Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Sci Rep ; 14(1): 13833, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879592

RESUMO

Thermal comfort studies are usually employed to find subjective thermal responses [indicated by neutral temperature (NT), i.e. the temperature with no thermal stress] of residents from a region towards thermal environments. According to the recently published works in the literature, NTs are affected by many factors, such as geographical location and microenvironments. To elucidate the origins of these effects, the impact of microenvironment elements around a water surface on pedestrians' thermal perceptions was systematically investigated in this work. The Fujiang River (FJR) in Mianyang City was taken as the sample site. The municipal meteorology station is located next to the site by around 2.5 km. By performing meteorology measurements combining questionnaires, it was found that the riverside NT (indicated by physiologically equivalent temperature, PET) of Mianyang in the summer of 2023 was 21.4 °C. The relationship between the distance from the water (DFW) and NT was quadratic linear. The same phenomenon took place by using either PET or Universal Thermal Climate Index (UTCI) indexes. Meanwhile, the meteorological contexts also affected NTs, including relative humidity (RH) and air velocity (Va). Regarding RH, the NPET increased from 15.2 °C (RH = 50%) to 26.9 °C (RH = 90%). In contrast, the NPET dropped from 23.0 to - 50.6 °C when the Va increased from 0.2 to 2.5 m/s, respectively. From our analysis, it was demonstrated that human thermal responses are significantly affected by both the microenvironmental and meteorological backgrounds around the water surface. Our work provides valuable insights for the proper use of water surfaces in urban design for adjusting thermal comfort.

2.
Environ Sci Technol ; 58(24): 10524-10535, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832650

RESUMO

In the context of escalating urban heat events due to climate change, air conditioning (AC) has become a critical factor in maintaining indoor thermal comfort. Yet the usage of AC can also exacerbate outdoor heat stress and burden the electricity system, and there is little scientific knowledge regarding how to balance these conflicting goals. To address this issue, we established a coupled modeling approach, integrating the Weather Research and Forecasting model with the building energy model (WRF_BEP + BEM), and designed multiple AC usage scenarios. We selected Chongqing, China's fourth-largest megacity, as our study area due to its significant socioeconomic importance, the severity of extreme heat events, and the uniqueness of its energy infrastructure. Our analysis reveals that AC systems can substantially reduce indoor temperatures by up to 18 °C; however, it also identifies substantial nighttime warming (2-2.5 °C) and a decline in thermal comfort. Particularly for high-density neighborhoods, when we increase 2 °C indoors, the outdoor temperature can be alleviated by up to 1 °C. Besides, despite the limited capacity to regulate peak electricity demand, we identified that reducing the spatial cooled fraction, increasing targeted indoor temperature by 2 °C, and implementing temporal AC schedules can effectively lower energy consumption in high-density neighborhoods, especially the reduction of spatial cooled fraction (up to 50%). Considering the substantial demand for cooling energy, it is imperative to carefully assess the adequacy and continuity of backup energy sources. The study underscores the urgency of reassessing energy resilience and advocates for addressing the thermal equity between indoor and outdoor environments, contributing to the development of a sustainable and just urban climate strategy in an era of intensifying heat events.


Assuntos
Ar Condicionado , Mudança Climática , China , Temperatura , Modelos Teóricos
3.
J Therm Biol ; 123: 103887, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38878349

RESUMO

Inclusive thermal comfort solutions should accommodate the need of clinical groups such as people with Multiple Sclerosis (pwMS), who experience abnormal thermal sensitivity. The aim of this study was to develop high-density body maps of temperature sensitivity in pwMS to inform the design of patient-centred personal comfort systems. Fourteen pwMS (6 M/8 F; 48.6 ± 10.0 y) and 13 healthy individuals (CTR; 5 M/8 F; 47.8 ± 10.4) underwent a quantitative sensory test in a thermoneutral environment, during which they rated their local thermal sensations arising from the application of warm (39°C) and cold (27°C) stimuli to 115 bilateral body sites across the face, torso, upper and lower limbs. We used a z-transformation to create maps of hypo- and hyper-sensitivity for each individual MS participant using normative CTR data. We found that 50% of pwMS (N = 7/14) presented a loss of cold sensitivity over the upper limb, and a loss of warm sensitivity over the feet. Furthermore, 36% of pwMS (N = 5) presented warm hyper-sensitivity over the upper limb. Finally, cold sensitivity loss and warm sensitivity gain were more evenly distributed and affected a greater proportion of skin sites in MS (i.e. cold hypo-sensitivity = 44% of tested sites; warm hyper-sensitivity = 14%) than warm sensitivity loss (i.e. 10%), which was more focused on sites such as the feet. Our findings highlight the need to consider "thermosensory corrective power" when designing personal comfort systems, to accommodate either thermosensory loss or gain in pwMS. Our approach to clinical body mapping may support this process and help meeting the unique thermal needs of vulnerable individuals.

4.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931639

RESUMO

Thermal comfort strategies represent a very important aspect when it comes to achieving thermal comfort conditions. At the same time, recently, there has been a growing interest in user-centered building control concepts. Thus, this work focuses on developing a thermal control strategy that combines the restrictions related to achieving thermal comfort, expressed in terms of environmental parameters and specific factors of personal perception, with the objective of reducing energy consumption. This case study aims at implementing this strategy in a laboratory room located within the Technical University of Civil Engineering Bucharest. The strategy proposed by the authors is based on implementing a combination of a Model Predictive Control (MPC) model and a fuzzy system, which presents constraints related to the room occupancy level. Relevant observations regarding the parameterization of fuzzy systems are also highlighted.

5.
Technol Health Care ; 32(S1): 487-499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759071

RESUMO

BACKGROUND: Shoes upper has been shown to affect the shoe microclimate (temperature and humidity). However, the existing data on the correlation between the microclimate inside footwear and the body's physical factors is still quite limited. OBJECTIVE: This study examined whether shoes air permeability would influence foot microclimate and spatial characteristics of lower limb and body. METHODS: Twelve recreational male habitual runners were instructed to finish an 80 min experimental protocol, wearing two running shoes with different air permeability. RESULTS: Participants wearing CLOSED upper structure shoe exhibited higher in-shoe temperature and relative humidity. Although there was no significant difference, shank temperature and metabolism in OPEN upper structure shoes were lower. CONCLUSIONS: This indicates that the air permeability of shoes can modify the microclimate of the feet, potentially affecting the lower limb temperature. This study provides relevant information for the design and evaluation of footwear.


Assuntos
Umidade , Microclima , Corrida , Sapatos , Humanos , Masculino , Corrida/fisiologia , Adulto , Adulto Jovem , Temperatura , Pé/fisiologia , Temperatura Corporal/fisiologia , Desenho de Equipamento
6.
Heliyon ; 10(9): e30161, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707386

RESUMO

The head represents 10 % of the body's total surface area. Unprotected, it accounts for a significant portion of overall heat loss when exposed to cold conditions. This study was motivated by a need to clarify how the human head interacts with its environment in terms of heat exchange. Accurate estimations of heat transfer coefficients on the human head are essential for conducting thermal comfort and safety analyses in buildings. In this study, a thermal head resembling a real male human head is utilized to investigate heat transfer between the body and the surrounding environment. A three-dimensional computational fluid dynamics (CFD) model is proposed to simulate steady-state dry heat loss from the human head within a chamber. This model provides predictions for heat flux, temperature, and velocity distribution surrounding the head. A straightforward correlation, derived from numerical and experimental findings, is introduced to forecast the average Nusselt number for the head under combined natural and forced convection. This correlation, relying on dimensionless parameters (Grashof, Reynolds, and Prandtl numbers), offers enhanced accuracy, simplicity, and fewer terms. The predicted average Nusselt numbers from the proposed correlation for mixed convection closely match CFD and experimental results, with relative percentage differences within ±2 %, signifying excellent accuracy across a broader range of flow conditions, including temperature differences and air velocities. Additionally, the study explores the impact of head diameter on overall heat transfer.

7.
Int J Biometeorol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705900

RESUMO

Winter cold wave adaptation strategies in hot climates due to climate change didn't receive the deserved attention from previous studies. Therefore, this study comprehensively investigates the impact of various windbreak parameters on mitigating winter cold stress in hot steppe-arid climate. A microclimate model for a residential campus was built and validated through on-site measurement on a typical winter day to assess thirty-two scenarios for tree characteristics and spatial configuration windbreak parameters based on PET, wind speed, and Air Temperature (AT). Moreover, four configurations, that had best results on mitigating cold stress in winter, were tested during typical summer conditions to couple the assessment of cold and hot seasons. Additionally, environmental analysis for all scenarios was conducted. The results revealed that the most effective parameters for mitigating cold stress are tree distribution, Leaf Area Density (LAD), row number, spacing, and shape. Double rows of high LAD and medium height trees with small spacing yielded the best cold stress mitigation effect. Furthermore, the windbreak reduced the cold stress in the morning and night by 19.31% and 18.06%, respectively. It reduced AT and wind speed at night by 0.79 °C and 2.56 m/s, respectively. During summer, very hot PET area was reduced by 21.79% and 19.5% at 12:00 and 15:00, respectively.

8.
Int J Biometeorol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809299

RESUMO

Rapid urbanization increases urban air temperature, considerably affecting health, comfort, and the quality of life in urban spaces. The accurate assessment of outdoor thermal comfort is crucial for urban health. In the present study, a high-resolution mesoscale model coupled with a layer Urban Canopy Model (WRF-UCM) is implemented over the city of Hyderabad (17.3850° N, 78.4867° E) to simulate urban meteorological conditions during the summer and winter period of 2009 and 2019. The universal thermal climate index (UTCI) has been estimated using the model-derived atmospheric variables and a human biometeorology parameter to assess the linkages between the outdoor environment and thermal comfort. Results revealed that during summer, the city experiences nearly 50 h of very strong thermal stress, whereas about 120 h of slight cold stress are experienced during winter. The urban area in Hyderabad expanded from 5 to 15% during the study period, leading to a 2.5℃ (2.8 ℃) increase in land surface temperature, and a 1.2 (1.9 ℃) rise in air temperature at 2 m height and 1.5 (2.5 ℃) UTCI during summer (winter) time. The analysis reveals that the maximum UTCI values were noticed over built-up areas compared to other land classes during daytime and nighttime. The results derived from the present study have shown that the performance of WRF-UCM-derived UTCI reasonably portrayed the significant impact of urbanization on thermal comfort over the city and provided useful insights with regard to urban comfort and welfare.

9.
J Perianesth Nurs ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795084

RESUMO

PURPOSE: Perioperative hypothermia is a common anesthesia-related complication that can result in negative outcomes. Intraoperative active heating can positively impact these outcomes. Therefore this study aimed to investigate the effectiveness of three common heating devices for controlling hypothermia, improving thermal comfort, and reducing anesthesia recovery time. DESIGN: Systematic review and meta-analysis. METHODS: Seven electronic literature databases were searched from the inception date of the databases to March 18, 2022. RevMan 5.4 and Stata 15.1 were used to perform meta-analyses on the obtained data, and the Cochrane Evaluation Manual was used for quality risk assessment of the included studies. FINDINGS: A total of 18 studies involving 1,511 patients undergoing surgery using heating devices were included. In this meta-analysis, a ranking method known as the Surface Under the Cumulative Ranking Curve (SUCRA) was used. SUCRA provides a numerical measure of the effectiveness of treatments, with higher values indicating superior efficacy. Findings demonstrated that the concurrent use of three heating devices led to an elevation in core body temperatures (SUCRA = 69.2%) and enhanced delayed recovery (SUCRA = 88.6%) as compared to the application of a single device. Furthermore, for thermal comfort, the employment of heating blankets proved to be the most effective (SUCRA = 87.8%). CONCLUSIONS: This study showed the core body temperatures and reductions in delayed recovery were greater when three heating devices were used together as compared to use one of them alone. Heating blankets was the most effective option for improving the thermal comfort of patients. Thus, clinicians should opt for appropriate heating equipment according to the type of surgery and the characteristics and needs of patients. The choice of appropriate heating equipment will ensure surgical safety, improve patient comfort, and reduce surgical risks.

10.
Int J Biometeorol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683382

RESUMO

Individual heating systems, such as the air-source heat pump (ASHP) air-conditioner or floor heating (FH), are usually used by people living in the hot summer and cold winter (HSCW) zone of China to heat indoor climates in the winter. However, little research has been conducted in the HSCW zone on the thermal comfort difference between indoor climates heated by ASHP air-conditioners and those heated by floor heating, as well as how occupants adapt to different indoor climates. We conducted a comparative field experiment in ASHP-heated and FH-heated apartments in Nanjing to investigate how different types of heating systems influence the thermal sensation of occupants, and we conducted a comparative field experiment in ASHP-heated office buildings and naturally ventilated teaching buildings in Shanghai to investigate how occupants adapt to different indoor thermal environments. Indoor environmental parameters and body surface temperatures were measured using instruments, and occupants' thermal sensation, activity level, and clothing were evaluated using the questionnaire. The results show that floor heating improves thermal comfort by raising foot temperature compared to the ASHP air-conditioner, and that occupants become acclimatized to different indoor climates by adjusting neutral operative temperature. According to the findings, there is no need to overheat the indoor environment in the HSCW zone because occupants can adapt to their experienced thermal environment and it is critical to maintain warm foot temperature in the cool/cold indoor environment.

11.
Environ Sci Pollut Res Int ; 31(21): 30735-30749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613760

RESUMO

In this study, we investigated the effects of thermal-acoustic environments on human comfort in a cold region by focusing on Xi'an in China as a representative city. Four typical open spaces were identified within two universities, with one located in an urban area and the other in a suburban area. Surveys were conducted using questionnaires and environmental parameters were measured to assess thermal-acoustic perception. The physiological equivalent temperature (PET) and noise sound pressure levels were employed to measure the thermal-acoustic environments in the four open spaces. The results showed that the neutral PET was 19.1 °C in Xi'an from March to May, and the neutral temperature range was 14.9-23.4 °C. The preferred temperature was 20.0 °C. Acoustic sensation votes were lower in suburban areas than urban areas. Respondents in urban areas exhibited significantly higher sensitivity to the thermal and acoustic environments compared with those in suburban areas. Sensitivity to the thermal environment decreased as the environmental noise levels decreased. The temperature perceived as most suitable increased as the sensitivity to the thermal environment decreased. Acoustic comfort evaluations were generally higher in colder and warmer environments. Warmer environments heightened the sensitivity to the acoustic environment and this effect gradually decreased as the sound pressure levels increased. Thus, based on empirical analyses, we compared the effects of outdoor thermal-acoustic parameters on comfort to provide experimental data support for further outdoor thermal comfort research.


Assuntos
Acústica , Humanos , China , Temperatura , Ruído , Cidades , Universidades , Adulto , Inquéritos e Questionários
12.
Front Public Health ; 12: 1365470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562254

RESUMO

Introduction: Research on the outdoor thermal comfort (OTC) of a university campus is beneficial to the physical and mental health of college students. Methods: In this study, the OTC of students attending Tibet University in Lhasa, which experiences high-altitude cold climate conditions, under different activity intensities was studied using field measurements and a questionnaire survey. Results: With the increase in activity intensity, the comfort physiologically equivalent temperature (PET) value gradually increased in summer, while the comfortable PET value gradually decreased in winter. The most comfortable PET value is 17.6°C in summer and 11.5°C in winter. The neutral PET of Tibetan college students during outdoor activities in summer was 16.3°C, and the neutral PET of outdoor activities in winter was 12.1°C. Gender and ethnicity had different effects on thermal sensation under different activity intensities. Under vigorous-intensity activities, PET in winter and summer had the greatest influence on thermal sensation. The situation was different under moderate-intensity activity. PET had the greatest influence on thermal sensation in summer, and Tmrt had the greatest influence on thermal sensation in winter. Discussion: These findings provide a basis for an improved design of the outdoor environment under different outdoor activity intensities in high-altitude areas.


Assuntos
Altitude , Clima , Humanos , Estações do Ano , Temperatura , Inquéritos e Questionários
13.
Int J Biometeorol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689055

RESUMO

The outdoor thermal comfort (OTC) of children is more specific than that of adults, and the complex influence of outdoor activity spaces on children's thermal comfort warrants further investigation. To investigate the outdoor thermal comfort baseline (OTCB) of children in Hangzhou and explore the thermal impact of outdoor surfaces on children, a survey was conducted in six typical outdoor activity spaces in Hangzhou, China, during spring and summer utilizing physical measurements, questionnaire surveys, and the universal thermal climate index (UTCI). This study analyzed the differences in thermal perception among children in Hangzhou in different seasons, their OTCB, and the impact of surface reflectance (Rs) on children's OTC. The results indicated the following: 1) In spring, children in Hangzhou generally felt comfortable, but their discomfort with heat noticeably increased in summer. 2) The neutral UTCIs (NUTCIs) for Hangzhou children were 11.6 °C (spring) and 27.7 °C (summer), and the NUTCI ranges (NUTCIRs) were 9.7-17.5 °C (spring) and 25.7-30.0 °C (summer); additionally, the thermal acceptability ranges (TARs) were 13.2-25.2 °C (spring) and 11.8-34.8 °C (summer). 3) A high Rs made children feel more uncomfortable with heat, which was primarily due to the space's total shortwave and longwave radiation, which peaked between 14:00 and 15:00. 4) Based on the research findings, corresponding bioclimatic design strategies were proposed. Recommendations include using high Rs underlays with shading, composite underlays, or the future adoption of thermochromic coatings. Keeping permeable underlays moist is essential for activating their cooling mechanisms. Fundamental safety measures are imperative. This study provides valuable data for urban planners and landscape designers to create public spaces suitable for children's outdoor activities, contributing to a harmonious and unified living environment.

14.
Environ Sci Pollut Res Int ; 31(19): 28594-28619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558347

RESUMO

Appropriate landscape configurations significantly mitigate rural thermal degradation. However, limited research exists on seasonal thermal comfort and the interconnections among landscape elements. Using ENVI-met software and field measurements, this study analyzed the microclimate of Dayuwan Village Square in Wuhan City. Fifteen design scenarios, including tree planting, building greening, albedo adjustment, and expanded tree coverage, were quantitatively evaluated to assess their impact on outdoor thermal comfort. Additionally, synergistic interactions between mitigation strategies were explored. The study found that increasing evergreen tree coverage by 50% has minimal impact on comfort during winter and spring. However, it significantly reduces temperatures in summer and autumn, resulting in average predicted mean vote (PMV) decreases of 0.315 and 0.643, respectively. Additionally, this strategy optimizes PMV values at 18:00 on extreme days, with a 0.102 decrease in summer and a 0.002 increase in winter. This research offers practical and sustainable guidance to designers for enhancing mitigation effects through optimal landscape configuration, providing a technical framework for rural environmental improvements.


Assuntos
Estações do Ano , China , Temperatura , Cidades , Árvores , Microclima
15.
J Environ Manage ; 358: 120861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603848

RESUMO

In electric vehicles, the Heating, Ventilation and Air-Conditioning (HVAC) function is often performed by a heat pump. Heating and cooling the cabin air drains energy directly from the vehicle's battery. In addition, these vehicles may operate in environments with high level of air pollution. In the cabin, passengers are confined to a small space where particles and harmful gases can accumulate. In addition, the ventilation system must also handle the air which does not enter the cabin through blower operation. This "infiltration" is a function of the vehicle speed and allows pollution to enter the cabin without being filtered or thermally treated. The objective of the study is to optimize the competing goals of the HVAC system: achieving the best air quality while maintaining good thermal comfort, at minimum energy costs. A system simulation tool is calibrated to represent the heating and cooling of an electric car. With this model, the influence of key factors is evaluated. Depending on ambient conditions and other parameters (number of occupants, vehicle speed, etc.), the blower flow rate and recirculation ratio can be adjusted to reach the objectives. The management of the proportion of fresh and recirculated air allows to regulate the humidity and carbon dioxide levels. Optimum controls are proposed as good trade-offs to reduce the power consumption, while maintaining a safe and comfortable environment for occupants. Compared to the full fresh air mode, the driving range gains are estimated in cold (-15 °C) and hot (30 °C) scenarios at 9 and 26 km respectively.


Assuntos
Ar Condicionado , Poluição do Ar , Ventilação , Poluição do Ar/prevenção & controle , Eletricidade , Dióxido de Carbono/análise
16.
J Therm Biol ; 121: 103839, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569325

RESUMO

The environmental quality, in terms of acoustic, visual, and thermal environments, significantly affects people's comfort levels. Along these lines, in this work, their comprehensive impact on people's overall comfort was systematically explored. Pedestrians' outdoor neutral points on various environmental parameters were found by performing linear regressions. Similarly, people's thermal perceptions (indicated by neutral temperatures, NT) were found to vary for both acoustic and light environments. They would be increasingly heat sensitive (R2 increases) in a noisier environment while the NTs varied for either sound or light intensity levels. From our analysis, it was demonstrated that people's overall comforts were negatively correlated with these parameters in different degrees. This work provides valuable insights for future urban design and planning studies to create better outdoor environments.


Assuntos
Pedestres , Sensação Térmica , Humanos , Pedestres/psicologia , Masculino , Feminino , Adulto , Estações do Ano , Luz , Adulto Jovem , Clima , Acústica , Temperatura
17.
J Therm Biol ; 121: 103828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38604115

RESUMO

Heating, Ventilation, and Air Conditioning (HVAC) systems in high-speed trains (HST) are responsible for consuming approximately 70% of non-operational energy sources, yet they frequently fail to ensure provide adequate thermal comfort for the majority of passengers. Recent advancements in portable wearable sensors have opened up new possibilities for real-time detection of occupant thermal comfort status and timely feedback to the HVAC system. However, since occupant thermal comfort is subjective and cannot be directly measured, it is generally inferred from thermal environment parameters or physiological signals of occupants within the HST compartment. This paper presents a field test conducted to assess the thermal comfort of occupants within HST compartments. Leveraging physiological signals, including skin temperature, galvanic skin reaction, heart rate, and ambient temperature, we propose a Predicted Thermal Comfort (PTC) model for HST cabin occupants and establish an intelligent regulation model for the HVAC system. Nine input factors, comprising physiological signals, individual physiological characteristics, compartment seating, and ambient temperature, were formulated for the PTS model. In order to obtain an efficient and accurate PTC prediction model for HST cabin occupants, we compared the accuracy of different subsets of features trained by Machine Learning (ML) models of Random Forest, Decision Tree, Vector Machine and K-neighbourhood. We divided all the predicted feature values into four subsets, and did hyperparameter optimisation for each ML model. The HST compartment occupant PTC prediction model trained by Random Forest model obtained 90.4% Accuracy (F1 macro = 0.889). Subsequent sensitivity analyses of the best predictive models were then performed using SHapley Additive explanation (SHAP) and data-based sensitivity analysis (DSA) methods. The development of a more accurate and operationally efficient thermal comfort prediction model for HST occupants allows for precise and detailed feedback to the HVAC system. Consequently, the HVAC system can make the most appropriate and effective air supply adjustments, leading to improved satisfaction rates for HST occupant thermal comfort and the avoidance of energy wastage caused by inaccurate and untimely predictive feedback.


Assuntos
Aprendizado de Máquina , Temperatura Cutânea , Humanos , Ar Condicionado/instrumentação , Ar Condicionado/métodos , Frequência Cardíaca , Resposta Galvânica da Pele , Sensação Térmica , Temperatura , Masculino
18.
Int J Biometeorol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564032

RESUMO

We recruited 162 healthy elderly adults to determine the thermal, physiological, and psychological effects of horticultural activities (flower arranging, transplanting, and rubble masonry) in outdoor open spaces. We linked these to local climate conditions, physiology, and comfort through a questionnaire survey. The results showed that: (1) the neutral physiological equivalent temperature (NPET) before the horticultural activities were 22.18 â„ƒ for flower arranging, 23.67 â„ƒ for transplanting, and 20.78 â„ƒ for rubble masonry, while the NPET decreased to 18.53 â„ƒ, 20.73 â„ƒ and 18.04 â„ƒ (respectively) after activities. (2) The heart rate and blood oxygen saturation changed significantly (p < 0.05) only after rubble masonry. (3) The average positive affect (PA) scores increased after flower arranging by 4.83, transplanting by 3.30, and rubble masonry by 4.00. (4) After activities, the thermal sensation vote was mainly influenced by globe temperature (41.36%), air temperature (33.47%), and wind speed (25.17%). Thermal comfort vote could be promoted because of 37.35% of an increasing positive and 21.20% of decreasing negative emotion.

19.
Int J Biometeorol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656352

RESUMO

Thermal indices and thermal comfort maps have great importance in developing health-minded climate action strategies and livable urban layouts. Especially in cities where vulnerability to heatwaves is high, it is necessary to detect the most appropriate indicators for the regional characteristics and action planning with respect to thermal comfort. The aim of the study is to examine thermal indices as indicators of regional climate characteristics by relating to meteorological parameters and spatial features. Atmospheric variables including air temperature, wind speed, cloud cover, and relative humidity data were obtained from 30 meteorological stations located in districts having different climatic features. Heat stress levels for apparent temperature (AT), heat index (HI), wet bulb globe temperature (WBGT), physiological equivalent temperature (PET), universal thermal climate index (UTCI), and perceived temperature (PT) indices were calculated and associated with meteorological parameters. Thermal comfort maps have been created with the daily mean and maximum values of all indices. As a result, the meteorological parameters with the strongest correlation with all thermal indices are air temperature (Ta) with r = 0.89 ± 0.01 and mean radiant temperature (Tmrt) with r = 0.75 ± 0.16. The differences in thermal stress levels over the city have been distinctively observed in the ATmax, PETmax, and PTmax maps, which are generated by the daily maximum values of the indices. Çatalca, where forests cover large areas compared to highly urbanized districts, has the lowest heat stress defined by all indices.

20.
Bioengineering (Basel) ; 11(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38671774

RESUMO

Body temperature should be tightly regulated for optimal sleep. However, various extrinsic and intrinsic factors can alter body temperature during sleep. In a free-living study, we examined how sleep and cardiovascular health metrics were affected by sleeping for one week with (Pod ON) vs. without (Pod OFF), an active temperature-controlled mattress cover (the Eight Sleep Pod). A total of 54 subjects wore a home sleep test device (HST) for eight nights: four nights each with Pod ON and OFF (>300 total HST nights). Nightly sleeping heart rate (HR) and heart rate variability (HRV) were collected. Compared to Pod OFF, men and women sleeping at cooler temperatures in the first half of the night significantly improved deep (+14 min; +22% mean change; p = 0.003) and REM (+9 min; +25% mean change; p = 0.033) sleep, respectively. Men sleeping at warm temperatures in the second half of the night significantly improved light sleep (+23 min; +19% mean change; p = 0.023). Overall, sleeping HR (-2% mean change) and HRV (+7% mean change) significantly improved with Pod ON (p < 0.01). To our knowledge, this is the first study to show a continuously temperature-regulated bed surface can (1) significantly modify time spent in specific sleep stages in certain parts of the night, and (2) enhance cardiovascular recovery during sleep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...