Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin Exp Immunol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864482

RESUMO

Familial mediterranean fever (FMF) is characterized by inflammatory attacks due to overactivation of pyrin inflammasome. This study aimed to investigate the reliability of S100A8/A9, neopterin, and matrix metalloproteinase 3 (MMP3) at monitoring subclinical inflammation and disease activity, and at differentiating FMF attacks from appendicitis, the most common misdiagnosis among FMF patients. Blood samples (n=75), comprising from FMF patients during an attack (n=20), the same FMF patients during the attack-free period (n=14), patients with appendicitis (n=24), and healthy volunteers (n=17) were obtained. Duplicate determinations of S100A8/A9, neopterin, and MMP-3 levels were conducted using the enzyme-linked immunosorbent assay (ELISA). FMF patients with and without attack and patients with appendicitis had significantly elevated S100A8/A9 levels compared to healthy volunteers (p-values: <0.001, 0.036, 0.002, respectively). Patients with appendicitis and FMF patients with and without attack had significantly increased serum neopterin levels compared to healthy volunteers (p-value: <0.001). MMP3 levels were significantly higher among patients with appendicitis and FMF patients during attack compared to healthy controls (p-values: <0.001, 0.001). Serum levels of S100A8/A9, neopterin, and MMP3 were increased significantly during attacks compared to attack-free periods among FMF patients (p-values: 0.03, 0.047, 0.007). S100A8/A9 emerges as a valuable marker for monitoring disease activity. Neopterin and S100A8/A9 might help physicians to monitor subclinical inflammation during the attack-free periods of FMF patients. MMP3 might aid in diagnosing FMF attacks when distinguishing between attack and attack-free periods is challenging.

2.
FASEB J ; 38(10): e23644, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738472

RESUMO

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neuroblastoma/patologia , Feminino , Humanos , Imunomodulação , Camundongos Endogâmicos C57BL
3.
J Autoimmun ; 145: 103189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442677

RESUMO

OBJECTIVES: Monocyte-derived dendritic cells (DCs) are key players in the induction of inflammation, autoreactive T cell activation and loss of tolerance in rheumatoid arthritis (RA), but the precise mechanisms underlying their activation remain elusive. Here, we hypothesized that extracellular microRNAs released in RA synovial fluids may represent a novel, physiological stimulus triggering unwanted immune response via TLR8-expressing DC stimulation. METHODS: Human monocyte-derived DCs were stimulated with a mixture of GU-rich miRNAs upregulated in RA tissues and released in synovial fluids (Ex-miRNAs). Activation of DCs was assessed in terms of NF-κB activation by Western blot, cytokine production by ELISA, T cell proliferation and polarization by allogeneic mixed lymphocyte reaction. DC differentiation into osteoclasts was evaluated in terms of tartrate-resistant acid phosphatase production and formation of resorption pits in dentine slices. Induction of joint inflammation in vivo was evaluated using a murine model of DC-induced arthritis. TLR7/8 involvement was assessed by specific inhibitors. RESULTS: Ex-miRNAs activate DCs to secrete TNFα, induce joint inflammation, start an early autoimmune response and potentiate the differentiation of DCs into aggressive osteoclasts. CONCLUSIONS: This work represents a proof of concept that the pool of extracellular miRNAs overexpressed in RA joints can act as a physiological activator of inflammation via the stimulation of TLR8 expressed by human DCs, which in turn exert arthritogenic functions. In this scenario, pharmacological inhibition of TLR8 might offer a new therapeutic option to reduce inflammation and osteoclast-mediated bone destruction in RA.


Assuntos
Artrite Reumatoide , Diferenciação Celular , Células Dendríticas , MicroRNAs , Osteoclastos , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , MicroRNAs/genética , Receptor 8 Toll-Like/metabolismo , Osteoclastos/metabolismo , Osteoclastos/imunologia , Animais , Receptor 7 Toll-Like/metabolismo , Camundongos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Células Cultivadas , Feminino , Masculino
4.
Immunol Res ; 72(1): 134-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37755574

RESUMO

Adoptive-cell-therapy (ACT) is important therapeutic approach against cancer. We previously showed that miR-7 deficiency endowed CD4+T cells with hyperactivation status in liver injury. However, whether CD4+T cells with miR-7 deficiency could elicit antitumor effect in ACT is still unclear. Naïve CD4+CD62Lhi T cells were purified from CD45.2 WT or CD45.2 miR-7def mice and transferred into syngeneic CD45.1WT mice bearing with lung tumor cells. The infiltration and function of T cells were measured by FCM and immunofluorescence assay. And naïve CD4+CD62Lhi T cells were purified from CD45.2 WT or CD45.2 miR-7def mice, then the cells were activated with CD3 antibody plus CD28 antibody in vitro for 24 h. Then, the cultured supernatant of LLC tumor cells or cytokines IFN-γ and IL-12 was added to establish Th1 polarization. Under these conditions, Th1 polarization-related molecules in these cells were analyzed by flow cytometry. Our data demonstrated a significant reduction in the growth and metastasis of lung cancer cells in the miR-7def CD4+T cell-transferred group, accompanied by a significant enhancement in the infiltration, proliferation, activation, and Th1 polarization of CD4+ T cells. Moreover, we observed the proliferation; activation of tumor-infiltrating CD8+ T cells was significantly increased in the local tumor of the CD45.2 miR-7def CD4+ T cell-transferred group, compared to the CD45.2 WT CD4+ T cell-transferred group. It is noteworthy that MAPK4, a target molecule of miR-7, was upregulated in CD4+ T cells from lung tumor tissues, resulting in an altered transduction of phosphorylation of NF-κB as well as AKT and ERK in vivo and in vitro. miR-7 deficiency promoted Th1-polarization of CD4+ T cells and elicited effective antitumor immune responses in ACT.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Camundongos , Animais , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Neoplasias Pulmonares/terapia , MicroRNAs/genética , Células Th1
5.
Emerg Microbes Infect ; 12(2): 2249124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37584947

RESUMO

ABSTRACTGlobal dissemination of high-level ceftriaxone-resistant Neisseria gonorrhoeae strains associated with the FC428 clone poses a threat to the efficacy ceftriaxone-based therapies. Vaccination is the best strategy to contain multidrug-resistant infections. In this study, we investigated the efficacy of MtrE and its surface Loop2 as vaccine antigens when combined with a Th1-polarizing adjuvant, which is expected to be beneficial for gonococcal vaccine development. Using in vitro dendritic cell maturation and T cell differentiation assays, CpG1826 was identified as the optimal Th1-polarizing adjuvant for MtrE and Loop2 displayed as linear epitope (Nloop2) or structural epitope (Intraloop2) on a carrier protein. Loop2-based antigens raised strongly Th1-polarized and bactericidal antibody responses in vaccinated mice. Furthermore, the vaccine formulations provided protection against a gonococcal challenge in mouse vaginal tract infection model when provided as prophylactic vaccines. Also, the vaccine formulations accelerated gonococcal clearance when provided as a single therapeutic dose to treat an already established infection, including against a strain associated with the FC428 clone. Therefore, this study demonstrated that MtrE and Loop 2 are effective gonococcal vaccine antigens when combined with the Th1-polarizing CpG1826 adjuvant.


Assuntos
Ceftriaxona , Gonorreia , Feminino , Camundongos , Animais , Gonorreia/prevenção & controle , Vacinas Bacterianas , Neisseria gonorrhoeae/genética , Epitopos
6.
Cells ; 12(11)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296625

RESUMO

Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.


Assuntos
Células Dendríticas , Receptor 3 Toll-Like , Camundongos , Animais , Humanos , Receptor 3 Toll-Like/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Receptores Toll-Like/metabolismo , Citocinas/metabolismo , Adjuvantes Farmacêuticos , Vacinação , Inflamação/metabolismo
7.
Pharmaceutics ; 15(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986871

RESUMO

mRNA-based vaccines have made a leap forward since the SARS-CoV-2 pandemic and are currently used to develop anti-infectious therapies. If the selection of a delivery system and an optimized mRNA sequence are two key factors to reach in vivo efficacy, the optimal administration route for those vaccines remains unclear. We investigated the influence of lipid components and immunization route regarding the intensity and quality of humoral immune responses in mice. The immunogenicity of HIV-p55Gag encoded mRNA encapsulated into D-Lin-MC3-DMA or GenVoy-ionizable lipid-based LNPs was compared after intramuscular or subcutaneous routes. Three sequential mRNA vaccines were administrated followed by a heterologous boost composed of p24-HIV protein antigen. Despite equivalent IgG kinetic profiles of general humoral responses, IgG1/IgG2a ratio analysis showed a Th2/Th1 balance toward a Th1-biased cellular immune response when both LNPs were administrated via the intramuscular route. Surprisingly, a Th2-biased antibody immunity was observed when DLin-containing vaccine was injected subcutaneously. A protein-based vaccine boost appeared to reverse this balance to a cellular-biased response correlated to an increase in antibody avidity. Our finding suggests that the intrinsic adjuvant effect of ionizable lipids appears to be dependent on the delivery route used, which could be relevant to reach potent and long-lasting immunity after mRNA-based immunization.

8.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36679946

RESUMO

In spite of its high effectiveness in the treatment of both leishmaniasis as well as a range of fungal infections, the free form of the polyene antibiotic amphotericin B (AmB) does not entertain the status of the most preferred drug of choice in clinical settings. The high intrinsic toxicity of the principal drug could be considered the main impedance in the frequent medicinal use of this otherwise very effective antimicrobial agent. Taking into consideration this fact, the pharma industry has introduced many novel dosage forms of AmB to alleviate its toxicity issues. However, the limited production, high cost, requirement for a strict cold chain, and need for parenteral administration are some of the limitations that explicitly compel professionals to look for the development of an alternate dosage form of this important drug. Considering the fact that the nano-size dimensions of drug formulation play an important role in increasing the efficacy of the core drug, we employed a green method for the development of nano-assemblies of AmB (AmB-NA). The as-synthesized AmB-NA manifests desirable pharmacokinetics in the treated animals. The possible mechanistic insight suggested that as-synthesized AmB-NA induces necrosis-mediated cell death and severe mitochondrial dysfunction in L. donovani promastigotes by triggering depolarization of mitochondrial membrane potential. In vivo studies demonstrate a noticeable decline in parasite burden in the spleen, liver, and bone marrow of the experimental BALB/c mice host. In addition to successfully suppressing the Leishmania donovani, the as-formed AmB-NA formulation also modulates the host immune system with predominant Th1 polarization, a key immune defender that facilitates the killing of the intracellular parasite.

9.
Br J Haematol ; 201(1): 45-57, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36484163

RESUMO

In chronic lymphocytic leukaemia (CLL) the efficacy of SARS-CoV-2 vaccination remains unclear as most studies have focused on humoral responses. Here we comprehensively examined humoral and cellular responses to vaccine in CLL patients. Seroconversion was observed in 55.2% of CLL with lower rate and antibody titres in treated patients. T-cell responses were detected in a significant fraction of patients. CD4+ and CD8+ frequencies were significantly increased independent of serology with higher levels of CD4+ cells in patients under a Bruton tyrosine kinase (BTK) or a B-cell lymphoma 2 (BCL-2) inhibitor. Vaccination skewed CD8+ cells towards a highly cytotoxic phenotype, more pronounced in seroconverted patients. A high proportion of patients showed spike-specific CD4+ and CD8+ cells producing interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα). Patients under a BTK inhibitor showed increased production of IFNγ and TNFα by CD4+ cells. Vaccination induced a Th1 polarization reverting the Th2 CLL T-cell profile in the majority of patients with lower IL-4 production in untreated and BTK-inhibitor-treated patients. Such robust T-cell responses may have contributed to remarkable protection against hospitalization and death in a cohort of 540 patients. Combining T-cell metrics with seroprevalence may yield a more accurate measure of population immunity in CLL, providing consequential insights for public health.


Assuntos
Antineoplásicos , COVID-19 , Leucemia Linfocítica Crônica de Células B , Vacinas , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Vacinas contra COVID-19/uso terapêutico , Fator de Necrose Tumoral alfa , SARS-CoV-2 , Estudos Soroepidemiológicos , COVID-19/prevenção & controle , Antineoplásicos/uso terapêutico , Interferon gama
10.
Cells ; 11(24)2022 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-36552770

RESUMO

The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.


Assuntos
Ácidos Nucleicos , Vacinas , Humanos , Adjuvantes Imunológicos/farmacologia , Sistema Imunitário , Adjuvantes Farmacêuticos , Antígenos , Inflamação
11.
Front Immunol ; 13: 848168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860254

RESUMO

In juvenile idiopathic arthritis (JIA) inflammatory T cells and their produced cytokines are drug targets and play a role in disease pathogenesis. Despite their clinical importance, the sources and types of inflammatory T cells involved remain unclear. T cells respond to polarizing factors to initiate types of immunity to fight infections, which include immunity types 1 (T1), 2 (T2), and 3 (T17). Polarizing factors drive CD4+ T cells towards T helper (Th) cell subtypes and CD8+ T cells towards cytotoxic T cell (Tc) subtypes. T1 and T17 polarization are associated with autoimmunity and production of the cytokines IFNγ and IL-17 respectively. We show that JIA and child healthy control (HC) peripheral blood mononuclear cells are remarkably similar, with the same frequencies of CD4+ and CD8+ naïve and memory T cell subsets, T cell proliferation, and CD4+ and CD8+ T cell subsets upon T1, T2, and T17 polarization. Yet, under T1 polarizing conditions JIA cells produced increased IFNγ and inappropriately produced IL-17. Under T17 polarizing conditions JIA T cells produced increased IL-17. Gene expression of IFNγ, IL-17, Tbet, and RORγT by quantitative PCR and RNA sequencing revealed activation of immune responses and inappropriate activation of IL-17 signaling pathways in JIA polarized T1 cells. The polarized JIA T1 cells were comprised of Th and Tc cells, with Th cells producing IFNγ (Th1), IL-17 (Th17), and both IFNγ-IL-17 (Th1.17) and Tc cells producing IFNγ (Tc1). The JIA polarized CD4+ T1 cells expressed both Tbet and RORγT, with higher expression of the transcription factors associated with higher frequency of IL-17 producing cells. T1 polarized naïve CD4+ cells from JIA also produced more IFNγ and more IL-17 than HC. We show that in JIA T1 polarization inappropriately generates Th1, Th17, and Th1.17 cells. Our data provides a tool for studying the development of heterogeneous inflammatory T cells in JIA under T1 polarizing conditions and for identifying pathogenic immune cells that are important as drug targets and diagnostic markers.


Assuntos
Artrite Juvenil , Interleucina-17 , Linfócitos T CD8-Positivos/metabolismo , Criança , Citocinas , Humanos , Interleucina-17/metabolismo , Leucócitos Mononucleares , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th1
12.
Biomolecules ; 11(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34572519

RESUMO

The widely administered tuberculosis (TB) vaccine, Bacillus Calmette-Guerin (BCG), is the only licensed vaccine, but has highly variable efficiency against childhood and pulmonary TB. Therefore, the BCG prime-boost strategy is a rational solution for the development of new TB vaccines. Studies have shown that Mycobacterium tuberculosis (Mtb) culture filtrates contain proteins that have promising vaccine potential. In this study, Rv1876 bacterioferritin was identified from the culture filtrate fraction with strong immunoreactivity. Its immunobiological potential has not been reported previously. We found that recombinant Rv1876 protein induced dendritic cells' (DCs) maturation by MAPK and NF-κB signaling activation, induced a T helper type 1 cell-immune response, and expanded the population of the effector/memory T cell. Boosting BCG with Rv1876 protein enhanced the BCG-primed Th1 immune response and reduced the bacterial load in the lung compared to those of BCG alone. Thus, Rv1876 is a good target for the prime-boost strategy.


Assuntos
Proteínas de Bactérias/imunologia , Células Dendríticas/imunologia , Imunidade , Mycobacterium bovis/imunologia , Células Th1/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proliferação de Células , Citocinas/metabolismo , Feminino , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Mutação/genética , Mycobacterium bovis/crescimento & desenvolvimento , Vacinação
13.
Vaccines (Basel) ; 9(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477534

RESUMO

In this concise review, we summarize the concepts behind mRNA vaccination. We discuss the innate and adaptive immune response generated by mRNA vaccines in different animal models and in humans. We give examples of viral infections where mRNA vaccines have shown to induce potent responses and we discuss in more detail the recent SARS-CoV-2 mRNA vaccine trials in humans.

14.
FASEB J ; 34(6): 8082-8101, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32298026

RESUMO

Mammalian immune responses are initiated by "danger" signals--immutable molecular structures known as PAMPs. When detected by fixed, germline encoded receptors, pathogen-associated molecular pattern (PAMPs) subsequently inform the polarization of downstream adaptive responses depending upon identity and localization of the PAMP. Here, we report the existence of a completely novel "PAMP" that is not a molecular structure but an antigenic pattern. This pattern--the incidence of peptide epitopes with stretches of 100% sequence identity bound to both dendritic cell (DC) major histocompatibility (MHC) class I and MHC class II--strongly induces TH 1 immune polarization and activation of the cellular immune response. Inherent in the existence of this PAMP is the concomitant existence of a molecular sensor complex with the ability to scan and compare amino acid sequence identities of bound class I and II peptides. We provide substantial evidence implicating the multienzyme aminoacyl-tRNA synthetase (mARS) complex and its AIMp1 structural component as the key constituents of this complex. The results demonstrate a wholly novel mechanism by which T-helper (TH ) polarization is governed and provide critical information for the design of vaccination strategies intended to provoke cell-mediated immunity.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Celular/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos/fisiologia , Aminoacil-tRNA Sintetases/imunologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th1/imunologia
15.
Cells ; 9(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340348

RESUMO

Mesenchymal stromal cells (MSCs) can generate immunological tolerance due to their regulatory activity in many immune cells. Extracellular vesicles (EVs) release is a pivotal mechanism by which MSCs exert their actions. In this study, we evaluate whether mesenchymal stromal cell extracellular vesicles (MSC-EVs) can modulate T cell response. MSCs were expanded and EVs were obtained by differential ultracentrifugation of the supernatant. The incorporation of MSC-EVs by T cells was detected by confocal microscopy. Expression of surface markers was detected by flow cytometry or CytoFLEX and cytokines were detected by RT-PCR, FACS and confocal microscopy and a miRNA PCR array was performed. We demonstrated that MSC-EVs were incorporated by lymphocytes in vitro and decreased T cell proliferation and Th1 differentiation. Interestingly, in Th1 polarization, MSC-EVs increased Foxp3 expression and generated a subpopulation of IFN-γ+/Foxp3+T cells with suppressive capacity. A differential expression profile of miRNAs in MSC-EVs-treated Th1 cells was seen, and also a modulation of one of their target genes, TGFbR2. MSC-EVs altered the metabolism of Th1-differentiated T cells, suggesting the involvement of the TGF-ß pathway in this metabolic modulation. The addition of MSC-EVs in vivo, in an OVA immunization model, generated cells Foxp3+. Thus, our findings suggest that MSC-EVs are able to specifically modulate activated T cells at an alternative regulatory profile by miRNAs and metabolism shifting.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/ultraestrutura , Fatores de Transcrição Forkhead/metabolismo , Glicólise , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Linfócitos T Reguladores/citologia
16.
Front Immunol ; 11: 613204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597948

RESUMO

NK1.1 and its human homolog CD161 are expressed on NK cells, subsets of CD4+ and CD8+ T cells, and NKT cells. While the expression of NK1.1 is thought to be inhibitory to NK cell function, it is reported to play both costimulatory and coinhibitory roles in T-cells. CD161 has been extensively studied and characterized on subsets of T-cells that are MR1-restricted, IL-17 producing CD4+ (TH17 MAIT cells) and CD8+ T cells (Tc17 cells). Non-MAIT, MR1-independent CD161-expressing T-cells also exist and are characterized as generally effector memory cells with a stem cell like phenotype. Gene expression analysis of this enigmatic subset indicates a significant enhancement in the expression of cytotoxic granzyme molecules and innate like stress receptors in CD8+NK1.1+/CD8+CD161+ cells in comparison to CD8+ cells that do not express NK1.1 or CD161. First identified and studied in the context of viral infection, the role of CD8+CD161+ T-cells, especially in the context of tumor immunology, is still poorly understood. In this review, the functional characteristics of the CD161-expressing CD8+ T cell subset with respect to gene expression profile, cytotoxicity, and tissue homing properties are discussed, and application of this subset to immune responses against infectious disease and cancer is considered.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Receptores de IgG/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Células Matadoras Naturais/imunologia
17.
Cells, v. 9, n. 4, 1059, abr. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3020

RESUMO

Mesenchymal stromal cells (MSCs) can generate immunological tolerance due to their regulatory activity in many immune cells. Extracellular vesicles (EVs) release is a pivotal mechanism by which MSCs exert their actions. In this study, we evaluate whether mesenchymal stromal cell extracellular vesicles (MSC-EVs) can modulate T cell response. MSCs were expanded and EVs were obtained by differential ultracentrifugation of the supernatant. The incorporation of MSC-EVs by T cells was detected by confocal microscopy. Expression of surface markers was detected by flow cytometry or CytoFLEX and cytokines were detected by RT-PCR, FACS and confocal microscopy and a miRNA PCR array was performed. We demonstrated that MSC-EVs were incorporated by lymphocytes in vitro and decreased T cell proliferation and Th1 differentiation. Interestingly, in Th1 polarization, MSC-EVs increased Foxp3 expression and generated a subpopulation of IFN-gama+/Foxp3+T cells with suppressive capacity. A differential expression profile of miRNAs in MSC-EVs-treated Th1 cells was seen, and also a modulation of one of their target genes, TGFbR2. MSC-EVs altered the metabolism of Th1-differentiated T cells, suggesting the involvement of the TGF-ß pathway in this metabolic modulation. The addition of MSC-EVs in vivo, in an OVA immunization model, generated cells Foxp3+. Thus, our findings suggest that MSC-EVs are able to specifically modulate activated T cells at an alternative regulatory profile by miRNAs and metabolism shifting

18.
Clin Immunol ; 208: 108259, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513884

RESUMO

Recurrent pregnancy loss (RPL) is the most common manifestation of anti-phospholipid syndrome (APS), and activated CD4+ T cells are involved in its pathogenesis. Treatment with low-molecular weight heparin (LMWH) and aspirin combination improves pregnancy outcome, however, its mechanism of action is unclear. We investigated the effect of this therapy on Th1/Th2 cells in 89 patients with APS-RPL. The results showed that serum cytokine levels, T cell phenotypes, and transcription factors' gene expression levels representing Th1 responses were higher, whereas those representing Th2 responses were lower in patients with APS-RPL at the time of early pregnancy. This Th1-bias was reversed in patients who had live birth after receiving the combination therapy at the time of delivery. Patients with miscarriages continued to exhibit Th1-bias. In conclusion, these data support a role of Th1-bias in the pathogenesis of APS-RPL and suggest restoring T-cell phenotype as a new immunomodulatory mechanism of LMWH/aspirin combination.


Assuntos
Aborto Habitual/tratamento farmacológico , Aborto Habitual/etiologia , Síndrome Antifosfolipídica/complicações , Aspirina/uso terapêutico , Fibrinolíticos/uso terapêutico , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Adulto , Quimioterapia Combinada/métodos , Feminino , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Fenótipo , Gravidez , Linfócitos T Auxiliares-Indutores/imunologia
19.
J Cell Sci ; 132(17)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31371491

RESUMO

In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent Mycobacterium tuberculosis (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs). PPE39-treated DCs display reduced dextran uptake and enhanced MHC-I, MHC-II, CD80 and CD86 expression, indicating that this PPE protein induces phenotypic DC maturation. In addition, PPE39-treated DCs produce TNF-α, IL-6 and IL-12p70 to a similar and/or greater extent than lipopolysaccharide-treated DCs in a dose-dependent manner. The activating effect of PPE39 on DCs was mediated by TLR4 through downstream MAPK and NF-κB signaling pathways. Moreover, PPE39-treated DCs promoted naïve CD4+ T-cell proliferation accompanied by remarkable increases of IFN-γ and IL-2 secretion levels, and an increase in the Th1-related transcription factor T-bet but not in Th2-associated expression of GATA-3, suggesting that PPE39 induces Th1-type T-cell responses through DC activation. Collectively, the results indicate that the complete form of PPE39 is a so-far-unknown TLR4 agonist that induces Th1-cell biased immune responses by interacting with DCs.This article has an associated First Person interview with the first author of the paper.


Assuntos
Antígenos de Bactérias/imunologia , Células Dendríticas/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Animais , Proteínas de Bactérias/imunologia , Diferenciação Celular/imunologia , Polaridade Celular/imunologia , Proliferação de Células , Células Dendríticas/microbiologia , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Mycobacterium tuberculosis/genética , Transdução de Sinais , Células Th1/microbiologia , Vacinas contra a Tuberculose/imunologia
20.
Anim Cells Syst (Seoul) ; 23(3): 184-191, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31231582

RESUMO

We recently demonstrated that the polysaccharide component of the Korean medicinal herb Angelica gigas (immuno-stimulatory fraction of A. gigas; ISAg) induces anticancer effects in mice by activating natural killer (NK) and natural killer T (NKT) cells. However, it is unclear whether the use of ISAg in vivo can affect the differentiation of conventional T cells. Here, we investigated the effects of ISAg on the activation of conventional CD4+ and CD8+ T cells. We found that the administration of ISAg induced the polarization of CD4+ T cells toward the acquisition of the Th1 phenotype in vivo. Additionally, in mice treated with ISAg, CD8+ T cells produced more IFNγ than in control mice treated with PBS. Moreover, treatment with ISAg activated CD4+ and CD8+ T cells as well as NK and NKT cells, resulting in the secretion of Th1-type cytokines in a toll-like receptor 4 (TLR4)-dependent manner, implying that TLR4 is critical for an optimal Th1 response. Interestingly, ISAg treatment increased the number of Foxp3+ Treg cells, but not of Th2 cells, compared to control mice treated with PBS, indicating that ISAg possesses an immunomodulatory capacity that can control adaptive immune responses. Taken together, our results indicate that ISAg possesses a Th1-enhancing activity that could be used to treat Th2-mediated allergic immune diseases such as atopic dermatitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...