G1 phase cell ratio, expression of p21, Bcl-2 related X protein (Bax), Caspase-3 protein were significantly reduced (P<0.05); after inhibiting TGF-ß/Smad signaling pathway or silencing IGHG1, the expression of IGHG1 and IgG mRNA, cell proliferation viability, S phase cell ratio, expression of Cyclin D1, Bcl-2, IgG, TGF-ß1, p-Smad3/Smad3 protein in THP-1 cells were significantly reduced (P<0.05), the apoptosis rate, G0/G1 phase cell ratio, expressions of p21, Bax, and Caspase-3 protein were significantly increased (P<0.05); and compared with silencing IGHG1, after co-treatment of IGHG1 gene silencing and TGF-ß/Smad pathway inhibition, the expression of IGHG1 and IgG mRNA, cell proliferation viability, S phase cell ratio, expressions of Cyclin D1, Bcl-2, IgG, TGF-ß1, p-Smad3/Smad3 protein in THP-1 cells were significantly reduced (P<0.05), the apoptosis rate, G0/G1 phase cell ratio, expression of p21, Bax, and Caspase-3 protein were significantly increased (P<0.05). CONCLUSION: Silencing IGHG1 gene can down-regulate the expression of IgG, inhibit the proliferation of human AML THP-1 cells, block cell cycle progression, and induce cell apoptosis; its mechanism may be related to the inhibition of the TGF-ß/Smad pathway activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...