Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
Food Chem X ; 23: 101552, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022784

RESUMO

To improve the activity of single-atom nanozymes (SAzymes) for applications in food analysis, a new bimetal SAzyme FeCe/NC was developed. Its oxidase-like activity is 40% higher than that of single metal SAzyme Fe/NC. Based on a series of characterization investigations, the catalytic mechanism is that it directly catalyzed O2 to generate •OH, O2 •-and 1O2. It could directly catalyze oxidation 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB, thereunder, a FeCe/NC SAzyme-TMB colorimetric method for the detection of tannic acid (TA) was constructed after the optimization of catalytic conditions. The method has a high R2 of 0.995, a low limit of detection (LOD) of 0.26 µmol/L, and high stability. The detection performance was validated by the real samples (tea). Therefore, the prepared bimetallic SAzyme FeCe/NC can be applied for TA detection without the addition of H2O2, and will have broad applications in the areas of food, feed, and life science.

2.
Gels ; 10(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057439

RESUMO

The preparation of conducting polymer aerogels is an effective strategy to produce innovative materials with enhanced physicochemical properties. Herein, polypyrrole (PPy) aerogels were oxidatively prepared in the presence of tannic acid (TA) with different concentrations (2.5, 5, and 10% mole ratio to pyrrole monomer) under freezing conditions. Nanofibrillated cellulose (NFC) was added during the PPy/TA synthesis to enhance mechanical stability. The effect of TA concentration on the aerogels' morphology, conductivity, thermal stability, and adsorption capacity was investigated. The conductivity of 9.6 ± 1.7 S cm-1 was achieved for PPy/TA prepared with 2.5% TA, which decreased to 0.07 ± 0.01 S cm-1 when 10% TA was used. PPy/TA aerogels have shown high efficacy in removing Cr(VI) ions from aqueous solutions. Adsorption experiments revealed that all the aerogels follow pseudo-second-order kinetics. PPy/TA prepared with NFC has a maximum adsorption capacity of 549.5 mg g-1.

3.
Environ Technol ; : 1-18, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010782

RESUMO

Flocculation is one of the most significant conditioning methods for sludge dewatering. In the study, a novel flocculant CS-TA, prepared through free radical-mediated conjugation of tannic acid (TA) and chitosan (CS), was proposed to improve sludge dewatering. The characterisation using Fourier transform infra-red spectroscopy and X-ray diffraction analysis shows that the CS chain was the backbone of CS-TA, and the presence of CS-TA aromatic rings confirmed the conjugation of CS with TA. Moreover, the conditioning of CS-TA yielded the best dewatering performance at 30 mg g TS-1 with the water content of sludge cake by press filtration (Wsc) of 59.78% ± 0.3% and capillary suction time (CST) of 11.8s ± 0.35 s, compared to 98.2% ± 0.15% and 56.2 s ± 0.16 in raw sludge. The results of different influencing factors (e.g. pH and temperature) on flocculation efficiency indicated that CS-TA possessed the capacity for enhancing sludge dewaterability over a wide range of pH, and the optimal temperature was observed to be 35 °C. Furthermore, the increase of particle size and zeta potential implied the addition of CS-TA favoured the formation of larger particles charge neutralisation and adsorption bridging effect. In addition, extracellular polymer substances (EPS) analysis indicated that the decrease in the polysaccharide and protein contents in EPS after CS-TA addition could increase the relative hydrophobicity of sludge. Moreover, the contents of heavy metals in sludge and their leaching toxicity and environmental risk were reduced. This study provides comprehensive insights into the exploration of CS-TA for sludge dewatering and the maintenance of ecological security in an eco-friendly.

4.
Gen Comp Endocrinol ; 357: 114592, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043324

RESUMO

Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt's voles. Male Brandt's voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt's voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt's voles while acting as an antioxidant and anti-inflammatory agent.

5.
Int J Biol Macromol ; : 134055, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038583

RESUMO

Gauze wound dressings have received considerable attention due to their cost-effectiveness, excellent mechanical properties, and widespread applications. However, their inability to actively combat microorganisms and effectively scavenge free radicals results in suboptimal wound management. In this study, a novel nonwoven-based gauze dressing coated with quaternized chitosan/tannic acid (QCS/TA), based on electrostatic interaction and hydrogen bonding, was successfully prepared using a spray-assisted layer-by-layer assembly method. The bio-based nonwoven dressing, assembled with multiple interlacing bilayers, demonstrated outstanding antimicrobial properties, eliminating 99.99 % of Staphylococcus aureus (S. aureus) and 85 % of Escherichia coli (E. coli). Compared to the pristine nonwoven dressing, the QCS/TA-coated nonwoven dressing scavenged >85 % of the surrounding radicals within 2 h. Additionally, the nonwoven dressing exhibits excellent coagulation properties. Notably, the facile spraying procedure preserved most of the softness and breathability of the nonwoven substrate. After the deposition of seven bilayers, the bending stiffness and drape coefficient increased by only 37.63 % and 3.85 %, respectively, while the air permeability and moisture permeability reached 1712 mm/s and 3683.58 g/m2/d, respectively. This bio-based nonwoven dressing, derived from safe and non-toxic ingredients, holds promise as the next generation of multifunctional gauze dressings.

6.
Int J Biol Macromol ; : 133786, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992551

RESUMO

The poor interfacial compatibility of natural fiber-reinforced polymer composites has become a major challenge in the development of industry-standard high-performance composites. To solve this problem, this study constructs a novel rigid-flexible balanced molecular crosslinked network transition interface in composites. The interface improves the interfacial compatibility of the composites by balancing the stiffness and strength of the fibers and the matrix, effectively improving the properties of the composites. The flexural strength and flexural modulus of the composites were enhanced by 38 % and 44 %, respectively. Water absorption decreased by 30 %. The initial and maximum thermal degradation temperatures increased by 20 °C and 16 °C, respectively. The maximum storage modulus increased by 316 %. Furthermore, the impact toughness was elevated by 41 %, attributed to the crosslinked network's efficacy in absorbing and dissipating externally applied energy. This innovative approach introduces a new theory of interfacial reinforcement compatibility, advancing the development of high-performance and sustainable biocomposites.

7.
Sci Rep ; 14(1): 16139, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997417

RESUMO

Rapid and safe hemostasis is crucial for the survival of bleeding patients in prehospital care. It is urgent to develop high performance hemostatic material to control the massive hemorrhage in the military field and accidental trauma. In this work, an efficient protein hemostat of thrombin was immobilized onto commercial gauze, which was mediated by self-polymerization and anchoring of tannic acid (TA). Through TA treatment, the efficient immobilization of thrombin was achieved, preserving both the biological activity of thrombin and the physical properties of the dressing, including absorbency, breathability, and mechanical performance. Moreover, in the presence of TA coating and thrombin, Gau@TA/Thr could obviously shortened clotting time and enriched blood components such as plasma proteins, platelets, and red blood cells, thereby exhibiting an enhanced in vitro coagulation effect. In SD rat liver volume defect and artery transection hemorrhage models, Gau@TA/Thr still had outstanding hemostatic performance. Besides, the Gau@TA/Thr gauze had inherent antibacterial property and demonstrated excellent biocompatibility. All results suggested that Gau@TA/Thr would be a potential candidate for treating uncontrollable hemorrhage in prehospital care.


Assuntos
Bandagens , Coagulação Sanguínea , Hemorragia , Hemostáticos , Taninos , Trombina , Taninos/química , Taninos/farmacologia , Animais , Hemorragia/tratamento farmacológico , Trombina/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Ratos , Hemostáticos/farmacologia , Hemostáticos/química , Ratos Sprague-Dawley , Masculino , Anti-Infecciosos/farmacologia , Humanos , Proteínas Imobilizadas/farmacologia , Proteínas Imobilizadas/química , Modelos Animais de Doenças , Polifenóis
8.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999154

RESUMO

Photo-grafting is a gentle, simple, and precise approach to incorporating specific functional molecules for the surface functionalization of substrates. In this work, ultraviolet (UV)-induced tannic acid (TA) grafting onto the surface of bamboo was proposed as a viable strategy for functionalizing bamboo. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) clearly indicated that TA was successfully introduced to the bamboo's surface. The optimal conditions for the grafting reaction were determined to be 15 mM Methyl-2-benzoylbenzoate (BB), 30 mM TA, 20 min, and a pH = 8. Under these conditions, the amount of TA grafted onto the bamboo's surface was measured to be 19.98 µg/cm2. Results from Inductively Coupled Plasma (ICP) and Energy Dispersive Spectrometer (EDS) analyses showed that the silver ion loading capacity of tannic acid-grafted bamboo was significantly improved compared to that of raw bamboo and tannic acid-impregnated bamboo. Furthermore, the presence of TA grafted on the bamboo's surface exhibited a positive correlation with the loading of silver ions, indicating that grafted TA plays an important role in the surface functionalization of bamboo. We believe that photo-grafted TA may help generate multifunctional bamboo with diverse properties.

9.
Mol Nutr Food Res ; : e2400295, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034291

RESUMO

SCOPE: Diarrhea is a common health issue that contributes to a significant annual death rate among children and the elderly worldwide. The anti-diarrheal activity of Lactobacillus rhamnosus GG (LGG) and tannic acid (TA), alone or combined, is examined, in addition to their effect on intestinal barrier integrity. METHODS AND RESULTS: Fifty-six adult male Wistar rats are randomly assigned into seven groups: control, LGG alone, TA alone, diarrhea model, diarrhea+LGG, diarrhea+TA, and diarrhea+LGG+TA-treated groups. Diarrhea is induced by high-lactose diet (HLD) consumption. LGG (1x109 CFU/rat) and TA (100 mg Kg-1 d-1) were given orally 4 days after HLD feeding and continued for 10 days. Ileum specimens are processed for biochemical analysis of the local intestinal cytokines, polymerase chain reaction (PCR), and histological study. Also, immunohistochemistry-based identification of Proliferating Cell Nuclear Antigen (PCNA) and zonula occludens 1 (ZO-1) is performed. Compared to the diarrhea model group, both treatments maintain the intestinal mucosal structure and proliferative activity and preserve ZO-1 expression, with the combination group showing the maximal effect. However, LGG-treated diarrheic rats show a remarkable decrease in the intestinal tissue concentrations of tumor necrosis factor-alpha (TNF-α) and nuclear factor Kappa beta (NF-κB); meanwhile, TA treatment leads to a selective decrease of interferon-gamma (INF-γ) and transforming growth factor-beta (TGF-ß1). CONCLUSION: Individual LGG and TA treatments significantly alleviate diarrhea, probably through a selective immunomodulatory cytokine-dependent mechanism, while the combination of both synergistically maintains the intestinal mucosa by keeping the intestinal epithelial barrier function and regenerative capability.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39052487

RESUMO

The key to saving lives is to achieve instant and effective sealing hemostasis in the event of emergency bleeding. Herein, a plant oil-based EMTA/Zn2+ bioadhesive is prepared by a facile reaction of epoxidized soybean oil (ESO) with methacrylic acid (MAA) and tannic acid (TA), followed by the addition of zinc ions for coordination with TA. The EMTA/Zn2+ bioadhesive can be rapidly cured in situ at the wound site through photo-cross-linking under ultraviolet (UV) light-emitting diode (LED) irradiation within 30 s, achieving ultrastrong wet-tissue adhesion performance of 92.4 and 51.8 kPa to porcine skin and aortic skin after 7 days underwater, respectively. Especially, the EMTA/Zn2+ bioadhesive exhibits outstanding sealing performance in vitro with the high burst pressure of 525 mmHg (70 kPa) and 337.5 mmHg (45 kPa) to porcine skin and aortic skin, respectively. Moreover, the EMTA/Zn2+ bioadhesive not only has outstanding hemocompatibility and good biodegradability but also exhibits excellent cytocompatibility and antibacterial properties. Notably, the EMTA/Zn2+ bioadhesive has remarkable instant sealing hemostatic ability for hemorrhaging liver in vivo. Therefore, the prepared plant oil-based EMTA/Zn2+ bioadhesive can serve as a charming alternative candidate for instant sealing hemostasis in clinical applications, especially in traumatic internal organs and arterial bleeding.

11.
Environ Anal Health Toxicol ; 39(2): e2024019-0, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39054833

RESUMO

Chronic exposure to glyphosate-based herbicide (Gly) has been associated with neurological disorders. Tannic acid (TA) is an antioxidant with attenuating action against neuroinflammation-associated conditions. This study evaluated the effect of Gly on pain perception alongside antinociceptive and anti-inflammatory actions of TA in Gly-exposed mice. Male Swiss mice were randomly divided into six groups (n=8): control (distilled water 0.2 ml/kg), Gly (Gly 500 mg/kg), Pre-TA + Gly (TA 50 mg/kg pre-treatment, afterwards Gly-administered), TA + Gly (TA 50 mg/kg and Gly co-administered), Pre-AA + Gly (ascorbic acid (AA) 10 mg/kg pre-treatment, afterwards Gly-administered), and AA + Gly (AA 10 mg/kg and Gly co-administered). Mechanical, thermal, and chemical pain were evaluated six weeks post vehicle/drugs administrations orally, followed by brain biochemical measurements. TA treatment alleviated Gly-induced hyperalgesia in similar version to the values of control and AA groups by increasing significantly (p < 0.05) nociceptive thresholds. Moreover, TA-treatment significantly decreased malondialdehyde (MDA) and pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) levels, significantly increased anti-inflammatory cytokines (IL-10, IL-4, and TGF-1ß) levels, and antioxidant enzymes, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities compared to Gly-treated mice (p < 0.05). Conclusively, TA treatment exerted antinociceptive and anti-inflammatory actions, possibly through its antioxidant and anti-inflammatory actions in Gly-exposed mice. Notably, TA pre-treatment showed a better response than TA and Gly co-administration. We propose the potential neuroprotective and ameliorative functions of TA in Gly-induced hyperalgesia. This merits further clinical research into protective roles of TA against pesticide-related conditions.

12.
Food Sci Nutr ; 12(7): 5111-5120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055182

RESUMO

Moderate non-covalent interaction of protein and polyphenols can improve the emulsifying property of protein itself. The corn protein hydrolysate (CPH) and tannic acid (TA) complex was successfully used to construct nanoemulsion for algal oil delivery. There has been no study on the feasibility of this nanoemulsion delivery system for other food functional components, for example, ß-carotene (ß-CE). CPH/TA complex-based nanoemulsion system for ß-CE delivery was studied, focusing on the effect of ß-CE content on the physicochemical stability of the nanoemulsions. The nanoemulsion delivery systems (dia. 150 nm) with low viscosity and good liquidity were easily fabricated by two-step emulsification. The nanoemulsions with high ß-CE content (>71.5 µg/mL) significantly increased (p < .05) the emulsion droplet size. However, there was no significant (p > .05) effect of ß-CE content on polydispersity index (PDI) and zeta potential of the nanoemulsions. The storage (30 days) experiment results demonstrated that the droplet size of the nanoemulsions with varying ß-CE content increased slightly during storage. However, the PDI values showed a slightly decreasing trend. Zeta potentials of the nanoemulsions showed no noticeable change during storage. Moreover, after storage of 30 days, the retention ratios of ß-CE were found to be up to 90%, which suggests an excellent protective effect for ß-CE by the nanoemulsion systems. The CPH/TA complex stabilized nanoemulsions could aggregate in gastric condition, but the ß-CE content did not have obvious effect on the digestive stability of the nanoemulsions. The CPH/TA complex could be employed as an emulsifier to construct a physicochemical stable nanoemulsion delivery system for lipophilic active components.

13.
Environ Technol ; : 1-12, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955495

RESUMO

A novel modification technique employing a layer-by-layer (LbL) self-assembly method, integrated with a pressure-assisted filtration system, was developed for enhancing a commercial polyethersulfone (PES) microfiltration (MF) membrane. This modification involved the incorporation of tannic acid (TA) in conjunction with graphene oxide (GO) nanosheets. The effectiveness of the LbL method was confirmed through comprehensive characterization analyses, including ATR-FTIR, SEM, water contact angle (WCA), and mean pore size measurements, comparing the modified membrane with the original commercial one. Sixteen variations of PES MF membranes were superficially modified using a three-factorial design, with the deposited amount of TA and GO as key factors. The influence of these factors on the morphology and performance of the membranes was systematically investigated, focusing on parameters such as pure water permeability (PWP), blue corazol (BC) dye removal efficiency, and flux recovery rate (FRR). The membranes produced with the maximum amount of GO (0.1 mg, 0.55 wt%) and TA as the inner and outer layers demonstrated remarkable FRR and significant BC removal, exceeding 80%. Notably, there was no significant difference observed when using either 0.2 (1.11 wt%) or 0.4 mg (2.22 wt%) in the first layer, as indicated by the Tukey mean test. Furthermore, the modified membrane designated as MF/TA0.4GO0.1TA0.4 was evaluated in the filtration of a simulated dye bath wastewater, exhibiting a BC removal efficiency of 49.20% and a salt removal efficiency of 27.74%. In conclusion, the novel PES MF membrane modification proposed in this study effectively enhances the key properties of pressure-driven separation processes.

14.
J Biomater Sci Polym Ed ; : 1-21, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953298

RESUMO

Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.

15.
Environ Res ; 259: 119447, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908660

RESUMO

The worldwide demand for antibiotics has experienced a notable surge, propelled by the repercussions of the COVID-19 pandemic and advancements in the global healthcare sector. A prominent challenge confronting humanity is the unregulated release of antibiotic-laden wastewater into the environment, posing significant threats to public health. The adoption of affordable carbon-based adsorbents emerges as a promising strategy for mitigating the contamination of antibiotic wastewater. Here, we report the synthesis of novel porous carbons (MPC) through a direct pyrolysis of MIL-53-NH2(Al) and tannic acid (TANA) under N2 atmosphere at 800 °C for 4 h. The effect of TANA amount ratios (0%-20%, wt wt-1) on porous carbon structure and adsorption performance was investigated. Results showed that TANA modification resulted in decreased surface area (1,600 m2 g-1-949 m2 g-1) and pore volume (2.3 cm3 g-1-1.7 cm3 g-1), but supplied hydroxyl functional groups. Adsorption kinetic, intraparticle diffusion, and isotherm were examined, indicating the best fit of Elovich and Langmuir models. 10%-TANA-MPC obtained an ultrahigh adsorption capacity of 564.4 mg g-1, which was approximately 2.1 times higher than that of unmodified porous carbon. 10%-TANA-MPC could be easily recycled up to 5 times, and after reuse, this adsorbent still remained highly stable in morphology and surface area. The contribution of H bonding, pore-filling, electrostatic and π-π interactions to chloramphenicol adsorption was clarified. It is recommended that TANA-modified MIL-53-NH2(Al)-derived porous carbons act as a potential adsorbent for removal of pollutants effectively.

16.
Heliyon ; 10(10): e31209, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826744

RESUMO

The ability of ureolytic bacteria to break down stable urea to alkaline ammonia leads to several environmental and health challenges. Ureolytic bacteria such as Helicobacter pylori, Klebsiella pneumoniae, and Proteus mirabilis can become pathogenic and cause persistent infections that can be difficult to treat. Inhibiting urease activity can reduce the growth and pathogenicity of ureolytic bacteria. In the present in vitro study, we investigated the synergistic effects of tannic acid (TA) and the urease inhibitors fluoride (F-) and acetohydroxamic acid (AHA). The concentration of AHA needed for efficient inhibition of the ureolytic activity of K. pneumoniae can be significantly reduced if AHA is coapplied with tannic acid and sodium fluoride (NaF). Thus, only 1.20 µmol l-1 AHA in combination with 0.30 mmol l-1 tannic acid and 0.60 mmol l-1 NaF delayed the onset of ureolytic pH increase by 95.8 % and increased the growth lag phase by 124.3 % relative to untreated K. pneumoniae. At these concentrations, without AHA, TA and NaF increased the onset of the ureolytic pH change by only 37.0 % and the growth lag phase by 52.5 %. The strong inhibition obtained with low concentrations of AHA in triple-compound treatments suggests cobinding of F- and AHA at the urease active site and could reduce the side effects of AHA when it is employed as a drug against e.g. urinary tract infections (UTIs) and blocked catheters. This study reports the basis for a promising novel therapeutic strategy to combat infections caused by ureolytic bacteria and the formation of urinary tract stones and crystalline biofilms on catheters.

17.
Sci Rep ; 14(1): 12864, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834664

RESUMO

Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.


Assuntos
Alginatos , Quitosana , Hidrogéis , Queratinas , Taninos , Quitosana/química , Quitosana/análogos & derivados , Taninos/química , Alginatos/química , Hidrogéis/química , Humanos , Queratinas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Módulo de Elasticidade , Antibacterianos/química , Antibacterianos/farmacologia
18.
Carbohydr Polym ; 341: 122348, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876718

RESUMO

Antibiotic abuse is increasing the present rate of drug-resistant bacterial wound infections, producing a significant healthcare burden globally. Herein, we prepared a pH-responsive CMCS/PVP/TA (CPT) multifunctional hydrogel dressing by embedding the natural plant extract TA as a nonantibiotic and cross-linking agent in carboxymethyl chitosan (CMCS) and polyvinylpyrrolidone (PVP) to prompt wound healing. The CPT hydrogel demonstrated excellent self-healing, self-adaptive, and adhesion properties to match different wound requirements. Importantly, this hydrogel showed pH sensitivity and exhibited good activity against resistant bacteria and antioxidant activity by releasing TA in case of bacterial infection (alkaline). Furthermore, the CPT hydrogel exhibited coagulant ability and could rapidly stop bleeding within 30 s. The biocompatible hydrogel effectively accelerated wound healing in a full-thickness skin defect model by thickening granulation tissue, increasing collagen deposition, vascular proliferation, and M2-type macrophage polarization. In conclusion, this study demonstrates that multifunctional CPT hydrogel offers a candidate material with potential applications for infected skin wound healing.


Assuntos
Antibacterianos , Bandagens , Quitosana , Hidrogéis , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Quitosana/síntese química , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Animais , Concentração de Íons de Hidrogênio , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Povidona/química , Masculino , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Pele/efeitos dos fármacos , Pele/patologia
19.
Int J Biol Macromol ; 274(Pt 2): 133207, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897494

RESUMO

The substantial waste of perishable foods during transportation significantly contributes to greenhouse gas emissions, intensifying the climate crisis. To mitigate the rapid spoilage of fruits, an eco-friendly bilayer film was developed using natural egg white (EW), amylose (Am), and tannic acid (TA). The EW/Am-TA bilayer film features a primary layer of amphiphilic EW, ensuring a uniform coating on hydrophobic fruit surfaces, and a secondary layer composed of Am and TA, imparting notable tensile strength (5.3 ± 0.5 MPa) and elongation at break (28.5 ± 4.1 %). This bilayer film effectively shields fruits from UV-B and UV-C radiation (~0 % transmittance at 280 and 330 nm) and exhibits antioxidant and antibacterial properties due to the presence of TA. Fruits such as bananas, avocados, and cherry tomatoes, when dip-coated with the optimized EW/Am-TA bilayer, maintained their freshness, color, weight, and texture for up to seven days, demonstrating the effectiveness of this bilayer coating in food preservation. The natural materials in the coated film are edible and can be safely removed with tap water at room temperature in <10 s, posing no food safety risks. Thus, the proposed bilayer coating presents a significant solution to the global problem of food waste.

20.
ACS Appl Bio Mater ; 7(6): 3786-3795, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38828920

RESUMO

Tannic acid (TA) possesses a notable ability to adhere to proline-rich proteins that make up skin cells and the extracellular matrix (ECM) in the skin tissue. Drug carriers with this specific adhesion ability exhibit improved drug delivery efficiency on the skin. Taking advantage of this, this study presents skin-adhesive TA-conjugated lipid nanovesicles (TANVs) for enhanced transdermal antioxidant delivery. We found that TANVs exhibited selective intermolecular interactions with keratinocyte proline-rich proteins (KPRPs) and collagen that makes up skin cells by hydrogen bonding and van der Waals interactions, further enabling the strong bonding to macroscopic skin itself and ECM. We used vitamin E (α-tocopherol), which is known to effectively reduce oxidative stress but has limited skin penetration, as a drug to verify improved in vitro delivery and therapeutic efficacy. The evaluation revealed that the antioxidant-loaded TANVs exerted excellent scavenging effects against reactive oxygen species induced by ultraviolet light or peroxides in the skin, thereby enabling the development of an active drug delivery system for dermal therapy.


Assuntos
Antioxidantes , Lipídeos , Tamanho da Partícula , Taninos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Taninos/química , Animais , Lipídeos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Humanos , Pele/metabolismo , Administração Cutânea , Portadores de Fármacos/química , Nanopartículas/química , Prolina/química , Espécies Reativas de Oxigênio/metabolismo , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...