Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 114, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075474

RESUMO

Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.

2.
J Chromatogr A ; 1730: 465039, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38901296

RESUMO

A system consisting of a thermal desorption unit (TDU) and micro thermal desorption tubes (µTD-tubes, 1.4 mm I.D., 10mg Tenax TA) for fast desorption of analytes was developed for the efficient combination of hyper fast gas chromatography with thermal desorption. The fast desorption is achieved by a significantly reduced thermal mass compared to conventional thermal desorption tubes. Therefore, extremely fast heating and cooling cycles are possible. Proof of concept measurements combining the new setup with a flow-field thermal gradient gas chromatograph (FF-TG-GC) and FID detection show good precision and linearity with R2≥0.995 in the analysis of an n-alkane mix (C8-C20). Thermal desorption occurs within 12s. The impact of reduced µTD-tube dimensions on desorption time, full width at half maximum (FWHM), breakthrough volumes, tube flow rates ergo linear velocities, porosity and back pressure is discussed.


Assuntos
Cromatografia Gasosa , Fatores de Tempo , Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/métodos , Pressão , Reprodutibilidade dos Testes , Alcanos/análise , Alcanos/química
3.
J Therm Biol ; 122: 103868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38852485

RESUMO

Transient Receptor Potential (TRP) ion channels are important for sensing environmental temperature. In rodents, TRPV4 senses warmth (25-34 °C), TRPV1 senses heat (>42 °C), TRPA1 putatively senses cold (<17 °C), and TRPM8 senses cool-cold (18-26 °C). We investigated if knockout (KO) mice lacking these TRP channels exhibited changes in thermal preference. Thermal preference was tested using a dual hot-cold plate with one thermoelectric surface set at 30 °C and the adjacent surface at a temperature of 15-45 °C in 5 °C increments. Blinded observers counted the number of times mice crossed through an opening between plates and the percentage of time spent on the 30 °C plate. In a separate experiment, observers blinded as to genotype also assessed the temperature at the location on a thermal gradient (1.83 m, 4-50 °C) occupied by the mouse at 5- or 10-min intervals over 2 h. Male and female wildtype mice preferred 30 °C and significantly avoided colder (15-20 °C) and hotter (40-45 °C) temperatures. Male TRPV1KOs and TRPA1KOs, and TRPV4KOs of both sexes, were similar, while female WTs, TRPV1KOs, TRPA1KOs and TRPM8KOs did not show significant thermal preferences across the temperature range. Male and female TRPM8KOs did not significantly avoid the coldest temperatures. Male mice (except for TRPM8KOs) exhibited significantly fewer plate crossings at hot and cold temperatures and more crossings at thermoneutral temperatures, while females exhibited a similar but non-significant trend. Occupancy temperatures along the thermal gradient exhibited a broad distribution that shrank somewhat over time. Mean occupancy temperatures (recorded at 90-120 min) were significantly higher for females (30-34 °C) compared to males (26-27 °C) of all genotypes, except for TRPA1KOs which exhibited no sex difference. The results indicate (1) sex differences with females (except TRPA1KOs) preferring warmer temperatures, (2) reduced thermosensitivity in female TRPV1KOs, and (3) reduced sensitivity to cold and innocuous warmth in male and female TRPM8KOs consistent with previous studies.


Assuntos
Camundongos Knockout , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Sensação Térmica , Animais , Feminino , Masculino , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Camundongos Endogâmicos C57BL , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Temperatura Alta , Temperatura Baixa
4.
ACS Appl Mater Interfaces ; 16(27): 34830-34839, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941578

RESUMO

Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 µm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.

