Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ital J Pediatr ; 50(1): 192, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334216

RESUMO

BACKGROUND: Silver-Russell Syndrome (SRS, MIM #180860) is a clinically and genetically heterogeneous disorder characterized by intrauterine and postnatal growth retardation; SRS is also accompanied by dysmorphic features such as triangular facial appearance, broad forehead, body asymmetry and significant feeding difficulties. The incidence is unknown but estimated at 1:30,000-100,000 live births. The diagnosis of SRS is guided by specific criteria described in the Netchine-Harbison clinical scoring system (NH-CSS). CASE PRESENTATION: Hereby we describe four patients with syndromic short stature in whom, despite fitting the criteria for SRS genetic analysis (and one on them even meeting the clinical criteria for SRS), molecular analysis actually diagnosed a different syndrome. Some additional features such as hypotonia, microcephaly, developmental delay and/or intellectual disability, and family history of growth failure, were actually discordant with SRS in our cohort. CONCLUSIONS: The clinical resemblance of other short stature syndromes with SRS poses a risk of diagnostic failure, in particular when clinical SRS only criteria are met, allowing SRS diagnosis in the absence of a positive result of a genetic test. The presence of additional features atypical for SRS diagnosis becomes a red flag for a more extensive and thorough analysis. The signs relevant to the differential diagnosis should be valued as much as possible since a correct diagnosis of these patients is the only way to provide the appropriate care pathway, a thorough genetic counselling, prognosis definition, follow up setting, appropriate monitoring and care of possible medical problems.


Assuntos
Síndrome de Silver-Russell , Humanos , Feminino , Masculino , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico , Pré-Escolar , Diagnóstico Diferencial , Criança , Nanismo/genética , Nanismo/diagnóstico , Lactente , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-39324648

RESUMO

CONTEXT: Defects in MKRN3, DLK1, KISS1, and KISS1R and some disorders, such as Temple syndrome (TS14), cause central precocious puberty (CPP). Recently, pathogenic variants (PVs) in MECP2 have been reported to be associated with CPP. OBJECTIVE: We aimed to clarify the contribution of (epi)genetic abnormalities to CPP and clinical and hormonal features in each etiology. SUBJECTS AND METHODS: We conducted targeted sequencing for MKRN3, DLK1, MECP2, KISS1, and KISS1R and methylation analysis for screening of imprinting disorders such as TS14 associated with CPP in 90 patients with CPP (no history of brain injuries and negative brain MRI) and collected their clinical and laboratory data. We measured serum DLK1 levels in three patients with TS14 and serum MKRN3 levels in two patients with MKRN3 genetic defects, together with some etiology-unknown patients with CPP and controls. RESULTS: We detected eight patients with TS14 (six, epimutation; one, mosaic maternal uniparental disomy chromosome 14; one, microdeletion) and three patients with MKRN3 genetic defects (one, PV; one, 13-bp deletion in the 5'-untranslated region (5'-UTR); one, microdeletion) with family histories of paternal early puberty. There were no patients with PVs identified in MECP2, KISS1, or KISS1R. We confirmed low serum MKRN3 level in the patient with a deletion in 5'-UTR. The median height at initial evaluation of TS14 patients was lower than that of all patients. Six patients with TS14 were born small for gestational age (SGA). CONCLUSION: (Epi)genetic causes were identified in 12.2% of patients with CPP at our center. For patients with CPP born SGA or together with family histories of paternal early puberty, (epi)genetic testing for TS14 and MKRN3 genetic defects should be considered. (271/250).

3.
Eur J Endocrinol ; 190(6): 479-488, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38857188

RESUMO

OBJECTIVES: The etiology of central precocious puberty (CPP) has expanded with identification of new genetic causes, including the monogenic deficiency of Makorin-Ring-Finger-Protein-3 (MKRN3). We aimed to assess the prevalence of CPP causes and the predictors of genetic involvement in this phenotype. DESIGN: A retrospective cohort study for an etiological survey of patients with CPP from a single academic center. METHODS: All patients with CPP had detailed medical history, phenotyping, and brain magnetic resonance imaging (MRI); those with negative brain MRI (apparently idiopathic) were submitted to genetic studies, mainly DNA sequencing studies, genomic microarray, and methylation analysis. RESULTS: We assessed 270 patients with CPP: 50 (18.5%) had CPP-related brain lesions (34 [68%] congenital lesions), whereas 220 had negative brain MRI. Of the latter, 174 (165 girls) were included for genetic studies. Genetic etiologies were identified in 22 patients (20 girls), indicating an overall frequency of genetic CPP of 12.6% (22.2% in boys and 12.1% in girls). The most common genetic defects were MKRN3, Delta-Like-Non-Canonical-Notch-Ligand-1 (DLK1), and Methyl-CpG-Binding-Protein-2 (MECP2) loss-of-function mutations, followed by 14q32.2 defects (Temple syndrome). Univariate logistic regression identified family history (odds ratio [OR] 3.3; 95% CI 1.3-8.3; P = .01) and neurodevelopmental disorders (OR 4.1; 95% CI 1.3-13.5; P = .02) as potential clinical predictors of genetic CPP. CONCLUSIONS: Distinct genetic causes were identified in 12.6% patients with apparently idiopathic CPP, revealing the genetic etiology as a relevant cause of CPP in both sexes. Family history and neurodevelopmental disorders were suggested as predictors of genetic CPP. We originally proposed an algorithm to investigate the etiology of CPP including genetic studies.


Assuntos
Puberdade Precoce , Humanos , Puberdade Precoce/genética , Puberdade Precoce/etiologia , Puberdade Precoce/epidemiologia , Feminino , Masculino , Criança , Estudos Retrospectivos , Pré-Escolar , Imageamento por Ressonância Magnética , Ribonucleoproteínas/genética , Estudos de Coortes , Ubiquitina-Proteína Ligases/genética , Mutação , Encéfalo/diagnóstico por imagem
4.
Intern Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38749734

RESUMO

We herein present the case of a 21-year-old male Japanese diabetic patient with Temple syndrome, caused by maternal uniparental disomy of chromosome 14. The patient was overweight and had type 2 diabetes, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and microalbuminuria. He had an increased fat mass in the truncal region and a decreased lean mass throughout the body. This may lead to insulin resistance due to the absence of delta-like homolog 1 (DLK1) and retrotransposon gag-like 1 (RTL1). The patient had experienced social withdrawal at home (hikikomori in Japanese), had poorly controlled type 2 diabetes, and was overweight despite receiving diet therapy and oral hypoglycemic agents.

5.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715103

RESUMO

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Assuntos
Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 14 , Metilação de DNA , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular , Criança , Humanos , Anormalidades Múltiplas/genética , Proteínas de Ligação ao Cálcio/genética , Deleção Cromossômica , Cromossomos Humanos Par 14/genética , Hibridização Genômica Comparativa/métodos , Metilação de DNA/genética , Fácies , Impressão Genômica/genética , Transtornos da Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Hipotonia Muscular , Fenótipo
6.
Horm Res Paediatr ; 96(5): 483-494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36977395

RESUMO

INTRODUCTION: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal uniparental disomy of chromosome 14, paternal deletion of 14q32.2, or an isolated methylation defect. Most patients with TS14 develop precocious puberty. Some patients with TS14 are treated with growth hormone (GH). However, evidence for the effectiveness of GH treatment in patients with TS14 is limited. METHODS: This study describes the effect of GH treatment in 13 children and provides a subgroup analysis of 5 prepubertal children with TS14. We studied height, weight, body composition by dual-energy X-ray absorptiometry, resting energy expenditure (REE), and laboratory parameters during 5 years of GH treatment. RESULTS: In the entire group, mean (95% CI) height SDS increased significantly during 5 years of GH treatment from -1.78 (-2.52; -1.04) to 0.11 (-0.66; 0.87). Fat mass percentage SDS decreased significantly during the first year of GH, and lean body mass (LBM) SDS and LBM index increased significantly during 5 years of treatment. IGF-1 and IGF-BP3 levels rose rapidly during GH treatment, and the IGF-1/IGF-BP3 molar ratio remained relatively low. Thyroid hormone levels, fasting serum glucose, and insulin levels remained normal. In the prepubertal group, median (interquartile range [IQR]) height SDS, LBM SDS, and LBM index also increased. REE was normal at start and did not change during 1 year of treatment. Five patients reached adult height and their median (IQR) height SDS was 0.67 (-1.83; -0.01). CONCLUSION: GH treatment in patients with TS14 normalizes height SDS and improves body composition. There were no adverse effects or safety concerns during GH treatment.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Prader-Willi , Criança , Adulto , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento , Composição Corporal , Dissomia Uniparental , Estatura
7.
Artigo em Inglês | MEDLINE | ID: mdl-36728278

RESUMO

Temple syndrome (TS) is a rare imprinting disorder, caused by alterations in the critical imprinted region 14q32 of chromosome 14. It is characterized by pre- and postnatal growth retardation, truncal hypotonia and facial dysmorphism in the neonatal period. We report a 18-year-old girl with a late diagnosis presenting all typical signs and symptoms of Temple syndrome - small for gestational age at birth, feeding difficulties, muscle hypotonia and delayed developmental milestones, central precocious puberty, truncal obesity and reduced growth. The patient is the second reported in the literature with signs of clinical and biochemical hyperandrogenism and the first treated with Dehydrocortisone®, with a good response. The clinical diagnosis of this patient was achieved after a long-term follow up at a single center of rare endocrine diseases, and a molecular genetics diagnosis of complete hypomethylation of 14q32 chromosome imprinting center (DLK/GTL2) was recently established. Growth hormone (GH) treatment was not given and although precocious puberty was treated in line with standard protocols, patient's final height remained below the target range. Increased awareness of Temple syndrome and timely molecular diagnosis enables improvement of clinical care of these patients as well as prevention of inherent metabolic consequences.

8.
Clin Epigenetics ; 14(1): 190, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578048

RESUMO

BACKGROUND: Parental imprinting is an epigenetic mechanism that leads to monoallelic expression of a subset of genes depending on their parental origin. Imprinting disorders (IDs), caused by disturbances of imprinted genes, are a set of rare congenital diseases that mainly affect growth, metabolism and development. To date, there is no accurate model to study the physiopathology of IDs or test therapeutic strategies. Human induced pluripotent stem cells (iPSCs) are a promising cellular approach to model human diseases and complex genetic disorders. However, aberrant hypermethylation of imprinting control regions (ICRs) may appear during the reprogramming process and subsequent culture of iPSCs. Therefore, we tested various conditions of reprogramming and culture of iPSCs and performed an extensive analysis of methylation marks at the ICRs to develop a cellular model that can be used to study IDs. RESULTS: We assessed the methylation levels at seven imprinted loci in iPSCs before differentiation, at various passages of cell culture, and during chondrogenic differentiation. Abnormal methylation levels were found, with hypermethylation at 11p15 H19/IGF2:IG-DMR and 14q32 MEG3/DLK1:IG-DMR, independently of the reprogramming method and cells of origin. Hypermethylation at these two loci led to the loss of parental imprinting (LOI), with biallelic expression of the imprinted genes IGF2 and DLK1, respectively. The epiPS™ culture medium combined with culturing of the cells under hypoxic conditions prevented hypermethylation at H19/IGF2:IG-DMR (ICR1) and MEG3/DLK1:IG-DMR, as well as at other imprinted loci, while preserving the proliferation and pluripotency qualities of these iPSCs. CONCLUSIONS: An extensive and quantitative analysis of methylation levels of ICRs in iPSCs showed hypermethylation of certain ICRs in human iPSCs, especially paternally methylated ICRs, and subsequent LOI of certain imprinted genes. The epiPS™ culture medium and culturing of the cells under hypoxic conditions prevented hypermethylation of ICRs in iPSCs. We demonstrated that the reprogramming and culture in epiPS™ medium allow the generation of control iPSCs lines with a balanced methylation and ID patient iPSCs lines with unbalanced methylation. Human iPSCs are therefore a promising cellular model to study the physiopathology of IDs and test therapies in tissues of interest.


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Humanos , Metilação de DNA , Células-Tronco Pluripotentes Induzidas/metabolismo , Impressão Genômica , Epigênese Genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
J Clin Med ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36362517

RESUMO

BACKGROUND: Temple syndrome (TS14) is an imprinting disorder caused by a maternal uniparental disomy of chromosome 14 (UPD(14)mat), paternal deletion of 14q32 or an isolated methylation defect of the MEG3-DMR. Studies on phenotypical characteristics in TS14 are scarce and patients with TS14 often experience delay in diagnosis, which has adverse effects on their health. TS14 is often characterized as either Prader-Willi-like, Silver-Russell-like or as a Silver-Russell spectrum disorder. METHODS: This study describes 15 patients with TS14 who visited the Dutch Reference Center for Prader-Willi-like from December 2018 to January 2022. RESULTS: Eight patients had UPD(14)mat and seven a methylation defect. The most common symptoms were intra-uterine growth retardation (IUGR) (100%), hypotonia (100%), precocious puberty (89%), small for gestational age (SGA) birth (67%), tube feeding after birth (53%) and psycho-behavioral problems (53%). Median (interquartile range (IQR)) IQ was 91.5 (84.25; 100.0), whilst many patients were enrolled in special education (54%). The median (IQR) fat mass % (FM%) SDS was 2.53 (2.26; 2.90) and lean body mass (LBM) SDS -2.03 (-3.22; -1.28). There were no significant differences in clinical characteristics between patients with a UPD(14)mat and a methylation defect. CONCLUSIONS: Our patients share a distinct phenotype consisting of IUGR, SGA birth, precocious puberty, hypotonia, tube feeding after birth, psycho-behavioral problems and abnormal body composition with a high FM% and low LBM. Whilst similarities with Prader-Willi syndrome (PWS) and Silver-Russell syndrome (SRS) exist, TS14 is a discernible syndrome, deserving a tailored clinical approach. Testing for TS14 should be considered in patients with a PWS or SRS phenotype in infancy if PWS/SRS testing is negative.

10.
Front Genet ; 13: 959666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035167

RESUMO

The aim of this work was to explore the genetic cause of the proband (Ⅲ2) presenting with polyhydramnios and gastroschisis. Copy number variation sequencing (CNV-seq), methylation-specific multiplex PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were used to characterize the genetic etiology. CNV-seq revealed a deletion of 732.26 kb at 14q32.2q32.31 in the proband (Ⅲ2) and its mother (Ⅱ2). MS-PCR showed the maternal allele was missing in the proband, while paternal allele was missing in its mother. MS-MLPA showed deletion of the DLK1, MEG3, MIR380, and RTL1 genes of both the proband and its mother. MEG3 imprinting gene methylation increased in the proband, while decreased in its mother. It was indicated that a maternally transmitted deletion was responsible for Kagami-Ogata syndrome in the proband (Ⅲ2), and the de novo paternal deletion resulted in Temple syndrome in the mother (Ⅱ2). Prenatal diagnosis was provided at 17+3 weeks of pregnancy on the mother's fourth pregnancy (Ⅲ4). Fortunately, the karyotype and single-nucleotide polymorphism array (SNP array) results were normal. The current investigation provided the detection methods for imprinted gene diseases, expanded the phenotype spectrum of the disease, and obtained the insight into the diagnosis, prenatal diagnosis, and genetic counseling of the disease.

11.
Front Endocrinol (Lausanne) ; 13: 862817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898454

RESUMO

Background: Pediatric obesity is a multifactorial disease which can be caused by underlying medical disorders arising from disruptions in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure. Aim: To investigate and compare resting energy expenditure (REE) and body composition characteristics of children and adolescents with severe obesity with or without underlying medical causes. Methods: This prospective observational study included pediatric patients who underwent an extensive diagnostic workup in our academic centre that evaluated endocrine, non-syndromic and syndromic genetic, hypothalamic, and medication-induced causes of obesity. REE was assessed by indirect calorimetry; body composition by air displacement plethysmography. The ratio between measured REE (mREE) and predicted REE (Schofield equations), REE%, was calculated, with decreased mREE defined as REE% ≤90% and elevated mREE ≥110%. Additionally, the influence of fat-free-mass (FFM) on mREE was evaluated using multiple linear regression. Results: We included 292 patients (146 [50%] with body composition measurements), of which 218 (75%) patients had multifactorial obesity and 74 (25%) an underlying medical cause: non-syndromic and syndromic genetic (n= 29 and 28, respectively), hypothalamic (n= 10), and medication-induced (n= 7) obesity. Mean age was 10.8 ± 4.3 years, 59% were female, mean BMI SDS was 3.8 ± 1.1, indicating severe obesity. Mean REE% was higher in children with non-syndromic genetic obesity (107.4% ± 12.7) and lower in children with hypothalamic obesity (87.6% ± 14.2) compared to multifactorial obesity (100.5% ± 12.6, both p<0.01). In 9 children with pseudohypoparathyroidism type 1a, mean REE% was similar (100.4 ± 5.1). Across all patients, mREE was decreased in 60 (21%) patients and elevated in 69 (24%) patients. After adjustment for FFM, mREE did not differ between patients within each of the subgroups of underlying medical causes compared to multifactorial obesity (all p>0.05). Conclusions: In this cohort of children with severe obesity due to various etiologies, large inter-individual differences in mREE were found. Consistent with previous studies, almost half of patients had decreased or elevated mREE. This knowledge is important for patient-tailored treatment, e.g. personalized dietary and physical activity interventions and consideration of pharmacotherapy affecting central energy expenditure regulation in children with decreased mREE.


Assuntos
Obesidade Mórbida , Obesidade Infantil , Adolescente , Composição Corporal , Calorimetria Indireta , Criança , Metabolismo Energético/genética , Feminino , Humanos , Masculino , Obesidade Infantil/genética
12.
Endocr Rev ; 43(1): 1-18, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34460908

RESUMO

Prader-Willi syndrome (PWS) is a rare genetic syndrome, caused by the loss of expression of the paternal chromosome 15q11-q13 region. Over the past years, many cases of patients with characteristics similar to PWS, but without a typical genetic aberration of the 15q11-q13 region, have been described. These patients are often labelled as Prader-Willi-like (PWL). PWL is an as-yet poorly defined syndrome, potentially affecting a significant number of children and adults. In the current clinical practice, patients labelled as PWL are mostly left without treatment options. Considering the similarities with PWS, children with PWL might benefit from the same care and treatment as children with PWS. This review gives more insight into the pheno- and genotype of PWL and includes 86 papers, containing 368 cases of patients with a PWL phenotype. We describe mutations and aberrations for consideration when suspicion of PWS remains after negative testing. The most common genetic diagnoses were Temple syndrome (formerly known as maternal uniparental disomy 14), Schaaf-Yang syndrome (truncating mutation in the MAGEL2 gene), 1p36 deletion, 2p deletion, 6q deletion, 6q duplication, 15q deletion, 15q duplication, 19p deletion, fragile X syndrome, and Xq duplication. We found that the most prevalent symptoms in the entire group were developmental delay/intellectual disability (76%), speech problems (64%), overweight/obesity (57%), hypotonia (56%), and psychobehavioral problems (53%). In addition, we propose a diagnostic approach to patients with a PWL phenotype for (pediatric) endocrinologists. PWL comprises a complex and diverse group of patients, which calls for multidisciplinary care with an individualized approach.


Assuntos
Deficiência Intelectual , Síndrome de Prader-Willi , Criança , Genótipo , Humanos , Hipotonia Muscular , Fenótipo , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Proteínas/genética
13.
Clin Epigenetics ; 13(1): 119, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039421

RESUMO

BACKGROUND: ZNF445, as well as ZFP57, is involved in the postfertilization methylation maintenance of multiple imprinting-associated differentially methylated regions (iDMRs). Thus, ZNF445 pathogenic variants are predicted to cause multilocus imprinting disturbances (MLIDs), as do ZFP57 pathogenic variants. In particular, the MEG3/DLK1:IG-DMR would be affected, because the postzygotic methylation imprint of the MEG3/DLK1:IG-DMR is maintained primarily by ZNF445, whereas that of most iDMRs is preserved by both ZFP57 and ZNF445 or primarily by ZFP57. RESULTS: We searched for a ZNF445 variant(s) in six patients with various imprinting disorders (IDs) caused by epimutations and MLIDs revealed by pyrosequencing for nine iDMRs, without a selection for the original IDs. Re-analysis of the previously obtained whole exome sequencing data identified a homozygous ZNF445 variant (NM_181489.6:c.2803C>T:p.(Gln935*)) producing a truncated protein missing two of 14 zinc finger domains in a patient with Temple syndrome and MLID. In this patient, array-based genomewide methylation analysis revealed severe hypomethylation of most CpGs at the MEG3:TSS-DMR, moderate hypomethylation of roughly two-thirds of CpGs at the H19/IGF2:IG-DMR, and mild-to-moderate hypomethylation of a few CpGs at the DIRAS3:TSS-DMR, MEST:alt-TSS-DMR, IGF2:Ex9-DMR, IGF2:alt-TSS, and GNAS-AS1:TSS-DMR. Furthermore, bisulfite sequencing analysis for the MEG3/DLK1:IG-DMR delineated a markedly hypomethylated segment (CG-A). The heterozygous parents were clinically normal and had virtually no aberrant methylation pattern. CONCLUSIONS: We identified a ZNF445 pathogenic variant for the first time. Since ZNF445 binds to the MEG3/DLK1:IG-DMR and other iDMRs affected in this patient, the development of Temple syndrome and MLID would primarily be explained by the ZNF445 variant. Furthermore, CG-A may be the target site for ZNF445 within the MEG3/DLK1:IG-DMR.


Assuntos
Epigênese Genética/genética , Impressão Genômica/genética , Hallux/anormalidades , Deficiência Intelectual/genética , Unhas Malformadas/genética , Proteínas Repressoras/genética , Polegar/anormalidades , Dedos de Zinco/genética , Pré-Escolar , Feminino , Humanos , Tipagem de Sequências Multilocus
14.
Genes (Basel) ; 12(4)2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920525

RESUMO

Intrauterine and postnatal growth disturbances are major clinical features of imprinting disorders, a molecularly defined group of congenital syndromes caused by molecular alterations affecting parentally imprinted genes. These genes are expressed monoallelically and in a parent-of-origin manner, and they have an impact on human growth and development. In fact, several genes with an exclusive expression from the paternal allele have been shown to promote foetal growth, whereas maternally expressed genes suppress it. The evolution of this correlation might be explained by the different interests of the maternal and paternal genomes, aiming for the conservation of maternal resources for multiple offspring versus extracting maximal maternal resources. Since not all imprinted genes in higher mammals show the same imprinting pattern in different species, the findings from animal models are not always transferable to human. Therefore, human imprinting disorders might serve as models to understand the complex regulation and interaction of imprinted loci. This knowledge is a prerequisite for the development of precise diagnostic tools and therapeutic strategies for patients affected by imprinting disorders. In this review we will specifically overview the current knowledge on imprinting disorders associated with growth retardation, and its increasing relevance in a personalised medicine direction and the need for a multidisciplinary therapeutic approach.


Assuntos
Retardo do Crescimento Fetal/genética , Redes Reguladoras de Genes , Impressão Genômica , Metilação de DNA , Feminino , Predisposição Genética para Doença , Humanos , Fenótipo , Medicina de Precisão , Gravidez
15.
Eur J Med Genet ; 64(5): 104199, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33746039

RESUMO

Temple syndrome (TS14) can be originated by maternal uniparental disomy (UPD(14)mat), paternal deletion, or epimutation, leading to disturbances in 14q32.2 imprinted region. The most frequent phenotypic manifestations are prenatal and postnatal growth failure, hypotonia, developmental delay, small hands/feet, precocious puberty, and truncal obesity. However, the diagnosis can be challenging due to the clinical overlap with other imprinting disorders such as Silver-Russell or Prader-Willi syndromes. Although rare, TS14 has been also reported in patients with concomitant UPD(14)mat and mosaic trisomy 14. In the present report, the clinical and genetic profiles of two new patients with TS14 are described. SNParray and MS-MLPA, allowed the determination of segmental UPD(14)mat and the hypomethylation of MEG3 gene. Additionally, in one of our patients we also observed by cytogenetics a small supernumerary marker chromosome that led to partial trisomy 14 in mosaic. Only few patients with concomitant UPD(14)mat and mosaic partial trisomy 14 have been reported. Our patients share cardinal TS14 phenotypic features that are associated to the genetic abnormalities detected; however, we also observed some clinical features such as fatty liver disease that had not previously been reported as part of this syndrome. The detailed clinical, cytogenetical and molecular description of these two new patients, contributes to a more accurately delineation of this syndrome.


Assuntos
Cromossomos Humanos Par 14/genética , Deficiências do Desenvolvimento/genética , Hepatopatias/genética , Megalencefalia/genética , Dissomia Uniparental , Adolescente , Criança , Deficiências do Desenvolvimento/patologia , Humanos , Hepatopatias/patologia , Masculino , Megalencefalia/patologia , Mosaicismo , Síndrome
16.
Am J Med Genet A ; 185(5): 1538-1543, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595182

RESUMO

We describe a patient with Temple syndrome resulting from maternal uniparental disomy of chromosome 14 who also has low-level mosaicism for trisomy 14. UPD was initially suspected when SNP microarray analysis detected a large region of homozygosity on chromosome 14 and the patient's clinical features were consistent with the phenotype of upd(14)mat. However, SNP arrays cannot prove UPD, as homozygosity may also result from identity by descent. Methylation assays diagnose imprinting disorders such as Prader-Willi, Angelman and Temple syndromes; they detect methylation defects that occur in imprinted loci, which have parent-of-origin-specific expression and have the advantage of making a diagnosis without parental samples. However, in this patient methylation analysis using endpoint PCR detected biparental inheritance. Therefore, sequencing analysis was performed and diagnosed upd(14)mat. Re-examination of the microarray suggested that the explanation for the discrepancy between the array and methylation testing was low-level mosaicism for trisomy 14 and fluorescence in situ hybridization testing detected a trisomic cell line. Thus, this patient's Temple syndrome is a result of a maternal M1 error, which gave a trisomic zygote, followed by loss of the paternal chromosome 14 in an early mitotic division to give maternal UPD with low-level mosaicism for trisomy 14. The methylation assay detected the paternal allele in the trisomic line. The diagnostic failure of the methylation assay in this patient highlights a significant shortcoming of methylation endpoint analysis, especially for Temple syndrome, and underscores the need to use other methods in cases with mosaicism.


Assuntos
Megalencefalia/diagnóstico , Síndrome de Prader-Willi/diagnóstico , Trissomia/genética , Dissomia Uniparental/genética , Cromossomos Humanos Par 14/genética , Metilação de DNA/genética , Feminino , Impressão Genômica/genética , Humanos , Hibridização in Situ Fluorescente , Megalencefalia/genética , Megalencefalia/patologia , Análise em Microsséries , Mosaicismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Trissomia/patologia , Dissomia Uniparental/patologia
17.
Clin Epigenetics ; 12(1): 159, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092629

RESUMO

BACKGROUND: Imprinting disorders (IDs) show overlapping phenotypes, particularly in Silver-Russell syndrome (SRS), Temple syndrome (TS14), and Prader-Willi syndrome (PWS). These three IDs include fetal and postnatal growth failure, feeding difficulty, and muscular hypotonia as major clinical features. However, the mechanism that causes overlapping phenotypes has not been clarified. To investigate the presence or absence of methylation signatures associated with overlapping phenotypes, we performed genome-wide methylation analysis (GWMA). RESULTS: GWMA was carried out on 36 patients with three IDs (SRS [n = 16], TS14 [n = 7], PWS [n = 13]) and 11 child controls using HumanMethylation450 BeadChip including 475,000 CpG sites across the human genome. To reveal an aberrantly methylated region shared by SRS, TS14, and PWS groups, we compared genome-wide methylation data of the three groups with those of control subjects. All the identified regions were known as SRS-, TS14-, and PWS-related imprinting-associated differentially methylated regions (iDMRs), and there was no hypermethylated or hypomethylated region shared by different ID groups. To examine the methylation pattern shared by SRS, TS14, and PWS groups, we performed clustering analysis based on GWMA data. The result focusing on 620 probes at the 62 known iDMRs (except for SRS-, TS14-, and PWS-related iDMRs) classified patients into two categories: (1) category A, grossly normal methylation patterns mainly consisting of SRS group patients; and (2) category B, broad and mild hypermethylation patterns mainly consisting of TS14 and PWS group patients. However, we found no obvious relationship between these methylation patterns and phenotypes of patients. CONCLUSIONS: GWMA in three IDs found no methylation signatures shared by SRS, TS14, and PWS groups. Although clustering analysis showed similar mild hypermethylation patterns in TS14 and PWS groups, further study is needed to clarify the effect of methylation patterns on the overlapping phenotypes.


Assuntos
Hallux/anormalidades , Deficiência Intelectual/genética , Unhas Malformadas/genética , Síndrome de Prader-Willi/genética , Síndrome de Silver-Russell/genética , Polegar/anormalidades , Estudos de Casos e Controles , Ilhas de CpG , Metilação de DNA , Genoma Humano , Estudo de Associação Genômica Ampla , Impressão Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Deficiência Intelectual/diagnóstico , Unhas Malformadas/diagnóstico , Fenótipo , Síndrome de Prader-Willi/diagnóstico , Síndrome de Silver-Russell/diagnóstico
18.
Eur J Med Genet ; 63(12): 104077, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010492

RESUMO

Temple Syndrome (TS14) is an imprinting disorder caused by molecular disruptions of the imprinted region in 14q32 (MEG3:TSS-DMR). The frequency of the three known TS14 subtypes (deletions, maternal uniparental disomy (upd(14)mat), loss of methylation (LOM)) is currently in discussion, and within the LOM group, the occurrence of Multilocus Imprinting Disturbances (MLID) has been identified. We present 16 TS14 patients with molecular alterations affecting the MEG3:TSS-DMR, comprising seven patients (43.8%) with LOM, six carriers with upd(14)mat (37.5%), and three cases (18.8%) with a deletion affecting the paternal MEG3:TSS-DMR. We did not find any evidence for MLID in the LOM group, including two cases in which different tissues were available. Whole exome sequencing (WES) in the MEG3:TSS-DMR LOM patients and their parents (Trio WES) did not reveal an obvious pathogenic variant which might cause aberrant methylation at imprinted loci. By summarizing our data with those from the literature, we could show that MLID affecting clinically relevant imprinted loci is rare in TS14 and therefore differs markedly from other imprinting disorders associated with MLID, e.g. Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS). However, consistent with the clinical overlap with TS14, in SRS patients carrying MLID the MEG3:TSS-DMR is frequently affected. Variants in the known candidate genes for maternal effect variants causing MLID and fetal MLID determinants could not be identified in TS14 patients. Thus, 14q32 epimutations probably have other molecular causes than epimutations in BWS or SRS patients.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 14/genética , Impressão Genômica , Mutação , Transtornos Cromossômicos/patologia , Metilação de DNA , Humanos , Herança Paterna , Linhagem , Fenótipo
19.
Development ; 147(21)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878913

RESUMO

Temple and Kagami-Ogata syndromes are genomic imprinting diseases caused by maternal and paternal duplication of human chromosome 14, respectively. They exhibit different postnatal muscle-related symptoms as well as prenatal placental problems. Using the mouse models for these syndromes, it has been demonstrated that retrotransposon gag like 1 [Rtl1, also known as paternally expressed 11 (Peg11)] located in the mouse orthologous imprinted region is responsible for the prenatal placental problems because it is an essential placental gene for maintenance of fetal capillary network during gestation. However, the causative imprinted gene for the postnatal muscle-related symptoms remains unknown. Here, we demonstrate that Rtl1 also plays an important role in fetal/neonatal skeletal muscle development: its deletion and overproduction in mice lead to neonatal lethality associated with severe but distinct skeletal muscle defects, similar to those of Temple and Kagami-Ogata syndromes, respectively. Thus, it is strongly suggested that RTL1 is the major gene responsible for the muscle defects in addition to the placental defects in these two genomic imprinting diseases. This is the first example of an LTR retrotransposon-derived gene specific to eutherians contributing to eutherian skeletal muscle development.


Assuntos
Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Músculos/anormalidades , Proteínas da Gravidez/deficiência , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Desmina/metabolismo , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculos/embriologia , Músculos/patologia , Mutação/genética , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Síndrome , Fatores de Tempo
20.
Clin Epigenetics ; 11(1): 42, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846001

RESUMO

BACKGROUND: The human chromosome 14q32.2 imprinted region harbors the primary MEG3/DLK1:IG-differentially methylated region (DMR) and secondary MEG3:TSS-DMR. The MEG3:TSS-DMR can remain unmethylated only in the presence of unmethylated MEG3/DLK1:IG-DMR in somatic tissues, but not in the placenta, because of a hierarchical regulation of the methylation pattern between the two DMRs. METHODS: We performed molecular studies in a 4-year-old Japanese girl with Temple syndrome (TS14). RESULTS: Pyrosequencing analysis showed extremely low methylation levels of five CpGs at the MEG3:TSS-DMR and grossly normal methylation levels of four CpGs at the MEG3/DLK1:IG-DMR in leukocytes. HumanMethylation450 BeadChip confirmed marked hypomethylation of the MEG3:TSS-DMR and revealed multilocus imprinting disturbance (MLID) including mild hypomethylation of the H19/IGF2:IG-DMR and mild hypermethylation of the GNAS A/B:TSS-DMR in leukocytes. Bisulfite sequencing showed markedly hypomethylated CpGs at the MEG3:TSS-DMR and irregularly and non-differentially methylated CpGs at the MEG3/DLK1:IG-DMR in leukocytes and apparently normal methylation patterns of the two DMRs in the placenta. Maternal uniparental disomy 14 and a deletion involving this imprinted region were excluded. CONCLUSIONS: Such a methylation pattern of the MEG3/DLK1:IG-DMR has not been reported in patients with TS14. It may be possible that a certain degree of irregular hypomethylation at the MEG3/DLK1:IG-DMR has prevented methylation of the MEG3:TSS-DMR in somatic tissues and that a hypermethylation type MLID has occurred at the MEG3/DLK1:IG-DMR to yield the apparently normal methylation pattern in the placenta.


Assuntos
Metilação de DNA , Impressão Genômica , Hallux/anormalidades , Deficiência Intelectual/genética , Unhas Malformadas/genética , Polegar/anormalidades , Proteínas de Ligação ao Cálcio/genética , Pré-Escolar , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Proteínas de Membrana/genética , RNA Longo não Codificante/genética , Dissomia Uniparental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA