RESUMO
This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 µM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.
Assuntos
Biofilmes , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Fármacos Fotossensibilizantes , Porfirinas , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Biofilmes/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Microscopia de Força Atômica , Espécies Reativas de Oxigênio/metabolismo , Luz , Oxigênio Singlete/metabolismo , Oxigênio Singlete/químicaRESUMO
Leishmaniasis is a neglected disease that impacts more than one billion people in endemic areas of the globe. Several drawbacks are associated with the currently existing drugs for treatment such as low effectiveness, toxicity, and the emergence of resistant strains that demonstrate the importance of looking for novel therapeutic alternatives. Photodynamic therapy (PDT) is a promising novel alternative for cutaneous leishmaniasis treatment because its topical application avoids potential side effects generally associated with oral/parenteral application. A light-sensitive compound known as photosensitizer (PS) interacts with light and molecular oxygen to generate reactive oxygen species (ROS), which promote cell death by oxidative stress through PDT approaches. Here, for the first time, we demonstrate the antileishmanial effect of tetra-cationic porphyrins with peripheral Pt(II)- and Pd(II)-polypyridyl complexes using PDT. The isomeric tetra-cationic porphyrins in the meta positions, 3-PtTPyP, and 3-PdTPyP, exhibited the highest antiparasitic activity against promastigote (IC50-pro = 41.8 nM and 46.1 nM, respectively) and intracellular amastigote forms (IC50-ama = 27.6 nM and 38.8 nM, respectively) of L. amazonensis under white light irradiation (72 J cm-2) with high selectivity (SI > 50) for both forms of parasites regarding mammalian cells. In addition, these PS induced the cell death of parasites principally by a necrotic process in the presence of white light by mitochondrial and acidic compartments accumulation. This study showed that porphyrins 3-PtTPyP and 3-PdTPyP displayed a promising antileishmanial-PDT activity with potential application for cutaneous leishmaniasis treatment.