5.
Pharmacol Biochem Behav ; 235: 173694, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128767

RESUMO

Opioids are powerful analgesic drugs that are used clinically to treat pain. However, chronic opioid use causes compensatory neuroadaptations that result in greater pain sensitivity during withdrawal, known as opioid withdrawal-induced hyperalgesia (OWIH). Cold nociception tests are commonly used in humans, but preclinical studies often use mechanical and heat stimuli to measure OWIH. Thus, further characterization of cold nociception stimuli is needed in preclinical models. We assessed three cold nociception tests-thermal gradient ring (5-30 °C, 5-50 °C, 15-40 °C, and 25-50 °C), dynamic cold plate (4 °C to -1 °C at -1 °C/min, -1 °C to 4 °C at +1 °C/min), and stable cold plate (10 °C, 6 °C, and 2 °C)-to measure hyperalgesia in a mouse protocol of heroin dependence. On the thermal gradient ring, mice in the heroin withdrawal group preferred warmer temperatures, and the results depended on the ring's temperature range. On the dynamic cold plate, heroin withdrawal increased the number of nociceptive responses, with a temperature ramp from 4 °C to -1 °C yielding the largest response. On the stable cold plate, heroin withdrawal increased the number of nociceptive responses, and a plate temperature of 2 °C yielded the most significant increase in responses. Among the three tests, the stable cold plate elicited the most robust change in behavior between heroin-dependent and nondependent mice and had the highest throughput. To pharmacologically characterize the stable cold plate test, we used µ-opioid and non-opioid receptor-targeting drugs that have been previously shown to reverse OWIH in mechanical and heat nociception assays. The full µ-opioid receptor agonist methadone and µ-opioid receptor partial agonist buprenorphine decreased OWIH, whereas the preferential µ-opioid receptor antagonist naltrexone increased OWIH. Two N-methyl-d-aspartate receptor antagonists (ketamine, MK-801), a corticotropin-releasing factor 1 receptor antagonist (R121919), a ß2-adrenergic receptor antagonist (butoxamine), an α2-adrenergic receptor agonist (lofexidine), and a 5-hydroxytryptamine-3 receptor antagonist (ondansetron) had no effect on OWIH. These data demonstrate that the stable cold plate at 2 °C yields a robust, reliable, and concise measure of OWIH that is sensitive to opioid agonists.


Assuntos
Hiperalgesia , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Heroína/efeitos adversos , Analgésicos Opioides/farmacologia , Nociceptividade , Entorpecentes/efeitos adversos , Dor/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Agonistas de Receptores Adrenérgicos alfa 2 , Receptores Opioides
6.
Micromachines (Basel) ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138411

RESUMO

Flip chip bonding technology on gold-tin (Au-Sn) microbumps for MEMS (Micro Electro Mechanical Systems) and 3D packaging is becoming increasingly important in the electronics industry. The main advantages of Au-Sn microbumps are a low electrical resistance, high electrical reliability, and fine pitch. However, the bonding temperature is relatively high, and the forming mechanism of an intermetallic compound (IMC) is complicated. In this study, Au-Sn solid-state diffusion (SSD) bonding is performed using the thermal gradient bonding (TGB) method, which lowers bonding temperature and gains high bonding strength in a short time. Firstly, Au-Sn microbumps with a low roughness are prepared by using an optimized process. Then, Au-Sn bonding parameters including bonding temperature, bonding time, and bonding pressure are optimized to obtain a higher bonding quality. The shear strength of 23.898 MPa is obtained when bonding in the HCOOH environment for 10 min at the gradient temperature of 150 °C/250 °C with a bonding pressure of more than 10 MPa. The IMC of Au-Sn is found to be Au-Sn and Au5Sn. The effect of annealing time on the IMC is also investigated. More and more Au5Sn is generated with an increase in annealing time, and Au5Sn is formed after Sn is depleted. Finally, the effect of annealing time on the IMC is verified by using finite element simulation, and the bonding strength of IMC was found to be higher when the bonding temperature is 150 °C at the cold side and 250 °C at the hot side. The temperature in the bonding area can reach 200 °C, which proves that the Au-Sn bonding process is solid-state diffusion because the temperature gradient reaches 2500 °C/cm.

7.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37837035

RESUMO

This study examines the temperature distributions and thermal-induced responses in reinforced concrete bridge elements, focusing on the Canadian climate regions. The Canadian Highway Bridge Design Code (CHBDC) currently utilizes a fixed thermal gradient profile that does not account for regional climatic variations. Historical environmental data determines the effective maximum temperatures in the CHBDC. In order to investigate temperature behaviors and distributions, a transient finite element (FE) model is developed using recorded and calculated 3-month thermal loads data for representative cities in different climate regions. The results indicate that the predicted daily maximum effective mean temperatures and extreme daily positive vertical thermal gradients do not align. A linear correlation exists between the daily maximum effective mean temperature and the daily maximum air temperature, with a coefficient of determination (R2) of 0.935. The proposed effective mean temperatures obtained from the FE thermal analysis are higher than the CHBDC recommendations. New thermal gradient profiles are proposed for Canadian climate zones, consisting of two straight lines and a linear gradient at the top and bottom sections. A comparison between the proposed profiles and the CHBDC and AASHTO specifications reveals that a single fixed thermal gradient profile is inadequate to account for the variation in thermal gradients across Canadian climate regions.

8.
J Therm Biol ; 113: 103516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055106

RESUMO

We examined the relationship of post-diapause rearing temperature to developmental rate, survival, and adult body mass of the solitary wasp Isodontia elegans using prepupae from trap-nests. Isodontia elegans is a member of a genus often found in trap-nests in North America and Europe. Trap-nests are commonly used tools for studying cavity-nesting solitary wasps and bees. In temperate zones, progeny in nests usually overwinter as prepupae before pupating and emerging as adults. An important aspect of properly using trap-nests is determining temperatures that affect survival and health of developing offspring. After overwintering >600 cocoons containing prepupae after the summers of 2015 and 2016, we placed cocoons on a laboratory thermal gradient where offspring experienced one of 19 constant temperatures from 6 to 43 °C; emergence of adults was monitored for 100 days. Our conservative estimate for the critical thermal minimum for development is 14 °C, whereas that for the critical maximum is ∼33 °C. Prepupae transitioned to adults most rapidly at 29-33 °C, but developmental rate was lower for some progeny exposed to temperatures ≥30 °C. Offspring successfully reached the adult stage in <100 days at of temperatures of ∼19-33 °C. Adults from cocoons reared at lower temperatures weighed on average 6-10% more than expected based on their head widths, whereas those reared at higher temperatures weighed 4-10% less than expected. The difference may be due to greater rates of water loss and lipid metabolism during development at higher temperatures. Pre-overwintering cocoon mass was a significant predictor of relative adult body mass, indicating that adult health is partly related to their condition before overwintering. The trends we observed were similar to those for the bee Megachile rotundata, which we previously studied on the same gradient apparatus. However, data is needed on many other species of wasps and bees from a diversity of environments.


Assuntos
Diapausa , Animais , Feminino , Masculino , Caracteres Sexuais , Taxa de Sobrevida , Temperatura , Fatores de Tempo , Vespas/crescimento & desenvolvimento , Envelhecimento
9.
Plant Cell Environ ; 46(3): 831-849, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597283

RESUMO

Modelling the response of plants to climate change is limited by our incomplete understanding of the component processes of photosynthesis and their temperature responses within and among species. For ≥20 individuals, each of six common subtropical tree species occurring across steep urban thermal gradients in Miami, Florida, USA, we determined rates of net photosynthesis (Anet ), maximum RuBP carboxylation, maximum RuBP regeneration and stomatal conductance, and modelled the optimum temperature (Topt ) and process rate of each parameter to address two questions: (1) Do the Topt of Anet (ToptA ) and the maximum Anet (Aopt ) of subtropical trees reflect acclimation to elevated growth temperatures? And (2) What limits Anet in subtropical trees? Against expectations, we did not find significant acclimation of ToptA , Aopt  or the Topt of any of the underlying photosynthetic parameters to growth temperature in any of the focal species. Model selection for the single best predictor of Anet both across leaf temperatures and at ToptA revealed that the Anet of most trees was best predicted by stomatal conductance. Our findings are in accord with those of previous studies, especially in the tropics, that have identified stomatal conductance to be the most important factor limiting Anet , rather than biochemical thermal responses.


Assuntos
Fotossíntese , Árvores , Árvores/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Temperatura , Mudança Climática , Aclimatação , Dióxido de Carbono
10.
Environ Sci Pollut Res Int ; 30(5): 13788-13800, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36149554

RESUMO

New construction has resulted in impervious surfaces increasingly replacing natural landscapes, altering surface radiation, thermal properties, and humidity in urban areas. Based on Landsat-8 data, the temporal and spatial impacts of the construction of Dalian Jinzhouwan Airport and Beijing Daxing Airport on the thermal environment were studied. The local thermal gradient (LTG) of the airport before and after construction is compared. The results showed that after the completion of the airport, the LTG value of Daxing Airport increased by 0.033 and that of Jinzhou Bay Airport increased by 0.009. After the airport operation, LTG values increase again. Daxing Airport added another 0.053, and Jinzhou Bay Airport added another 0.127. Two land classification models (land use type, LUT; local climate zone, LCZ) were used to explore the relationship between land use type and LTG. The results show that the increase of alloy buildings after the completion of the airport has a great influence on the thermal environment of the two study areas. The operation of airports will further enhance this effect. Our study can provide a reference for the influence of large-scale traffic construction on the urban thermal environment.


Assuntos
Aeroportos , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Pequim , Clima , Cidades , Temperatura Alta
11.
Mol Ecol ; 32(4): 800-818, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478624

RESUMO

Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low-coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype-environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high-elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high-elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Aclimatação/genética , Genoma/genética , Adaptação Fisiológica/genética , Frequência do Gene/genética , Polimorfismo de Nucleotídeo Único/genética
12.
ACS Appl Mater Interfaces ; 14(46): 52007-52016, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36349638

RESUMO

It is essential to release annealing induced strain during the crystallization process to realize efficient and stable perovskite solar cells (PSCs), which does not seem achievable using the conventional annealing process. Here we report a novel and facile thermal gradient assisted crystallization strategy by simply introducing a slant angle between the preheated hot plate and the substrate. A distinct crystallization sequence resulted along the in-plane direction pointing from the hot side to the cool side, which effectively reduced the crystallization rate, controlled the perovskite grain growth, and released the in-plane tensile strain. Moreover, this strategy enabled uniform strain distribution in the vertical direction and assisted in reducing the defects and aligning the energy bands. The corresponding device demonstrated champion power conversion efficiencies (PCEs) of 23.70% and 21.04% on the rigid and flexible substrates, respectively. These highly stable rigid devices retained 97% of the initial PCE after 1097 h of storage and more than 80% of the initial PCE after 1000 h of continuous operation at the maximum power point. This novel strategy opens a simple and effective avenue to improve the quality of perovskite films and photovoltaic devices via strain modulation and defect passivation.

13.
Materials (Basel) ; 15(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234242

RESUMO

The effect of tramp elements, mainly Bi and Ca, on the thermal characteristics of Sr-modified Al-Si-Cu and Al-Si-Cu-Mg alloys has been investigated using thermal analysis, X-ray radiography, and field emission scanning electron microscopy (FESEM) techniques. The high affinity of Bi to interact with Sr results in an increase in the Al-Si eutectic temperature, and hence an increase in the size of eutectic silicon particles. In contrast, the Ca-Sr interaction seems to have no significant effect on the alloy thermal behavior. The effect of these interactions on porosity formation has been discussed. Hot zones may be formed in thin cavities, in particular, near the bottom of the mold, leading to formation of unexpected coarse porosity, mostly shrinkage type. The study also highlights the significance of other parameters on porosity formation, such as no melt degassing, SrO, Al2O3 (strings or bifilms), as well as the presence of iron-based intermetallics.

14.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36236354

RESUMO

Quartz crystal microbalances are widely used sensors with applications for the detection of very-low-mass deposition in many different fields, from contamination monitoring in the high vacuum of deep space missions to the monitoring of biological activity or pollution using specifically designed active substrates. These sensors are very stable over time; nevertheless, their sensitivity to the temperature is well known, and different implementations have been devised to correct it, e.g., through compensation with a dual crystal. This paper deals with the effects of temperature on QCM but separates the case of uniform crystal temperature from the case of in-plane temperature gradients considering a QCM based on quartz crystals with deposited film resistors used as both RTDs and heaters. This configuration allows both an accurate temperature measurement and efficient thermal control, allowing the achievement of crystals temperatures in the order of 400 °C higher than the environment with a low power dissipation of the order of 1 W. The film resistors deposited around the electrodes allow directly measuring the average crystal temperature and directly delivering power to the crystal for thermal control. The localized delivery of the heat nevertheless also determines uncommon temperature fields on the crystal, and thus, an analysis of both the effects of temperature on the new microbalance was performed. The temperature gradient has strong effects on the frequency; therefore, along with the temperature, the thermal gradients have tobe compensated. The calibration of the QCM thermometers and the assessment of the achievable measurement accuracy were performed, as well as the determination of the frequency-temperature relationship. The comparison between frequency changes in the case of uniform temperature and those observed while using crystal heaters proved that temperature gradients have a strong effect on the crystal frequency. To identify the temperature field on the crystal surface of a QCM crystal, the gold coating of the deposited films was removed to achieve an emissivity acceptable for thermal imaging with an IR camera. Moreover, image processing for emissivity correction was developed. In order to correlate the temperature gradient with the frequency variation, a test campaign was performed to measure the frequency changes derived from different power levels delivered to the crystal heaters. From this test campaign and thermal analysis, the effect of the thermal gradient was assessed.


Assuntos
Técnicas Biossensoriais , Técnicas de Microbalança de Cristal de Quartzo , Eletrodos , Ouro/química , Quartzo , Técnicas de Microbalança de Cristal de Quartzo/métodos
15.
Cryobiology ; 108: 10-18, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084733

RESUMO

Directional freezing (in 2 or 10 ml hollow glass tubes) has been reported to improve post-thaw sperm survival parameters compared to conventional methods (in 0.5 ml straws). However, the biophysical properties that increase post-thaw survival are poorly understood. Therefore, the aim for the current study was to investigate the effect of ice morphology on the post-thaw survival of domestic boar spermatozoa directionally and conventionally cryopreserved in 0.5 ml straws. Ice morphology was quantitatively analyzed using a combination of cryo-scanning electron microscopy and Fiji Shape Descriptors. Multivariate analysis found a significant, non-linear effect (p < 0.05) of interface velocity on ice morphology, with an increase in both ice-lake size, as indicated by area and in aspect ratio, at an interface velocity of 0.2 mm/s. By contrast, post-thaw sperm survival (defined as spermatozoa with both intact plasma membranes and acrosomes) was biphasic, with peaks of survival at interface velocities of 0.2 mm/s (54.2 ± 1.9%), and 1.0 or 1.5 mm/s (56.5 ± 1.5%, 56.7 ± 1.7% respectively), and lowest survival at 0.5 (52.1 ± 1.6%) and 3.0 mm/s (51.4 ± 1.9%). Despite numerical differences in Shape Descriptors, there was no difference (p > 0.05) in the post-thaw survival between conventionally and directionally cryopreserved samples at optimal interface velocities of 1.0 or 1.5 mm/s. These findings suggest that: 1) ice morphology has little impact on post-thaw survival of boar spermatozoa, and 2) directional freezing in 0.5 ml straws (rather than 2 or 10 ml hollow glass tubes) may attenuate benefits of directional freezing.


Assuntos
Preservação do Sêmen , Animais , Criopreservação/métodos , Congelamento , Gelo , Masculino , Microscopia Eletrônica de Varredura , Sêmen , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Suínos
16.
ACS Appl Mater Interfaces ; 14(37): 42635-42644, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083010

RESUMO

In this work, a design concept of bioinspired functional surfaces is proposed for lubricant control at surfaces and interfaces subjected to external thermal gradients. Inspired by the conical structures of cactus and the motion configuration of Centipedes, a bioinspired surface of wedged-groove with an oriented capillary pattern is constructed. The effect of geometrical parameters on the directional lubricant manipulation capacity and sliding anisotropy is discussed. It is found that by regulating the orientation of the capillary pattern, a controllable lubricant self-transport capacity can be achieved for varying conditions from surfaces to interfaces, with or without thermal gradients. The lubricant self-transport process is captured, and the mechanism is revealed. The design philosophy of the proposed bioinspired functional surface is believed to have potential applications for lubricant control in modern machinery and complex liquid control in lab-on-a-chip and microfluidics devices.

17.
Ecol Lett ; 25(10): 2189-2202, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981221

RESUMO

In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication.


Assuntos
Mudança Climática , Fósforo , Animais , Carbono , Invertebrados , Temperatura
18.
Biopreserv Biobank ; 20(4): 317-322, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35984939

RESUMO

Rapid and uniform rewarming has been proved to be beneficial, and sometimes indispensable for the survival of cryopreserved biomaterials, inhibiting ice-recrystallization-devitrification and thermal stress-induced fracture (especially in large samples). To date, the convective water bath remains the gold standard rewarming method for small samples in the clinical settings, but it failed in the large samples (e.g., cryopreserved tissues and organs) due to damage caused by the slow and nonuniform heating. A single-mode electromagnetic resonance (SMER) system was developed to achieve ultrafast and uniform rewarming for large samples. In this study, we investigated the heating effects of the SMER system and compared the heating performance with water bath and air warming. A numerical model was established to further analyze the temperature change and distribution at different time points during the rewarming process. Overall, the SMER system achieved rapid heating at 331.63 ± 8.59°C min-1 while limiting the maximum thermal gradient to <9°C min-1, significantly better than the other two warming methods. The experimental results were highly consistent, indicating SMER is a promising rewarming technology for the successful cryopreservation of large biosamples.


Assuntos
Criopreservação , Reaquecimento , Criopreservação/métodos , Fenômenos Eletromagnéticos , Água
19.
Tree Physiol ; 42(11): 2266-2281, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708568

RESUMO

The consequences of rising temperatures for trees will vary between species based on their abilities to acclimate their leaf thermoregulatory traits and photosynthetic thermal tolerances. We tested the hypotheses that adult trees in warmer growing conditions (i) acclimate their thermoregulatory traits to regulate leaf temperatures, (ii) acclimate their thermal tolerances such that tolerances are positively correlated with leaf temperature and (iii) that species with broader thermal niche breadths have greater acclimatory abilities. To test these hypotheses, we measured leaf traits and thermal tolerances of seven focal tree species across steep thermal gradients in Miami's urban heat island. We found that some functional traits varied significantly across air temperatures within species. For example, leaf thickness increased with maximum air temperature in three species, and leaf mass per area and leaf reflectance both increased with air temperature in one species. Only one species was marginally more homeothermic than expected by chance due to acclimation of its thermoregulatory traits, but this acclimation was insufficient to offset elevated air temperatures. Thermal tolerances acclimated to higher maximum air temperatures in two species. As a result of limited acclimation, leaf thermal safety margins (TSMs) were narrower for trees in hotter areas. We found some support for our hypothesis that species with broader thermal niches are better at acclimating to maintain more stable TSMs across the temperature gradients. These findings suggest that trees have limited abilities to acclimate to high temperatures and that thermal niche specialists may be at a heightened risk of thermal stress as global temperatures continue to rise.


Assuntos
Aclimatação , Temperatura Alta , Temperatura , Cidades , Árvores/fisiologia , Folhas de Planta/fisiologia
20.
Front Microbiol ; 13: 836943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591982

RESUMO

Mt. Erebus, Antarctica, is the world's southernmost active volcano and is unique in its isolation from other major active volcanic systems and its distinctive geothermal systems. Using 16S rRNA gene amplicon sequencing and physicochemical analyses, we compared samples collected at two contrasting high-temperature (50°C-65°C) sites on Mt. Erebus: Tramway Ridge, a weather-protected high biomass site, and Western Crater, an extremely exposed low biomass site. Samples were collected along three thermal gradients, one from Western Crater and two within Tramway Ridge, which allowed an examination of the heterogeneity present at Tramway Ridge. We found distinct soil compositions between the two sites, and to a lesser extent within Tramway Ridge, correlated with disparate microbial communities. Notably, pH, not temperature, showed the strongest correlation with these differences. The abundance profiles of several microbial groups were different between the two sites; class Nitrososphaeria amplicon sequence variants (ASVs) dominated the community profiles at Tramway Ridge, whereas Acidobacteriotal ASVs were only found at Western Crater. A co-occurrence network, paired with physicochemical analyses, allowed for finer scale analysis of parameters correlated with differential abundance profiles, with various parameters (total carbon, total nitrogen, soil moisture, soil conductivity, sulfur, phosphorous, and iron) showing significant correlations. ASVs assigned to Chloroflexi classes Ktedonobacteria and Chloroflexia were detected at both sites. Based on the known metabolic capabilities of previously studied members of these groups, we predict that chemolithotrophy is a common strategy in this system. These analyses highlight the importance of conducting broader-scale metagenomics and cultivation efforts at Mt. Erebus to better understand this unique environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA