Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39195260

RESUMO

Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo receptor-1 (NgR1). We previously reported that lateral olfactory tract usher substance (LOTUS) functions as an endogenous antagonist for NgR1 in forming neuronal circuits in the developing brain and improving axonal regeneration in the adult injured CNS. However, another molecular and cellular function of LOTUS remains unknown. In this study, we found that cultured retinal explant neurons extend their neurites on the LOTUS-coating substrate. This action was also observed in cultured retinal explant neurons derived from Ngr1-deficient mouse embryos, indicating that the promoting action of LOTUS on neurite outgrowth may be mediated by unidentified LOTUS-binding protein(s). We therefore screened the binding partner(s) of LOTUS by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis and pull-down assay showed that LOTUS interacts with Teneurin-4 (Ten-4), a cell adhesion molecule. RNAi knockdown of Ten-4 inhibited neurite outgrowth on the LOTUS substrate in retinoic acid (RA)-treated Neuro2A cells. Furthermore, a soluble form of Ten-4 attenuates the promoting action on neurite outgrowth in cultured retinal explant neurons on the LOTUS substrate. These results suggest that LOTUS promotes neurite outgrowth by interacting with Ten-4. Our findings may provide a new molecular mechanism of LOTUS to contribute to neuronal circuit formation in development and to enhance axonal regeneration after CNS injury.


Assuntos
Crescimento Neuronal , Animais , Crescimento Neuronal/efeitos dos fármacos , Camundongos , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Receptor Nogo 1/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo
2.
Nutrients ; 14(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079924

RESUMO

Hyperglycemia is one of the important causes of neurodegenerative disorders and aging. Aquilaria crassna Pierre ex Lec (AC) has been widely used to relieve various health ailments. However, the neuroprotective and anti-aging effects against high glucose induction have not been investigated. This study aimed to investigate the effects of hexane extract of AC leaves (ACH) in vitro using human neuroblastoma SH-SY5Y cells and in vivo using nematode Caenorhabditis elegans. SH-SY5Y cells and C. elegans were pre-exposed with high glucose, followed by ACH treatment. To investigate neuroprotective activities, neurite outgrowth and cell cycle progression were determined in SH-SY5Y cells. In addition, C. elegans was used to determine ACH effects on antioxidant activity, longevity, and healthspan. In addition, ACH phytochemicals were analyzed and the possible active compounds were identified using a molecular docking study. ACH exerted neuroprotective effects by inducing neurite outgrowth via upregulating growth-associated protein 43 and teneurin-4 expression and normalizing cell cycle progression through the regulation of cyclin D1 and SIRT1 expression. Furthermore, ACH prolonged lifespan, improved body size, body length, and brood size, and reduced intracellular ROS accumulation in high glucose-induced C. elegans via the activation of gene expression in the DAF-16/FoxO pathway. Finally, phytochemicals of ACH were analyzed and revealed that ß-sitosterol and stigmasterol were the possible active constituents in inhibiting insulin-like growth factor 1 receptor (IGFR). The results of this study establish ACH as an alternative medicine to defend against high glucose effects on neurotoxicity and aging.


Assuntos
Caenorhabditis elegans , Extratos Vegetais , Thymelaeaceae , Animais , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Glucose/efeitos adversos , Humanos , Longevidade , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Thymelaeaceae/química
3.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011736

RESUMO

Teneurin 4 (TENM4) is a transmembrane protein that is codified by the ODZ4 gene and is involved in nervous system development, neurite outgrowth, and neuronal differentiation. In line with its involvement in the nervous system, TENM4 has also been implicated in several mental disorders such as bipolar disorder, schizophrenia, and autism. TENM4 mutations and rearrangements have recently been identified in a number of tumors. This, combined with impaired expression in tumors, suggests that it may potentially be involved in tumorigenesis. Most of the TENM4 mutations that are observed in tumors occur in breast cancer, in which TENM4 plays a role in cells' migration and stemness. However, the functional role that TENM4 plays in breast cancer still needs to be better evaluated, and further studies are required to better understand the involvement of TENM4 in breast cancer progression. Herein, we review the currently available data for TENM4's role in breast cancer and propose its use as both a novel target with which to ameliorate patient prognosis and as a potential biomarker. Moreover, we also report data on the tumorigenic role of miR-708 deregulation and the possible use of this miRNA as a novel therapeutic molecule, as miR-708 is spliced out from TENM4 mRNA.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Carcinogênese/genética , Carcinogênese/patologia , Glicoproteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular
4.
Front Pharmacol ; 12: 627738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995025

RESUMO

Neurodegenerative diseases are linked to neuronal cell death and neurite outgrowth impairment that are often caused by oxidative stress. Natural products, which have neuroprotective against oxidative stress and neurite outgrowth inducing activity, could be potential candidates for alternative treatment of neurodegenerative diseases. This study aims to investigate the neuroprotective effects and neuritogenesis properties of Anacardium occidentale leaf extracts in cultured neuronal (HT22 and Neuro-2a) cells. We found gallic acid, catechin and quercetin as the main compounds in A. occidentale extracts. The extracts have a protective effect against glutamate/H2O2-mediated oxidative stress-induced cell toxicity. The gene expression of cellular antioxidant enzymes (SODs, GPx and, GSTs) were up-regulated by this treatment. The treatment also triggered SIRT, Nrf2 proteins as well as the mRNA transcriptions of relevant anti-oxidation genes (NQO1, GCLM, and EAAT3). We demonstrated that the extracts promote antioxidant defense in neuronal cells via the SIRT1/Nrf2 signaling pathway. Moreover, the extracts increase neurite outgrowth and Ten-4 expression in Neuro-2a cells. However, the neuritogenesis properties did not occur, when Ten-4 expression was knocked down by corresponding siRNA. These results suggest that the leaf extracts have an interesting neuritogenesis and neuroprotective potential against glutamate/H2O2-mediated toxicity and could be a potential therapeutic candidate for neurodegenerative diseases.

5.
Cancers (Basel) ; 13(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672732

RESUMO

Triple-negative breast cancer (TNBC) is insensitive to endocrine and Her2-directed therapies, making the development of TNBC-targeted therapies an unmet medical need. Since patients with TNBC frequently show a quicker relapse and metastatic progression compared to other breast cancer subtypes, we hypothesized that cancer stem cells (CSC) could have a role in TNBC. To identify putative TNBC CSC-associated targets, we compared the gene expression profiles of CSC-enriched tumorspheres and their parental cells grown as monolayer. Among the up-regulated genes coding for cell membrane-associated proteins, we selected Teneurin 4 (TENM4), involved in cell differentiation and deregulated in tumors of different histotypes, as the object for this study. Meta-analysis of breast cancer datasets shows that TENM4 mRNA is up-regulated in invasive carcinoma specimens compared to normal breast and that high expression of TENM4 correlates with a shorter relapse-free survival in TNBC patients. TENM4 silencing in mammary cancer cells significantly impaired tumorsphere-forming ability, migratory capacity and Focal Adhesion Kinase (FAK) phosphorylation. Moreover, we found higher levels of TENM4 in plasma from tumor-bearing mice and TNBC patients compared to the healthy controls. Overall, our results indicate that TENM4 may act as a novel biomarker and target for the treatment of TNBC.

6.
Semin Immunol ; 47: 101386, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932198

RESUMO

The great success of immunotherapy is paving the way for a new era in cancer treatment and is driving major improvements in the therapy of patients suffering from a range of solid tumors. However, the choice of the appropriate tumor antigens to be targeted with cancer vaccines and T-cell therapies is still a challenge. Most antigens targeted so far have been identified on the tumor bulk and are expressed on differentiated cancer cells. The discovery of a small population of cancer stem cells (CSC), which is refractory to most current therapies and responsible for the development of metastasis and recurrence, has made it clear that the ideal targets for immunotherapies are the antigens that are expressed in CSC and play a key role in their function. Indeed, their immunotargeting would enable the eradication of CSC to be performed, thus eliminating the tumor source. We call these antigens "CSC oncoantigens". Herein, we summarize the controversial nature of breast CSC, discuss why they represent good candidates for cancer immunotherapy, and review the CSC antigens that have been used as targets for CSC immunotargeting this far. Moreover, we describe the pipeline that we have developed for the identification of fresh CSC oncoantigens, and present the pre-clinical results obtained with vaccines that target some of these antigens.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Imunoterapia , Células-Tronco Neoplásicas/imunologia , Animais , Antígenos de Neoplasias/química , Biomarcadores Tumorais , Autorrenovação Celular , Mapeamento de Epitopos , Feminino , Humanos , Imunomodulação , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Relação Estrutura-Atividade
7.
Biochem Biophys Res Commun ; 523(1): 171-176, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31839217

RESUMO

Cell adhesion between oligodendrocytes and neuronal axons is a critical step for myelination that enables the rapid propagation of action potential in the central nervous system. Here, we show that the transmembrane protein teneurin-4 plays a role in the cell adhesion required for the differentiation of oligodendrocytes. We found that teneurin-4 formed molecular complexes with all of the four teneurin family members and promoted cell-cell adhesion. Oligodendrocyte lineage cells attached to the recombinant extracellular domain of all the teneurins and formed well-branched cell processes. In an axon-mimicking nanofibers assay, nanofibers coated with the recombinant teneurin-4 extracellular domain increased the differentiation of oligodendrocytes. Our results show that teneurin-4 binds to all teneurins through their extracellular domain, which facilitates the oligodendrocyte-axon adhesion, and promotes oligodendrocyte differentiation via its homophilic interaction.


Assuntos
Adesão Celular , Diferenciação Celular , Espaço Extracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Oligodendroglia/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/metabolismo , Domínios Proteicos , Ratos , Ratos Wistar
8.
Stem Cells ; 33(10): 3017-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26013034

RESUMO

Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas de Membrana/genética , Regeneração/genética , Animais , Proteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Miofibrilas/metabolismo , Miofibrilas/patologia , Células Satélites de Músculo Esquelético/metabolismo
9.
J Orthop Res ; 32(7): 915-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648313

RESUMO

Teneurin-4 (Ten-4), a transmembrane protein, is expressed in the nervous systems and the mesenchymal tissues, including the cartilage. However, the Ten-4 function in cartilage development remains unknown. Here, we showed that Ten-4 is a novel regulator of chondrogenesis. In situ hybridization analysis revealed that Ten-4 was highly expressed in the mesenchymal condensation area of the mouse femur at embryonic day (E) 13.5, while its expression was decreased in the growth plate of the femur at E18.5. Using the cartilage-like pellet culture of human synovial mesenchymal cells, Ten-4 expression was induced and peaked 7 days after induction of differentiation, while a production of type II and X collagens was increased after Day 14. In the cartilage-like pellet, Ten-4 was highly expressed in the less differentiated region. In the chondrogenic cell line ATDC5, knockdown of Ten-4 expression significantly increased the alcian blue staining and expression levels of aggrecan and type II and X collagens. Further, an elevated expression of Sox6, Sox9, and Runx2 and an attenuation of the ERK activation were observed in the Ten-4-knockdown ATDC5 cells. These results suggested that Ten-4 suppresses chondrogenic differentiation and regulates the expression and activation of the key molecules for chondrogenesis.


Assuntos
Diferenciação Celular , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Animais , Cartilagem/metabolismo , Condrócitos/citologia , Condrogênese , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Mesoderma/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOX9 , Fatores de Transcrição SOXD/metabolismo , Membrana Sinovial/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA