Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829379

RESUMO

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Tephritidae , Vespas , Animais , Tephritidae/microbiologia , Tephritidae/parasitologia , Vespas/microbiologia , Vespas/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Larva/microbiologia , Larva/parasitologia , Larva/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fungos/genética , Fungos/fisiologia , Interações Hospedeiro-Parasita , Microbiota , Disbiose/microbiologia , Disbiose/parasitologia
2.
Annu Rev Entomol ; 69: 219-237, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37708416

RESUMO

Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.


Assuntos
Tephritidae , Animais , Geografia , Medição de Risco
3.
Insects ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132628

RESUMO

Research on larval rearing and nutrition of tephritid flies on artificial diets is key for the sterile insect technique. Here, we examined the effects of the type of gel (calcium alginate, agar, or carrageenan), at varying percentages in artificial diets for the polyphagous pest Anastrepha ludens, on the physicochemical and nutritional traits of the diets, and the effects of the type of gel, the gel content and the larval density (larvae/g of diet) used in production, quality parameters for mass-reared tephritids, diet removal (an indirect estimation of diet consumption), and nutritional traits of flies. Regardless of the gel content, calcium alginate diets were firmer and more resistant to penetration than the agar and carrageenan diets. The larval recovery, pupation, pupal weight, and flight ability of A. ludens were lower in calcium alginate diets than in agar and carrageenan diets. Diet removal was higher in calcium alginate diets; however, low levels of ammonium and high levels of uric acid in excretions from larvae on these diets suggest an alteration in protein metabolism. The firmness and penetration resistance characteristics of calcium alginate diets may have limited movement and feeding of larvae, but this could be overcome by the collective feeding of large groups of larvae. Our findings provide insights into the mechanism governing gel-diet rearing systems for A. ludens.

4.
Microbiol Spectr ; 11(6): e0313923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930041

RESUMO

IMPORTANCE: Parasitoid wasp populations have developed persistent beneficial symbiotic relationships with several viruses through repeated evolution. However, there have been limited reports on RNA viruses in parasitoid wasps of tephritid flies, a significant pest group affecting fruits and vegetables. This study explores the diversity of RNA viruses in three parasitoid wasps of tephritid flies and highlights the potential biological significance of specific viruses in Diachasmimorpha longicaudata. These findings have important implications for the development of sustainable pest management strategies and the enhancement of artificial rearing techniques for parasitoid wasps.


Assuntos
Dípteros , Vírus de RNA , Vírus , Vespas , Animais , Vespas/genética , Vírus de RNA/genética
5.
Behav Processes ; 213: 104956, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805082

RESUMO

Many flies and moths mimic the frontal appearance of jumping spiders. This type of mimicry, which we term as partial mimicry, can be distinguished from Batesian mimicry since the mimic has spider resembling patterns only in certain parts of the body, and not the entire body. The presence of spider-like patterns is obvious only at certain angles suggesting that the mimic is frequently targeted by its predators from particular angles. We tested this hypothesis using Deep Convolutional Neural Networks (DCNNs). First, we trained the network on images of forward facing jumping spiders, where features such as the large principal eyes, small lateral eyes and outstretched legs were evident. Then we tested the classifier on images of jumping spider mimicking flies and moths. A probability value according to the likelihood of the image being a jumping spider or not was assigned by the classifier. We show that the classifier was more likely to misidentify mimicking flies and moths as jumping spiders, but that this probability varied according to the species tested. We further tested it on images of flies from different angles and by taking into consideration the visual acuity of potential predators. Our results suggest that neural networks can be efficient tools for testing evolutionary hypotheses, and that partial mimicry may be a result of the effect of the signaling angle and orientation of the mimics in combination with the likelihood that predators may depend on cognitive shortcuts to identify insects as prey. Further experiments incorporating the properties of the visual system of predators (such as vision in ultraviolet) would result in a better understanding of the evolution of partial mimicry.


Assuntos
Formigas , Mimetismo Biológico , Aranhas , Animais , Comportamento Predatório
6.
Ecol Evol ; 13(8): e10418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600487

RESUMO

The diversity of specialized molecules produced by plants radiating along ecological gradients is thought to arise from plants' adaptations to local conditions. Therefore, closely related species growing in similar habitats should phylogenetically converge, or diverge, in response to similar climates, or similar interacting animal communities. We here asked whether closely related species in the genus Haplopappus (Asteraceae) growing within the same elevation bands in the Andes, converged to produce similar floral odors. To do so, we combine untargeted analysis of floral volatile organic compounds with insect olfactory bioassay in congeneric Haplopappus (Asteraceae) species growing within the same elevation bands along the Andean elevational gradient. We then asked whether the outcome of biotic interactions (i.e., pollination vs. seed predation) would also converge across species within the same elevation. We found that flower odors grouped according to their elevational band and that the main floral visitor preferred floral heads from low-elevation band species. Furthermore, the cost-benefit ratio of predated versus fertilized seeds was consistent within elevation bands, but increased with elevation, from 6:1 at low to 8:1 at high elevations. In the light of our findings, we propose that climate and insect community changes along elevation molded a common floral odor blend, best adapted for the local conditions. Moreover, we suggest that at low elevation where floral resources are abundant, the per capita cost of attracting seed predators is diluted, while at high elevation, sparse plants incur a higher herbivory cost per capita. Together, our results suggest that phytochemical convergence may be an important factor driving plant-insect interactions and their ecological outcomes along ecological gradients.


La gran diversidad de moléculas especializadas producidas por plantas a lo largo de gradientes ecológicos se atribuye a la adaptación de plantas a sus condiciones locales. Por tanto, especies de plantas estrechamente relacionadas que crecen en hábitats similares deberían de converger en la producción de fitoquímicos similares, en respuesta a climas similares o comunidades de animales con las que interactúan. En este estudio exploramos esta hipótesis caracterizando la metabolómica no dirigida de compuestos orgánicos volátiles florales y conduciendo bioensayos olfativos de insectos en especies cogenéticas del género Haplopappus (Asteraceae) que crecen dentro de las mismas bandas altitudinales a lo largo de un gradiente altitudinal andino. Conjuntamente investigamos si el resultado de las interacciones bióticas (ej. polinización versus depredación) también convergen entre especies que crecen dentro de la misma banda altitudinal. Encontramos que los olores de las flores se agrupan de acuerdo con su banda altitudinal, y que el visitante floral más común prefiere los capítulos florales de las especies de bandas de baja elevación. Además, la relación entre el costo (depredación) y beneficio (polinización) es consistente dentro de las bandas de elevación pero incrementa con elevación, de 6:1 en elevaciones bajas a 8:1 en elevaciones altas. Por lo tanto, proponemos que los cambios climáticos y la comunidad de insectos a lo largo de la elevación resultaron en una mezcla común de olores de flores, mejor adaptada a las condiciones locales. Asimismo, sugerimos que a baja altura donde los recursos florales son abundantes, el costo per cápita de atraer a los depredadores de semillas se diluye, mientras que en sitios altos, las plantas escasas incurren en un costo per cápita de herbivoría más alto. Nuestros resultados sugieren que la convergencia fitoquímica puede ser un factor importante que impulsa las interacciones planta­insecto y sus resultados ecológicos a lo largo de gradientes ecológicos.

7.
Microb Ecol ; 86(3): 2120-2132, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37103495

RESUMO

Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their interactions with parasitised insects are less explored. Due to their development in the constrained environment within a host, endoparasitoids are expected to have less diverse yet distinct microbiomes. We used high-throughput 16S rRNA gene amplicon sequencing to characterise the bacterial communities of Dipterophagus daci (Strepsiptera) and seven of its tephritid fruit fly host species. Bacterial communities of D. daci were less diverse and contained fewer taxa relative to the bacterial communities of the tephritid hosts. The strepsipteran's microbiome was dominated by Pseudomonadota (formerly Proteobacteria) (> 96%), mainly attributed to the presence of Wolbachia, with few other bacterial community members, indicative of an overall less diverse microbiome in D. daci. In contrast, a dominance of Wolbachia was not found in flies parasitised by early stages of D. daci nor unparasitised flies. Yet, early stages of D. daci parasitisation resulted in structural changes in the bacterial communities of parasitised flies. Furthermore, parasitisation with early stages of D. daci with Wolbachia was associated with a change in the relative abundance of some bacterial taxa relative to parasitisation with early stages of D. daci lacking Wolbachia. Our study is a first comprehensive characterisation of bacterial communities in a Strepsiptera species together with the more diverse bacterial communities of its hosts and reveals effects of concealed stages of parasitisation on host bacterial communities.


Assuntos
Microbiota , Wolbachia , Wolbachia/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala
8.
Insects ; 14(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36835717

RESUMO

Artificial Intelligence (AI) and automation are fostering more sustainable and effective solutions for a wide spectrum of agricultural problems. Pest management is a major challenge for crop production that can benefit from machine learning techniques to detect and monitor specific pests and diseases. Traditional monitoring is labor intensive, time demanding, and expensive, while machine learning paradigms may support cost-effective crop protection decisions. However, previous studies mainly relied on morphological images of stationary or immobilized animals. Other features related to living animals behaving in the environment (e.g., walking trajectories, different postures, etc.) have been overlooked so far. In this study, we developed a detection method based on convolutional neural network (CNN) that can accurately classify in real-time two tephritid species (Ceratitis capitata and Bactrocera oleae) free to move and change their posture. Results showed a successful automatic detection (i.e., precision rate about 93%) in real-time of C. capitata and B. oleae adults using a camera sensor at a fixed height. In addition, the similar shape and movement patterns of the two insects did not interfere with the network precision. The proposed method can be extended to other pest species, needing minimal data pre-processing and similar architecture.

9.
Insects ; 14(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835765

RESUMO

Tephritid fruit flies are notoriously known for causing immense economic losses due to their infestation of many types of commercial fruits and vegetables in China. These flies are expanding, causing serious damage, and we summarized references from the last three decades regarding biological parameters, ecological performance and integrated pest management. There are 10 species of tephritid fruit flies mentioned at a relatively high frequency in China, and a detailed description and discussion in this comprehensive review were provided through contrast and condensation, including economics, distribution, identification, hosts, damage, life history, oviposition preference, interspecific competition and integrated management, in anticipation of providing effective strategies or bases for the subsequent development of new research areas and improvement of integrated management systems.

10.
Pest Manag Sci ; 79(4): 1585-1592, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36533692

RESUMO

BACKGROUND: Tephritid fruit flies are a major constraint to the global production of horticultural crops. In Africa, an array of native and alien invasive fruit fly species represents a key challenge to the horticultural industry. In an effort to develop a safer management tool for these pests, we previously identified glutathione (GSH) and glutamic acid (GA), as the host marking pheromones (HMPs) of Ceratitis cosyra and Ceratitis rosa, respectively. Here, we report on the effectiveness of these compounds (GSH and GA) in reducing natural fruit fly population infestations in mango orchards. Mango trees at two different agroecological zones in Kenya were sprayed with HMPs, and the fruits sampled periodically and assessed for fruit fly emergence. Fruit fly emergence data were compared to two controls, the positive control using spot spraying of food bait (SS), and the negative control using water (W). RESULTS: The two HMPs and SS substantially decreased fruit fly emergence from the sampled mangoes. GSH and GA treated mangoes showed reduced C. cosyra and C. rosa infestation by ~70-75% relative to control (W), and with variation noted in the pheromone applied and the recovered fruit fly species. The adult emergence in pheromone-treated plants compared favorably with the positive control SS. However, the HMPs had little impact on reducing Bactrocera dorsalis infestation of mangoes. CONCLUSION: The decrease in fruit fly emergence in sampled mango fruits from HMP treated trees corroborate previous laboratory results and support the prospect of using HMPs in the management of African fruit fly species. © 2022 Society of Chemical Industry.


Assuntos
Mangifera , Tephritidae , Animais , Ácido Glutâmico , Quênia , Feromônios , Drosophila , Glutationa
11.
Pest Manag Sci ; 79(4): 1352-1361, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36427005

RESUMO

BACKGROUND: Most arthropods are famous for their large reproductive capacity, with the ovary playing a vital role in the process. The study of the regulatory mechanisms of ovarian development may have the potential for a reproduction-based pest management strategy. GATA-binding transcription factors (GATAs) as important regulatory factors mediate many physiological processes, including development, immunity, insecticide resistance and reproduction. The Pannier (pnr), a member of GATA family, was confirmed to be involved in ovarian development of Bactrocera dorsalis in our previous study. However, the direct evidence of pnr regulating the fly ovarian development is still lacking. RESULTS: We used CRISPR/Cas9 to create Bdpnr loss-of-function mutations. Homozygous Bdpnr-/- mutants were nonviable, with most individuals dying during embryogenesis, some surviving to the larval stages, and the remaining few dying during pupation. In contrast, heterozygous individuals reached the adult stage, but ovarian development was disrupted, with concomitant decreases in egg laying and hatching rates. We also found that two genes encoding vitellogenin proteins (BdVg1 and BdVg2) and the vitellogenin receptor (BdVgR) were significantly down-regulated in heterozygous mutants compared to wild-type controls. CONCLUSION: These results indicate that Bdpnr is required for embryonic and post-embryonic development, including the formation of ovaries. Bdpnr could therefore be considered as a molecular target for tephritid fly pest control. © 2022 Society of Chemical Industry.


Assuntos
Proteínas de Insetos , Tephritidae , Animais , Feminino , Proteínas de Insetos/genética , Vitelogeninas/metabolismo , Ovário/metabolismo , Desenvolvimento Embrionário
12.
Front Microbiol ; 13: 979817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246214

RESUMO

The gut microbiota is key for the homeostasis of many phytophagous insects, but there are few studies comparing its role on host use by stenophagous or polyphagous frugivores. Guava (Psidium guajava) is a fruit infested in nature by the tephritids Anastrepha striata and A. fraterculus. In contrast, the extremely polyphagous A. ludens infests guava only under artificial conditions, but unlike A. striata and the Mexican A. fraterculus, it infests bitter oranges (Citrus x aurantium). We used these models to analyze whether the gut microbiota could explain the differences in host use observed in these flies. We compared the gut microbiota of the larvae of the three species when they developed in guava and the microbiota of the fruit pulp larvae fed on. We also compared the gut microbiota of A. ludens developing in C. x aurantium with the pulp microbiota of this widely used host. The three flies modified the composition of the host pulp microbiota (i.e., pulp the larvae fed on). We observed a depletion of Acetic Acid Bacteria (AAB) associated with a deleterious phenotype in A. ludens when infesting P. guajava. In contrast, the ability of A. striata and A. fraterculus to infest this fruit is likely associated to a symbiotic interaction with species of the Komagataeibacter genus, which are known to degrade a wide spectrum of tannins and polyphenols. The three flies establish genera specific symbiotic associations with AABs. In the case of A. ludens, the association is with Gluconobacter and Acetobacter, but importantly, it cannot be colonized by Komagataeibacter, a factor likely inhibiting its development in guava.

13.
J Econ Entomol ; 115(6): 2110-2115, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36263914

RESUMO

Tephritid fruit flies are among the most invasive and destructive agricultural pests worldwide. Over recent years, many studies have implemented the CRISPR/Cas9 genome-editing technology to dissect gene functions in tephritids and create new strains to facilitate their genetics, management, and control. This growing literature allows us to compare diverse strategies for delivering CRISPR/Cas9 components into tephritid embryos, optimize procedures, and advance the technology to systems outside the most thoroughly studied species within the family. Here, we revisit five years of CRISPR research in Tephritidae and propose a unified protocol for candidate gene knockout in fruit flies using CRISPR/Cas9. We demonstrated the efficiency of our protocol by disrupting the eye pigmentation gene white eye (we) in the melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). High rates of somatic and germline mutagenesis were induced by microinjecting pre-assembled Cas9-sgRNA complexes through the chorion of embryos at early embryogenesis, leading to the rapid development of new mutant lines. We achieved comparable results when targeting the we orthologue in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), illustrating the reliability of our methods when transferred to other related species. Finally, we functionally validated the recently discovered white pupae (wp) loci in the melon fly, successfully recreating the white puparium phenotype used in suppression programs of this and other major economically important tephritids. This is the first demonstration of CRISPR-based genome-editing in the genus Zeugodacus, and we anticipate that the procedures described here will contribute to advancing genome-editing in other non-model tephritid fruit flies.


Assuntos
Cucurbitaceae , Tephritidae , Animais , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas , Reprodutibilidade dos Testes , Tephritidae/genética , Drosophila/genética , Fenótipo , Recreação
14.
Insect Sci ; 29(5): 1240-1250, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35146929

RESUMO

Insects employ various types of gustatory receptors (GRs) to identify nutrient-rich food and avoid toxic substances. The larval gustatory system is the critical checkpoint for food acceptance or rejection. As a specialist herbivore, the larvae of Bactrocera minax feed only on unripe citrus fruits. However, how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown. In this study, we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae. Furthermore, we found that silencing BminGR59f by RNA interference (RNAi) affected the growth of 2nd instar B. minax larvae. Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging, and the combination of these two flavones increased the body weight of larvae. In summary, we identified a novel gustatory perception pattern in B. minax for detecting hesperidin and naringin, which boosted the growth of B. minax larvae. These results shed light on how specialist herbivores detect and adapt to host metabolites in adverse environments depending on larval GRs.


Assuntos
Citrus , Flavonas , Hesperidina , Tephritidae , Animais , Cálcio/metabolismo , Flavonas/metabolismo , Hesperidina/metabolismo , Larva/genética , Ligantes
15.
Mitochondrial DNA B Resour ; 7(1): 66-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34993312

RESUMO

Fopius arisanus (Sonan, 1932), an important egg parasitoid of several notorious tephritid pests, plays a key role in biological control programs. In the present study, the whole mitochondrial genome of F. arisanus was sequenced and characterized. The mitogenome of F. arisanus is 16,425 bp in length with 14.94% GC content, and contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs). The phylogenetic trees demonstrated that F. arisanus is sister group to Psyttalia concolor, P. humilis, P. lounsburyi and Diachasmimorpha longicaudata.

16.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641444

RESUMO

The family Tephritidae (Diptera) includes species that are highly invasive and harmful to crops. Due to globalization, international trade, and human displacement, their spread is continuously increasing. Unfortunately, the control of tephritid flies is still closely linked to the use of synthetic insecticides, which are responsible for detrimental effects on the environment and human health. Recently, research is looking for alternative and more eco-friendly tools to be adopted in Integrated Pest Management (IPM) programs. In this regard, essential oils (EOs) and their main compounds represent a promising alternative to chemical insecticides. EOs are made up of phytoconstituents formed from the secondary metabolism of many plants and can act as attractants or toxics, depending on the dose. Because of this unique characteristic, EOs and their main constituents are promising tools that can be used both in Sterile Insect Technique (SIT) programs and in the "lure and kill" technique, exploiting the attractiveness of the product in the former case and its toxicity in the latter. In this article, current knowledge on the biological and behavioral effects of EOs and their main constituents on tephritid fruit flies is reviewed, mainly focusing on species belonging to the Anastrepha, Bactrocera, Ceratitis, and Zeugodacus genera. The mechanisms of action of EOs, their real-world applications, and challenges related to their use in IPM are critically discussed.


Assuntos
Controle de Insetos/métodos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Tephritidae/efeitos dos fármacos , Animais
17.
Pest Manag Sci ; 77(10): 4224-4237, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34031975

RESUMO

Infestation of fruits by native and invasive fruit flies causes significant economic losses. In most cases, incidence of 'regulated' dangerous fruit flies in orchards results in restrictions on export of fruits from such places to international markets. Unfortunately, use of insecticides applied on foliage and fruits does not kill the fruit-to-soil stages of fruit flies. However, diverse biological control agents (BCAs) do so. Thus, prevalence of native and invasive fruit flies in orchards will require that a combination of BCAs is included in integrated pest management (IPM) programmes. In the case of Bactrocera dorsalis Hendel and other economically important fruit flies found in sub-Saharan Africa (SSA), use of classical biocontrol approach involves concomitant releases of two exotic parasitoids (Fopius arisanus Sonan and Diachasmimorpha longicaudata Ashmead). These non-native wasps may have complemented the indigenous parasitoids in combination with application of entomopathogenic fungi (EPFs) and conservation of predatory ants (Oecophylla longinoda Latreille, with O. smaragdina) in fruit fly IPM plans. Consequently, some levels of decline in fruit infestation have been observed. Although interspecific interactions between BCAs against several insect pests have produced varying results, including threatening the survival of other BCAs, the prevalence of B. dorsalis in orchards across SSA requires further research to investigate effects of coalescing biocontrol approaches in IPM strategies. Therefore, future research into combining parasitoids, EPFs and entomopathogenic nematodes, in addition to conservation of predatory ants (O. longinoda, O. smaragdina and others) in IPM plans may improve the effectiveness of currently used strategies for the management of fruit-infesting tephritids. © 2021 Society of Chemical Industry.


Assuntos
Formigas , Tephritidae , Vespas , África Subsaariana , Animais , Agentes de Controle Biológico
18.
J Econ Entomol ; 114(3): 1298-1309, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822985

RESUMO

The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephretidae), is a serious pest of fruits and vegetables and has developed high levels of insecticide resistance. ATP-binding cassette transporter genes (ABC transporters) are involved in mediating the energy-driven transport of many substances across membranes and are closely associated with development and insecticide detoxification. In this study, three ABC transporters in the H subfamily were identified, and the possible roles of these genes in B. dorsalis are discussed. Bioinformatics analysis revealed that those genes are conserved, typical of half-transporters. The expression profiles of BdABCH genes (BdABCHs) in the developmental stages, tissues, and following insecticide exposure, extreme temperature, warm- and cold-acclimated strain, starvation, and desiccation stress were determined by quantitative real-time PCR. Expression of BdABCHs can be detected in various tissues and in different developmental stages. They were most highly expressed in the hindgut and in newly emerged adults. The mRNA levels of BdABCHs in males (including most tissues and body segments) were higher than in females. The expression of BdABCH1 was significantly upregulated 3.8-fold in the cold-acclimated strain, and was significantly upregulated by 1.9-, 3.8- and 4.1-fold in the 0°C, starvation, and desiccation treatments, respectively. Treatment with malathion and avermectin at LD20 and LD30 concentrations produced no obvious changes in the levels of BdABCHs. BdABCHs may be involved in the transport of related hormones during eclosion, as well as water and inorganic salts. BdABCH1 also demonstrated that it is related to the ability to cope with adverse environments.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Tephritidae , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Resistência a Inseticidas/genética , Malation , Masculino , Filogenia , Tephritidae/genética
19.
Insect Sci ; 28(4): 874-884, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519794

RESUMO

Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.


Assuntos
Bactérias , Olea , Controle Biológico de Vetores , Tephritidae/microbiologia , Animais , Bactérias/genética , Bactérias/patogenicidade , Produtos Agrícolas , Genes Bacterianos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Simbiose
20.
Anal Sci Adv ; 2(7-8): 416-426, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38715956

RESUMO

Mediterranean fruit fly (medfly), Ceratitis capitata, is among the most destructive agricultural pest. The sterile insect technique (SIT) can effectively control medfly populations. To rear healthy medflies for the purpose of SIT, it is essential to supplement B vitamins in the diet. However, the function of the dietary B vitamins in C. capitata larvae is not known. With the microscopic analysis, several organs in the head were examined and the spiracle formation and sensory organs were normally formed between the niacin-supplied and niacin-absent groups. However, formation of the ocular depression was differently developed between the two groups, although the hypostomal sclerite was formed properly. These results signify that niacin deficiency maybe interrupt development of medfly larvae ocular depression. Proteomic analyses using LC MS/MS detected a total of 1845 proteins in two flies. A total of 607 of the 1845 proteins were overexpressed and one third (598 proteins) were downexpressed in the niacin-deficient larvae, while about one third were similarly expressed. Overexpressed proteins in the niacin-deficient larvae included ryanodine receptor 44 F, intergrin-PS, spalt-major homeotic protein, and chiffon protein. One of important overexpressed proteins was optomotor-blind protein in relation to wing development in the niacin-deficient medfly larvae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...