RESUMO
Thyroid cancer usually responds to surgical and ablative therapy, but when it's refractory the alternative lies in tyrosine kinase inhibitors that, in addition to harmful side effects, acts only in a palliative way. The concern for other therapeutic possibilities brought evidence on flavonoids, hypothesizing a possible strategy. This review aimed to organize a compilation of in vitro studies using polyphenol substances in TPC-1 (human papillary thyroid carcinoma cell line) summarizing it's results and describing the metabolic pathways involved. Articles were selected on PubMed, Google Scholar, LILACS, BVS and SciELO, using keywords "thyroid cancer", "flavonoids" and "TPC-1", until June 2022. 185 studies were selected. After identification and exclusion of duplicates and exclusion criteria applied, 11 original articles were evaluated. Of these, the findings of flavonoids added to TPC-1 were: inhibition of cell growth and viability, promotion of cell cycle arrest and induction of apoptosis. Polyphenolic compounds have antineoplastic properties by different mechanisms as shown in vitro, but the concentrations needed are above usual dietary consumption and the findings are limited to experimental cellular studies. Despite that, these results should be useful to guide further analysis aiming to reveal the real safety and efficacy of polyphenols in this scenario.
Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/patologia , Polifenóis/farmacologia , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Antineoplásicos/farmacologia , Flavonoides/farmacologiaRESUMO
ABSTRACT Thyroid cancer usually responds to surgical and ablative therapy, but when it's refractory the alternative lies in tyrosine kinase inhibitors that, in addition to harmful side effects, acts only in a palliative way. The concern for other therapeutic possibilities brought evidence on flavonoids, hypothesizing a possible strategy. This review aimed to organize a compilation of in vitro studies using polyphenol substances in TPC-1 (human papillary thyroid carcinoma cell line) summarizing it's results and describing the metabolic pathways involved. Articles were selected on PubMed, Google Scholar, LILACS, BVS and SciELO, using keywords "thyroid cancer", "flavonoids" and "TPC-1", until June 2022. 185 studies were selected. After identification and exclusion of duplicates and exclusion criteria applied, 11 original articles were evaluated. Of these, the findings of flavonoids added to TPC-1 were: inhibition of cell growth and viability, promotion of cell cycle arrest and induction of apoptosis. Polyphenolic compounds have antineoplastic properties by different mechanisms as shown in vitro, but the concentrations needed are above usual dietary consumption and the findings are limited to experimental cellular studies. Despite that, these results should be useful to guide further analysis aiming to reveal the real safety and efficacy of polyphenols in this scenario.
RESUMO
Two-pore channels (TPCs) are members of the superfamily of ligand-gated and voltage-sensitive ion channels in the membranes of intracellular organelles of eukaryotic cells. The evolution of ordinary plant TPC1 essentially followed a very conservative pattern, with no changes in the characteristic structural footprints of these channels, such as the cytosolic and luminal regions involved in Ca2+ sensing. In contrast, the genomes of mosses and liverworts encode also TPC1-like channels with larger variations at these sites (TPC1b channels). In the genome of the model plant Physcomitrium patens we identified nine non-redundant sequences belonging to the TPC1 channel family, two ordinary TPC1-type, and seven TPC1b-type channels. The latter show variations in critical amino acids in their EF-hands essential for Ca2+ sensing. To investigate the impact of these differences between TPC1 and TPC1b channels, we generated structural models of the EF-hands of PpTPC1 and PpTPC1b channels. These models were used in molecular dynamics simulations to determine the frequency with which calcium ions were present in a coordination site and also to estimate the average distance of the ions from the center of this site. Our analyses indicate that the EF-hand domains of PpTPC1b-type channels have a lower capacity to coordinate calcium ions compared with those of common TPC1-like channels.
RESUMO
Two-pore cation channel, TPC1, is ubiquitous in the vacuolar membrane of terrestrial plants and mediates the long distance signaling upon biotic and abiotic stresses. It possesses a wide pore, which transports small mono- and divalent cations. K+ is transported more than 10-fold faster than Ca2+, which binds with a higher affinity within the pore. Key pore residues, responsible for Ca2+ binding, have been recently identified. There is also a substantial progress in the mechanistic and structural understanding of the plant TPC1 gating by membrane voltage and cytosolic and luminal Ca2+. Collectively, these gating factors at resting conditions strongly reduce the potentially lethal Ca2+ leak from the vacuole. Such tight control is impressive, bearing in mind high unitary conductance of the TPC1 and its abundance, with thousands of active channel copies per vacuole. But it remains a mystery how this high threshold is overcome upon signaling, and what type of signal is emitted by TPC1, whether it is Ca2+ or electrical one, or a transduction via protein conformational change, independent on ion conductance. Here we discuss non-exclusive scenarios for the TPC1 integration into Ca2+, ROS and electrical signaling.
RESUMO
Two Pore Channels (TPCs) are cation-selective voltage- and ligand-gated ion channels in membranes of intracellular organelles of eukaryotic cells. In plants, the TPC1 subtype forms the slowly activating vacuolar (SV) channel, the most dominant ion channel in the vacuolar membrane. Controversial reports about the permeability properties of plant SV channels fueled speculations about the physiological roles of this channel type. TPC1 is thought to have high Ca2+ permeability, a conclusion derived from relative permeability analyses using the Goldman-Hodgkin-Katz (GHK) equation. Here, we investigated in computational analyses the properties of the permeation pathway of TPC1 from Arabidopsis thaliana. Using the crystal structure of AtTPC1, protein modeling, molecular dynamics (MD) simulations, and free energy calculations, we identified a free energy minimum for Ca2+, but not for K+, at the luminal side next to the selectivity filter. Residues D269 and E637 coordinate in particular Ca2+ as demonstrated in in silico mutagenesis experiments. Such a Ca2+-specific coordination site in the pore explains contradicting data for the relative Ca2+/K+ permeability and strongly suggests that the Ca2+ permeability of SV channels is largely overestimated from relative permeability analyses. This conclusion was further supported by in silico electrophysiological studies showing a remarkable permeation of K+ but not Ca2+ through the open channel.