Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175775, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197790

RESUMO

Organics and divalent cations are the primary barriers constraining the performance of membrane technology, while the interactions between them and the detailed mechanisms of their impacts are still lacking in-depth analysis. In this study, sodium alginate and xanthan gum were selected as polysaccharides models, and the formation of transparent extracellular polymer particles (TEP) was assessed to examine the effect of Ca2+ and polysaccharides type on membrane fouling from both qualitative and quantitative perspectives. The results revealed that higher Ca2+ concentrations led to a greater abundance of TEP, and the transformation of TEP microstructure is a key factor for the membrane fouling change indicated by specific filtration resistance (SFR). TEP formed by sodium alginate underwent a transformation from amorphous-TEP (a-TEP) form to particle-TEP (p-TEP), corresponding to a unimodal pattern of SFR variation. With increasing Ca2+ concentration, the molecular interactions of xanthan gum became stronger, resulting in larger fibrous a-TEP and a continuous SFR increase. According to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, TEP formed by xanthan gum exhibited higher adhesion energy, thus causing more severe membrane fouling. The SFR variation of the TEP system can be satisfactorily explained by the conception of chemical potential change in the filtration process depicted in Flory-Huggins theory. This study is the first work to introduce models regarding chemical potential and TEP microstructure, linking the system chemical potential and TEP microstructure with membrane fouling indicated by SFR. As all, this study provided a new perspective for analyzing the polysaccharide fouling behavior via TEP determination and further enhanced the understanding through thermodynamic analysis.

2.
J Environ Sci (China) ; 138: 428-438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135408

RESUMO

This study aimed to explore the chemical looping gasification (CLG) reaction characteristics of the metal-supported composite phosphogypsum (PG) oxygen carriers (OCs) and the thermodynamic mechanism. The FactSage 7.1 thermodynamic simulation was used to explore the oxygen release and H2S removal mechanisms. The experimental results showed that the syngas yield of CLG with PG-CuFe2O4 was more than that with PG-Fe2O320/CuO40 or PG-Fe2O330/CuO30 OC at 1023 K when the water vapor content was 0.3. Furthermore, the maximum syngas yield of the CO selectivity was 70.3% and of the CO2 selectivity was 23.8%. The H2/CO value was 0.78, and the highest carbon conversion efficiency was 91.9% in PG-CuFe2O4 at the gasification temperature of 1073 K. The metal-supported PG composite oxygen carrier was proved not only as an oxygen carrier to participate in the preparation of syngas but also as a catalyst to catalyze coal gasification reactions. Furthermore, both the experimental results and FactSage 7.1 thermodynamic analysis revealed that the trapping mechanism of H2S by composite OCs was as follows: CuO first lost lattice oxygen as an oxygen carrier to generate Cu2O, which, in turn, reacted with H2S to generate Cu2S. This study provided efficient guidance and reference for OC design in CLG.


Assuntos
Oxigênio , Fósforo , Oxigênio/química , Sulfato de Cálcio , Metais , Biomassa
3.
Environ Res ; 234: 116420, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327838

RESUMO

This study investigated the combined effects of polymeric aluminum chloride (PAC) and polyacrylamide (PAM) on sludge dewatering, aiming to unveil underlying mechanisms. Co-conditioning with 15 mg g-1 PAC and 1 mg g-1 PAM achieved optimal dewatering, reducing specific filtration resistance (SFR) of co-conditioned sludge to 4.38 × 1012 m-1kg-1, a mere 48.1% of raw sludge's SFR. Compared with the CST of raw sludge (36.45 s), sludge sample can be significantly reduced to 17.7 s. Characterization tests showed enhanced neutralization and agglomeration in co-conditioned sludge. Theoretical calculations revealed elimination of interaction energy barriers between sludge particles post co-conditioning, converting sludge surface from hydrophilic (3.03 mJ m-2) to hydrophobic (-46.20 mJ m-2), facilitating spontaneous agglomeration. Findings explain improved dewatering performance. Based on Flory-Huggins lattice theory, connection between polymer structure and SFR was established. Raw sludge formation triggered significant change in chemical potential, increasing bound water retention capacity and SFR. In contrast, co-conditioned sludge exhibited thinnest gel layer, reducing SFR and significantly improving dewatering. These findings represent a paradigm shift, shedding new light on fundamental thermodynamic mechanisms of sludge dewatering with different chemical conditioning.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Cloreto de Alumínio , Floculação , Polímeros/química , Filtração , Termodinâmica , Água/química
4.
J Hazard Mater ; 456: 131651, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245361

RESUMO

Extracellular polymeric substances (EPS) play a crucial role in controlling the mobility and bioavailability of heavy metal(loid)s in water, soils, and sediments. The formation of EPS-mineral complex changes the reactivity of the end-member materials. However, little is known about the adsorption and redox mechanisms of arsenate (As(V)) in EPS and EPS-mineral complexes. Here we examined the reaction sites, valence state, thermodynamic parameters and distribution of As in the complexes using potentiometric titration, isothermal titration calorimetry (ITC), FTIR, XPS, and SEM-EDS. The results showed that ∼54% of As(V) was reduced to As(III) by EPS, potentially driven by an enthalpy change (ΔH) of - 24.95 kJ/mol. The EPS coating on minerals clearly affected the reactivity to As(V). The strong masking of functional sites between EPS and goethite inhibited both the adsorption and reduction of As. In contrast, the weak binding of EPS onto montmorillonite retained more reactive sites for the reaction with As. Meanwhile, montmorillonite facilitated the immobilization of As to EPS through the formation of As-organic bounds. Our findings deepen the understanding of EPS-mineral interfacial reactions in controlling the redox and mobility of As, and the knowledge is important for predicting the behavior of As in natural environments.

5.
Water Res ; 229: 119456, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495854

RESUMO

While sludge bulking often occurring in activated sludge processes generally leads to serious membrane fouling in membrane bioreactors (MBR), the underlying causes are still unclear. In this study, fouling behaviors of a MBR operated at stages of normal and sludge bulking were compared, and the fouling mechanisms of the different behaviors were explored. It was found that, the MBR could be stably operated in normal stage without membrane cleaning for about 60 days, whereas, daily membrane cleaning had to be carried out when operated in sludge bulking stage. The bulking sludge possessed a rather high specific filtration resistance (SFR) of about 1.36×1014 m·kg-1, which is over 5.33 times than that of the normal sludge. A series of characterizations demonstrated that the bulking sludge had rather lower dewaterability, smaller particle size, higher fractal dimension, higher viscosity, abundant filamentous bacteria and different functional groups of extracellular polymer sustains (EPS). It was suggested that microbial community transition was responsible for the occurrence of sludge bulking, further affecting membrane fouling. Based on these characterizations, it was reported that adhesion propensity (indicated by the thermodynamic interaction) of the bulking sludge to the membrane surface is about 3.6 times than that of the normal sludge. It was proposed that, extra force should be provided to offset a chemical potential gap caused by foulant layer structure transition during sludge bulking in order to sustain filtration of the bulking sludge, resulting in extremely high SFR. This study offered deep thermodynamic mechanisms of MBR fouling during occurrence of sludge bulking.


Assuntos
Membranas Artificiais , Esgotos , Esgotos/química , Polímeros/química , Reatores Biológicos/microbiologia , Filtração
6.
Chemosphere ; 309(Pt 1): 136734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209866

RESUMO

While magnesium cation (Mg2+) universally coexists with natural organic matter (NOM) in the water environment, influence of Mg2+ on NOM fouling in membrane filtration process is still unclear. This work was therefore performed to investigate effects of Mg2+ on NOM (sodium alginate (SA) as a model substance) fouling and role of Ca2+ in mitigating fouling from Mg2+ in the ultrafiltration (UF) water treatment process. Filtration tests showed two interesting fouling phenomena: (1) membrane fouling caused by combination of Mg2+ and SA maintained at a high value with the increased Mg2+ concentration; (2) the high fouling property of Mg2+ can be significantly improved by the prominent addition of calcium cation (Ca2+). It was found that changes of foulant morphology played essential roles through thermodynamic mechanisms represented by the Flory-Huggins lattice theory. Density functional theory (DFT) calculation showed that the combination of SA and Mg2+ tends to coordinate two terminal carboxyl groups in SA, beneficial to stretching alginate chains and forming a stable gel network at low doses. In addition, intramolecular coordination is difficult to occur between SA and Mg2+ due to the high hydration repulsion radius of Mg2+. Therefore, a dense and thick gel network remained even under high Mg2+concentration. Furthermore, due to the higher binding affinity of Ca2+ over Mg2+, high doses of Ca2+ trigger a transition of the stable SA-Mg2+ gel network to other configurations where flocculation and aggregation occur, thereby reducing the specific filtration resistance. The proposed thermodynamic mechanism satisfactorily explained the above interesting fouling behaviors, facilitating to development of new solutions to control membrane fouling.


Assuntos
Ultrafiltração , Purificação da Água , Magnésio , Cálcio/química , Membranas Artificiais , Teoria da Densidade Funcional , Alginatos/química , Cálcio da Dieta , Cátions
7.
Sci Total Environ ; 853: 158650, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089022

RESUMO

While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0-3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L-1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate­calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Purificação da Água , Membranas Artificiais , Cálcio/química , Ácido Edético , Filtração , Alginatos/química , Polímeros/química , Etilenodiaminas , Quelantes , Etilenos
8.
Chemosphere ; 307(Pt 2): 135849, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948096

RESUMO

In this study, mechanisms of membrane fouling caused by polysaccharides with different molecular structures in polyaluminum chloride (PACl) coagulation-ultrafiltration (C-UF) process were explored. Carrageenan and xanthan gum were chosen for model foulants of straight chain and branched chain polysaccharides, respectively. Filtration experiments showed that, with PACl dosage of 0-5 mM, specific filtration resistance (SFR) of carrageenan and xanthan solution showed a unimodal pattern and a continuous decrease pattern, respectively. A series of experimental characterizations indicated that the different SFR pattern was closely related to structure of foulants layer. Density functional theory (DFT) calculation suggested that Al3+ preferentially coordinating with the terminal sulfonyl groups of carrageenan chains to promote gel layer formation at low PACl concentration (0.15 mM). There existed a chemical potential gap between bound water in gel layer and free water in the permeate, so that, filtration through gel layer corresponded to rather high SFR for overcoming this gap. In contrast, Al3+ coordinating with the non-terminal sulfonyl groups of carrageenan at high PACl concentration caused transition from gel layer to cake layer, leading to SFR decrease. However, xanthan gum itself can form a dense gel layer with a complex polymer network by virtue of the interlacing of main chains and branches. Al3+ coordinating with the carboxyl groups on branched chains of xanthan gum resulted in clusters of polymer chains and flocculation, corresponding to the reduced SFR. This proposed molecular-level mechanism well explained membrane fouling behaviors of polysaccharides with different molecular structure, and also facilitated to optimize C-UF process for water treatment.


Assuntos
Ultrafiltração , Purificação da Água , Hidróxido de Alumínio , Carragenina , Membranas Artificiais , Polímeros/química , Polissacarídeos , Ultrafiltração/métodos , Purificação da Água/métodos
9.
Sci Total Environ ; 842: 156912, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753486

RESUMO

While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.49 × 1015 m-1·kg-1, and SFR of TEP solution firstly decreased and then increased rapidly with EDTA concentration increase (0-1 mM). A series of characterizations suggested that EDTA took roles in SFR of TEP solution by means of changing TEP microstructure. The rather high SFR of TEP layer can be attributed to the big chemical potential gap during filtration described by the extended Flory-Huggins lattice theory. Initial EDTA addition disintegrated TEP structure by EDTA chelating calcium in TEP, inducing reduced SFR. Continuous EDTA addition decreased solution pH, resulting into no effective chelating and accumulation of EDTA on membrane surface, increasing SFR. It was suggested that factors increasing homogeneity of TEP gel will increase SFR, and vice versa. This study revealed the thermodynamic mechanism of TEP fouling behaviors affected by EDTA, and also demonstrated the importance of EDTA dosage and pH adjustment for TEP-associated fouling control.


Assuntos
Alginatos , Purificação da Água , Alginatos/química , Ácido Edético , Etilenos , Filtração , Membranas Artificiais
10.
Sci Total Environ ; 836: 155579, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508249

RESUMO

Fouling behaviors of polysaccharides vary with their structure, while the mechanisms underlying this phenomenon remain unexplored. This work was carried out to explore the thermodynamic fouling mechanisms of polysaccharides with different structure. Carrageenan and xanthan gum were selected as the model polysaccharides with structure of straight and branch chains, respectively. Batch filtration experiments showed that xanthan gum solution corresponded to a more rapid flux decline trend, and specific filtration resistance (SFR) of xanthan gum (2.32 × 1015 m-1 kg-1) was over 10 times than that of carrageenan (2.21 × 1014 m-1 kg-1). It was found that, xanthan gum possessed a more disordered structure and a rather higher viscosity (15.03 mPa·s V.S. 1.98 mPa·s for carrageenan). Calculation of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed higher adhesion energy of xanthan gum (-42.82 my m-2 V.S. -23.26 mJ m-2 for carrageenan). Scanning electron microscopy (SEM) analyses showed that xanthan gum gel layer had a more homogenous structure and rigid polymer backbone, indicating better mixing with water to form a gel. As verified by heating experiments, such a structure tended to contain more bound water. According to this information, Flory-Huggins lattice theory was introduced to build a bridge between polymeric structure and SFR. It was revealed that branch structure corresponded to higher chemical potential change during gel layer formation, and higher ability to carry bound water, resulting in higher filtration resistance during filtration process. This work revealed the fundamental thermodynamic mechanism of membrane fouling caused by polysaccharides with different structure, deepening understanding of membrane fouling.


Assuntos
Filtração , Membranas Artificiais , Carragenina , Estrutura Molecular , Polímeros/química , Polissacarídeos , Água
11.
Chemosphere ; 255: 126953, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32402884

RESUMO

In this study, fouling propensities of loosely bound extracellular polymeric substances (LB-EPSs) and tightly bound EPSs (TB-EPSs) in a membrane bioreactor (MBR) were investigated. It was found that, both the LB-EPSs and TB-EPSs possessed rather high specific filtration resistance (SFR), and LB-EPSs possessed about three times higher SFR but a lower adhesion ability than the TB-EPSs. A series of characterizations demonstrated that LB-EPSs had higher ratio of proteins to polysaccharides (PN/PS ratio), lower CO bonds content, higher hydrophilicity, higher deformation or mixing ability and more abundant high molecular weight (MW) substances than TB-EPSs. Thermodynamic analyzes revealed that the total interaction energy between the TB-EPSs and membrane was always attractive and strengthened, well explaining the higher adhesion ability of the TB-EPSs than the LB-EPSs. Meanwhile, the filtration process was found to be associated with gel layer formation, and the high SFR of EPSs was caused by the chemical potential change in gel layer filtration. According to the Flory-Huggins lattice theory, LB-EPSs tended to form a gel layer with higher cross-linking and/or polymer entanglement level because they contained more abundant high molecular weight (MW) substance, corresponding to higher SFR than that of the TB-EPSs. The proposed thermodynamic mechanisms well interpreted the different fouling propensities of LB-EPSs and TB-EPSs in MBRs.


Assuntos
Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Filtração , Membranas , Membranas Artificiais , Polímeros/química , Polissacarídeos , Esgotos/química , Termodinâmica
12.
Environ Pollut ; 255(Pt 2): 113292, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31597112

RESUMO

The wide application of bisphenol A (BPA) leads to the emergence of BPA residuals in natural water environments. Dissolved organic matter (DOM) existed in water can bind with BPA, hence influencing the migration and transformation of BPA in aquatic environments. pH is a crucial factor governing the binding interactions between DOM and BPA. However, the mechanisms driven the binding process under different pH conditions are still unclear. In this study, the interactions between BPA and humic acids (HA), a primary component of DOM, are investigated over a wide pH range of 3-12 by integrating fluorescence quenching, dynamic light scattering and microcalorimetry. pH dependence of the binding interactions between HA and BPA are interpreted from a thermodynamic perspective. The results indicate that HA can spontaneously interact with BPA to form a stable HA-BPA complex. With the increasing pH, the binding interactions change from entropy driven to entropy-enthalpy co-driven. Hydrophobic force dominate the binding interactions under acidic condition. The synergy of hydrophobic force and hydrogen bond promotes the binding process under neutral condition. Under alkaline conditions, electrostatic repulsion participates the binding process in addition to hydrophobic force and hydrogen bond, weakening the binding strength. Therefore, neutral pH is favorable for HA to bind with BPA, consequently enhancing the dissolution of BPA in natural water bodies. The results are beneficial to better understand the pH dependent distribution of BPA in aquatic environments.


Assuntos
Compostos Benzidrílicos/química , Substâncias Húmicas/análise , Modelos Químicos , Fenóis/química , Poluentes Químicos da Água/química , Calorimetria , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA