Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Microbiol Resour Announc ; : e0031624, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990021

RESUMO

We isolated six Thermus thermophilus strains from Shirahama Hot Spring in Japan. Complete genome sequences, determined by combining Oxford Nanopore long-read and Illumina short-read sequence data, revealed that they showed >99.9% average nucleotide identities with each other and approximately 97% to the genome of the type strain HB8T.

2.
Protein Expr Purif ; 223: 106557, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009198

RESUMO

Nucleases play pivotal roles in DNA repair and apoptosis. Moreover, they have various applications in biotechnology and industry. Among nucleases, TatD has been characterized as an exonuclease with various biological functions in different organisms. Here, we biochemically characterized the potential TatD nuclease from Thermus thermophilus. The tatD gene from T. thermophilus was cloned, then the recombinant TatD nuclease was expressed and purified. Our results revealed that the TthTatD nuclease could degrade both single-stranded and double-stranded DNA, and its activity is dependent on the divalent metal ions Mg2+ and Mn2+. Remarkably, the activity of TthTatD nuclease is highest at 37 °C and decreases with increasing temperature. TthTatD is not a thermostable enzyme, even though it is from a thermophilic bacterium. Based on the sequence similarity and molecular docking of the DNA substrate into the modeled TthTatD structure, several key conserved residues were identified and their roles were confirmed by analyzing the enzymatic activities of the site-directed mutants. The residues E86 and H149 play key roles in binding metal ions, residues R124/K126 and K211/R212 had a critical role in binding DNA substrate. Our results confirm the enzymatic properties of TthTatD and provide a primary basis for its possible application in biotechnology.

3.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344920

RESUMO

The biosynthetic arginine decarboxylase in Thermus thermophilus is responsible for producing spermidine, a polyamine with numerous biological applications in humans. The arginine decarboxylase has significant applications in biotechnology industries, suggesting the need to evaluate its biochemical and biophysical characteristics at the molecular level. In this study, both in vitro and in silico methods were employed to investigate the structural and functional behavior of the arginine decarboxylase protein. In in vitro, MALDI-TOF, size exclusion, and assay studies were performed to examine the nature and activity of the protein. The MALDI-TOF analysis confirmed the purified protein as biosynthetic arginine decarboxylase. The assay results revealed that the Pyridoxal 5'-Phosphate (PLP) cofactor plays a crucial role in enhancing enzyme activity by producing agmatine (a by-product of spermidine). Further, optimum enzyme activity was observed at 50 °C, suggesting the extremophilic nature of the enzyme. Unlike other proteins, this enzyme displayed optimal activity at both acidic and basic pH, demonstrating its sensitivity to pH changes. Furthermore, the addition of divalent ions like Mg 2+ increased the rate of reaction. In in silico, structure modeling, and comparative molecular dynamics simulation studies were used to assess the protein stability and behavior at different pH and temperature conditions. The findings of this study could be applied to improve enzyme production in the industry.Communicated by Ramaswamy H. Sarma.

4.
Biotechnol J ; 19(2): e2300325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38385504

RESUMO

Ultraviolet (UV) radiation from sunlight can damage DNA, inducing mutagenesis and eventually leading to skin cancer. Topical sunscreens are used to avoid the effect of UV irradiation, but the topical application of DNA repair enzymes, such as photolyase, can provide active photoprotection by DNA recovery. Here we produced a recombinant Thermus thermophilus photolyase expressed in Escherichia coli, evaluated the kinetic parameters of bacterial growth and the kinetics and stability of the enzyme. The maximum biomass (𝑋𝑚𝑎𝑥 ) of 2.0 g L-1 was reached after 5 h of cultivation, corresponding to 𝑃X  = 0.4 g L-1 h. The µð‘šð‘Žð‘¥ corresponded to 1.0 h-1 . Photolyase was purified by affinity chromatography and high amounts of pure enzyme were obtained (3.25 mg L-1 of cultivation). Two different methods demonstrated the enzyme activity on DNA samples and very low enzyme concentrations, such as 15 µg mL-1 , already resulted in 90% of CPD photodamage removal. We also determined photolyase kM of 9.5 nM, confirming the potential of the enzyme at very low concentrations, and demonstrated conservation of enzyme activity after freezing (-20°C) and lyophilization. Therefore, we demonstrate T. thermophilus photolyase capacity of CPD damage repair and its potential as an active ingredient to be incorporated in dermatological products.


Assuntos
Desoxirribodipirimidina Fotoliase , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Thermus thermophilus , Raios Ultravioleta , DNA/química , Reparo do DNA
5.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833960

RESUMO

The present study describes the isolation of an extremely thermophilic bacterium from El Tatio, a geyser field in the high planes of Northern Chile. The thermophile bacterium named Thermus thermophilus strain ET-1 showed 99% identity with T. thermophilus SGO.5JP 17-16 (GenBank accession No. CP002777) by 16S rDNA gene analysis. Morphologically, the cells were non-sporeforming Gram-negative rods that formed colonies with yellow pigmentation. This strain is able to proliferate between 55 and 80 °C with a pH range of 6-10, presenting an optimum growth rate at 80 °C and pH 8. The bacterium produces an extracellular protease activity. Characterization of this activity in a concentrated enzyme preparation revealed that extracellular protease had an optimal enzymatic activity at 80 °C at pH 10, a high thermostability with a half-life at 80 °C of 10 h, indicating that this enzyme can be classified as an alkaline protease. The proteolytic enzyme exhibits great stability towards chelators, divalent ions, organic solvents, and detergents. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF), implying that it was a serine protease. The high thermal and pH stability and the resistance to chelators/detergents suggest that the protease activity from this T. thermophilus. strain could be of interest in biotechnological applications.


Assuntos
Detergentes , Thermus thermophilus , Thermus thermophilus/genética , Chile , Peptídeo Hidrolases , Serina Endopeptidases/genética , Quelantes , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
6.
Microb Cell Fact ; 22(1): 187, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726752

RESUMO

BACKGROUND: Enzymes from thermophiles are of great interest for research and bioengineering due to their stability and efficiency. Thermophilic expression hosts such as Thermus thermophilus [T. thermophilus] can overcome specific challenges experienced with protein production in mesophilic expression hosts, such as leading to better folding, increased protein stability, solubility, and enzymatic activity. However, available inducible promoters for efficient protein production in T. thermophilus HB27 are limited. RESULTS: In this study, we characterized the pilA4 promoter region and evaluated its potential as a tool for production of thermostable enzymes in T. thermophilus HB27. Reporter gene analysis using a promoterless ß-glucosidase gene revealed that the pilA4 promoter is highly active under optimal growth conditions at 68 °C and downregulated during growth at 80 °C. Furthermore, growth in minimal medium led to significantly increased promoter activity in comparison to growth in complex medium. Finally, we proved the suitability of the pilA4 promoter for heterologous production of thermostable enzymes in T. thermophilus by producing a fully active soluble mannitol-1-phosphate dehydrogenase from Thermoanaerobacter kivui [T. kivui], which is used in degradation of brown algae that are rich in mannitol. CONCLUSIONS: Our results show that the pilA4 promoter is an efficient tool for gene expression in T. thermophilus with a high potential for use in biotechnology and synthetic biology applications.


Assuntos
Proteínas de Fímbrias , Thermus thermophilus , Thermus thermophilus/genética , Temperatura , Regiões Promotoras Genéticas , Genes Reporter
7.
Methods Mol Biol ; 2704: 313-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642853

RESUMO

Manufactured steroid compounds have many applications in the pharmaceutical industry. Due to the chemical complexity and chirality of steroids, there is an increasing demand for enzyme-based bioconversion processes to replace those based on chemical synthesis. In this context, thermostability of the involved enzymes is a highly desirable property as both the increased half-life of the enzyme and the enhanced solubility of substrates and products will improve the yield of the reactions. Metagenomic libraries from thermal environments are potential sources of thermostable enzymes of prokaryotic origin, but the number of expected hits could be quite low for enzymes handling substrates such as steroids, rarely found in prokaryotes. An alternative to metagenome screening is the selection of thermostable variants of well-known steroid-processing enzymes. Here we review and detail a protocol for such selection, where error-prone PCR (epPCR) is used to introduce random mutations into a gene to create a variants library for further selection of thermostable variants in the thermophile Thermus thermophilus. The method involves the use of folding interference vectors where the proper folding of the enzyme of interest at high temperature is linked to the folding of a reporter encoding a selectable property such as thermostable resistance to kanamycin, leading to a life-or-death selection of variants of reinforced folding independently of the activity of the enzyme.


Assuntos
Comércio , Indústria Farmacêutica , Biblioteca Gênica , Meia-Vida , Canamicina
8.
J Gen Appl Microbiol ; 69(2): 102-108, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37532583

RESUMO

In an extreme thermophile, Thermus thermophilus, sym-homospermidine is synthesized by the actions of two enzymes. The first enzyme coded by dhs gene (annotated to be deoxyhypusine synthase gene) catalyzes synthesis of an intermediate, supposed to be 1,9-bis(guanidino)-5-aza-nonane (=N1, N11-bis(amidino)-sym-homospermidine), from two molecules of agmatine in the presence of NAD. The second enzyme (aminopropylagmatinase) coded by speB gene catalyzes hydrolysis of the intermediate compound to sym-homospermidine releasing two molecules of urea.


Assuntos
Espermidina , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Espermidina/metabolismo , Redes e Vias Metabólicas/genética , Thermus/metabolismo
9.
J Gen Appl Microbiol ; 69(2): 68-78, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394433

RESUMO

In thermophilic microorganisms, c-type cytochrome (cyt) proteins mainly function in the respiratory chain as electron carriers. Genome analyses at the beginning of this century revealed a variety of genes harboring the heme c motif. Here, we describe the results of surveying genes with the heme c motif, CxxCH, in a genome database comprising four strains of Thermus thermophilus, including strain HB8, and the confirmation of 19 c-type cytochromes among 27 selected genes. We analyzed the 19 genes, including the expression of four, by a bioinformatics approach to elucidate their individual attributes. One of the approaches included an analysis based on the secondary structure alignment pattern between the heme c motif and the 6th ligand. The predicted structures revealed many cyt c domains with fewer ß-strands, such as mitochondrial cyt c, in addition to the ß-strand unique to Thermus inserted in cyt c domains, as in T. thermophilus cyt c552 and caa3 cyt c oxidase subunit IIc. The surveyed thermophiles harbor potential proteins with a variety of cyt c folds. The gene analyses led to the development of an index for the classification of cyt c domains. Based on these results, we propose names for T. thermophilus genes harboring the cyt c fold.


Assuntos
Citocromos , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Transporte de Elétrons , Citocromos/metabolismo , Thermus/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
10.
J Gen Appl Microbiol ; 69(2): 125-130, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302826

RESUMO

Thermus thermophilus is reportedly polyploid and carries four to five identical genome copies per cell, based on molecular biological experiments. To directly detect polyploidy in this bacterium, we performed live cell imaging by X-ray free-electron laser (XFEL) diffraction and observed its internal structures. The use of femtosecond XFEL pulses enables snapshots of live, undamaged cells. For successful XFEL imaging, we developed a bacterial culture method using a starch- and casein-rich medium that produces a predominance of rod-shaped cells shorter than the focused XFEL beam size, which is slightly smaller than 2 µm. When cultured in the developed medium, the length of T. thermophilus cells, which is typically ~4 µm, was less than half its usual length. We placed living cells in a micro-liquid enclosure array and successively exposed each enclosure to a single XFEL pulse. A cell image was successfully obtained by the coherent diffractive imaging technique with iterative phase retrieval calculations. The reconstructed cell image revealed five peaks, which are most likely to be nucleoids, arranged in a row in the polyploid cell without gaps. This study demonstrates that XFELs offer a novel approach for visualizing the internal nanostructures of living, micrometer-sized, polyploid bacterial cells.


Assuntos
Lasers , Thermus thermophilus , Humanos , Thermus thermophilus/genética , Raios X , Difração de Raios X , Poliploidia
11.
J Gen Appl Microbiol ; 69(2): 91-101, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37357393

RESUMO

Thermus thermophilus biosynthesizes lysine via α-aminoadipate as an intermediate using the amino-group carrier protein, LysW, to transfer the attached α-aminoadipate and its derivatives to biosynthetic enzymes. A gene named lysV, which encodes a hypothetical protein similar to LysW, is present in the lysine biosynthetic gene cluster. Although the knockout of lysV did not affect lysine auxotrophy, lysV homologs are conserved in the lysine biosynthetic gene clusters of microorganisms belonging to the phylum Deinococcus-Thermus, suggesting a functional role for LysV in lysine biosynthesis. Pulldown assays and crosslinking experiments detected interactions between LysV and all of the biosynthetic enzymes requiring LysW for reactions, and the activities of most of all these enzymes were affected by LysV. These results suggest that LysV modulates the lysine biosynthesis through protein-protein interactions.


Assuntos
Lisina , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Lisina/genética , Lisina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Proteica , Família Multigênica
12.
J Biochem ; 174(1): 81-88, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001547

RESUMO

In the three domains of life, three biosynthetic pathways are known for putrescine. The first route is conversion of ornithine to putrescine by ornithine decarboxylase (ODC: SpeC), the second route is the conversion of arginine to agmatine by arginine decarboxylase (ADC: SpeA), followed by the conversion of agmatine to putrescine by agmatine ureohydrolase (AUH: SpeB), and the third route is the conversion of agmatine to N-carbamoylputrescine by agmatine deiminase (agmatine iminohydrolase, AIH), followed by the conversion of N-carbamoylputrescine to putrescine by N-carbamoylputrescine amidohydrolase (NCPAH). An extreme thermophile, Thermus thermophilus produces putrescine, although this bacterium lacks homologs for putrescine synthesizing pathways, such as ODC, AUH, AIH and NCPAH. To identify genes involved in putrescine biosynthesis in T. thermophilus, putrescine biosynthesis was examined by disruption of a predicted gene for agmatinase (agmatine ureohydrolase), or by using purified enzyme. It was found that arginase (TTHA1496) showed an agmatinase activity utilizing agmatine as a substrate. These results indicate that this bacterium can use arginase for putrescine biosynthesis. Arginase is a major contributor to putrescine biosynthesis under physiological conditions. The presence of an alternative pathway for converting agmatine into putrescine is functionally important for polyamine metabolism supporting survival at extreme environments.


Assuntos
Agmatina , Putrescina , Arginase/genética , Agmatina/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
13.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36786449

RESUMO

The characteristics of the parABS system in polyploid bacteria are barely understood. We initially analyzed the physiological functions and mechanisms of the megaplasmid parABSm system in the thermophilic polyploid bacterium Thermus thermophilus. Deletion of parABm was possible only when a plasmid-born copy of parABm was provided, indicating that these genes are conditionally essential. The cell morphology of the parABm deletion mutant (ΔparABm) was changed to some extent, and in certain extra-large or twisted cells, the nucleoids were dispersed and damaged. Compared with that of the wild type, the frequency of anucleate cells was significantly increased. Genome content analyses showed that ΔparABm had lost ∼160 kb of megaplasmid and ∼23 kb of chromosomal sequences, respectively. Genome fluorescent tagging and PFGE experiments demonstrated that the truncated megaplasmid was frequently interlinked and could not be segregated correctly; thus, certain daughter cells eventually lost the entire megaplasmid and became twisted or enlarged with damaged nucleoids. Further, we found that when the megaplasmid was lost in these cells, the toxins encoded by the megaplasmid toxin-antitoxin (TA) systems (VapBC64_65 and VapBC142_143) would exert detrimental effects, such as to fragment DNA. Thus, parABSm might ensure the existence of these TA systems, thereby preventing genomic degradation. Together, our results suggested that in T. thermophilus, the megaplasmid-encoded parABS system plays an essential role in the megaplasmid partitioning process; also it is an important determination factor for the genome integrity maintenance.


Assuntos
Genoma , Thermus thermophilus , Humanos , Thermus thermophilus/genética , Plasmídeos/genética , Genômica , Poliploidia
14.
Microbiol Spectr ; 11(1): e0439722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602370

RESUMO

Regulation of gene expression is a vital component of cellular biology. Transcription factor proteins often bind regulatory DNA sequences upstream of transcription start sites to facilitate the activation or repression of RNA polymerase. Research laboratories have devoted many projects to understanding the transcription regulatory networks for transcription factors, as these regulated genes provide critical insight into the biology of the host organism. Various in vivo and in vitro assays have been developed to elucidate transcription regulatory networks. Several assays, including SELEX-seq and ChIP-seq, capture DNA-bound transcription factors to determine the preferred DNA-binding sequences, which can then be mapped to the host organism's genome to identify candidate regulatory genes. In this protocol, we describe an alternative in vitro, iterative selection approach to ascertaining DNA-binding sequences of a transcription factor of interest using restriction endonuclease, protection, selection, and amplification (REPSA). Contrary to traditional antibody-based capture methods, REPSA selects for transcription factor-bound DNA sequences by challenging binding reactions with a type IIS restriction endonuclease. Cleavage-resistant DNA species are amplified by PCR and then used as inputs for the next round of REPSA. This process is repeated until a protected DNA species is observed by gel electrophoresis, which is an indication of a successful REPSA experiment. Subsequent high-throughput sequencing of REPSA-selected DNAs accompanied by motif discovery and scanning analyses can be used for determining transcription factor consensus binding sequences and potential regulated genes, providing critical first steps in determining organisms' transcription regulatory networks. IMPORTANCE Transcription regulatory proteins are an essential class of proteins that help maintain cellular homeostasis by adapting the transcriptome based on environmental cues. Dysregulation of transcription factors can lead to diseases such as cancer, and many eukaryotic and prokaryotic transcription factors have become enticing therapeutic targets. Additionally, in many understudied organisms, the transcription regulatory networks for uncharacterized transcription factors remain unknown. As such, the need for experimental techniques to establish transcription regulatory networks is paramount. Here, we describe a step-by-step protocol for REPSA, an inexpensive, iterative selection technique to identify transcription factor-binding sequences without the need for antibody-based capture methods.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Enzimas de Restrição do DNA/metabolismo , Sítios de Ligação , DNA/metabolismo , Reação em Cadeia da Polimerase/métodos
15.
Appl Microbiol Biotechnol ; 107(1): 233-245, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441206

RESUMO

Transketolase is a key enzyme in the pentose phosphate pathway in all organisms, recognizing sugar phosphates as substrates. Transketolase with a cofactor of thiamine pyrophosphate catalyzes the transfer of a 2-carbon unit from D-xylulose-5-phosphate to D-ribose-5-phosphate (5-carbon aldose), giving D-sedoheptulose-7-phosphate (7-carbon ketose). Transketolases can also recognize non-phosphorylated monosaccharides as substrates, and catalyze the formation of non-phosphorylated 7-carbon ketose (heptulose), which has attracted pharmaceutical attention as an inhibitor of sugar metabolism. Here, we report the structural and biochemical characterizations of transketolase from Thermus thermophilus HB8 (TtTK), a well-characterized thermophilic Gram-negative bacterium. TtTK showed marked thermostability with maximum enzyme activity at 85 °C, and efficiently catalyzed the formation of heptuloses from lithium hydroxypyruvate and four aldopentoses: D-ribose, L-lyxose, L-arabinose, and D-xylose. The X-ray structure showed that TtTK tightly forms a homodimer with more interactions between subunits compared with transketolase from other organisms, contributing to its thermal stability. A modeling study based on X-ray structures suggested that D-ribose and L-lyxose could bind to the catalytic site of TtTK to form favorable hydrogen bonds with the enzyme, explaining the high conversion rates of 41% (D-ribose) and 43% (L-lyxose) to heptulose. These results demonstrate the potential of TtTK as an enzyme producing a rare sugar of heptulose. KEY POINTS: • Transketolase catalyzes the formation of a 7-carbon sugar phosphate • Structural and biochemical characterizations of thermophilic transketolase were done • The enzyme could produce non-phosphorylated 7-carbon ketoses from sugars.


Assuntos
Thermus thermophilus , Transcetolase , Transcetolase/química , Transcetolase/metabolismo , Ribose , Monossacarídeos , Fosfatos , Cetoses , Carbono
16.
Biophys Chem ; 293: 106946, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563626

RESUMO

Pyrrolidone carboxyl peptidase (PCP) hydrolytically removes the L-pyroglutamic acid from the amino terminal region of pyroglutamyl proteins or peptides. So far, only a limited number of structures of PCP have been solved. Here we report the crystal structure of pyrrolidone carboxyl peptidase from Thermus thermophilus (TtPCP) which has been solved using the molecular replacement method and refined at 1.9 Å resolution. TtPCP follows the α/ß/α architecture in which the central ß-sheets are surrounded by α-helices on both sides. The inter subunit contact between two monomers consists of two short antiparallel ß-strands and part of a long protrusion loop. By comparing the TtPCP with its structural homologs, we identified the putative catalytic triad residues as Glu76, Cys139 and His160. A unique disulfide link found in some homologs of TtPCP, formed between two monomers that provide thermal stability to the protein, is not observed in TtPCP. Hence, being a thermophilic protein, the putative thermal stability of TtPCP could be due to more intra and inter-molecular hydrogen bonds, hydrophobic and ion pair interactions when compared with its mesophilic counterpart. The structural details of TtPCP will be helpful to understand the basis of the intrinsic stability of thermophilic proteins. Also, it could be useful for protein engineering.


Assuntos
Peptídeo Hidrolases , Thermus thermophilus , Sequência de Aminoácidos , Thermus thermophilus/metabolismo , Peptídeo Hidrolases/metabolismo , Piroglutamil-Peptidase I/química , Piroglutamil-Peptidase I/metabolismo , Proteínas , Pirrolidinonas , Cristalografia por Raios X , Conformação Proteica
17.
RNA ; 29(2): 241-251, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36411056

RESUMO

4-Thiouridine (s4U) is a modified nucleoside, found at positions 8 and 9 in tRNA from eubacteria and archaea. Studies of the biosynthetic pathway and physiological role of s4U in tRNA are ongoing in the tRNA modification field. s4U has also recently been utilized as a biotechnological tool for analysis of RNAs. Therefore, a selective and sensitive system for the detection of s4U is essential for progress in the fields of RNA technologies and tRNA modification. Here, we report the use of biotin-coupled 2-aminoethyl-methanethiosulfonate (MTSEA biotin-XX) for labeling of s4U and demonstrate that the system is sensitive and quantitative. This technique can be used without denaturation; however, addition of a denaturation step improves the limit of detection. Thermus thermophilus tRNAs, which abundantly contain 5-methyl-2-thiouridine, were tested to investigate the selectivity of the MTSEA biotin-XX s4U detection system. The system did not react with 5-methyl-2-thiouridine in tRNAs from a T. thermophilus tRNA 4-thiouridine synthetase (thiI) gene deletion strain. Thus, the most useful advantage of the MTSEA biotin-XX s4U detection system is that MTSEA biotin-XX reacts only with s4U and not with other sulfur-containing modified nucleosides such as s2U derivatives in tRNAs. Furthermore, the MTSEA biotin-XX s4U detection system can analyze multiple samples in a short time span. The MTSEA biotin-XX s4U detection system can also be used for the analysis of s4U formation in tRNA. Finally, we demonstrate that the MTSEA biotin-XX system can be used to visualize newly transcribed tRNAs in S. cerevisiae cells.


Assuntos
RNA , Tiouridina , RNA/metabolismo , Saccharomyces cerevisiae/genética , Biotina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
18.
J Biomol Struct Dyn ; 41(14): 6811-6821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35994323

RESUMO

Arginase is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The product L-ornithine is an important component which has wide applications in the healthcare and pharmaceutical industry. Enzymatic biosynthesis of L-ornithine is one of the effective methods in which arginase is used as a bio-catalyst. Here, we report the crystal structure of arginase from Thermus thermophilus (TtArginase) in three different crystal forms. All structures were solved by molecular replacement and refined at 2.0 Å, 2.3 Å and 2.91 Å resolution respectively. TtArginase is compared with other structural homologs and the putative catalytic site residues were identified. To understand the thermophilic nature of TtArginase, the sequence and structural factors of TtArginase was compared with its mesophilic counterpart Bacillus subtilis arginase (BsArginase). To get insights on structural stability, molecular dynamics (MD) simulations were carried for TtArginase and BsArginase at three different temperatures (300 K, 333 K and 353 K). The results indicate that TtArginase is comparatively more stable than BsArginase. MD simulations were carried out in the absence of the metal ions at the active site which revealed high plasticity of the active site. The results suggest that metal ions are critical not only for the catalytic function, but also required for the maintenance of the proper active site geometry. Since arginase can be employed for large-scale industrial production of L-ornithine, the structural details of thermophilic arginases such as TtArginase will be helpful to engineer the protein to optimize its enzymatic action in a variety of conditions.Communicated by Ramaswamy H. Sarma.

19.
Front Microbiol ; 13: 1005862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532486

RESUMO

DNA primase-polymerases (Ppol) have been shown to play active roles in DNA repair and damage tolerance, both in prokaryotes and eukaryotes. The ancestral thermophilic bacterium Thermus thermophilus strain HB27 encodes a Ppol protein among the genes present in mobile element ICETh2, absent in other T. thermophilus strains. Using different strategies we ablated the function of Ppol in HB27 cells, either by knocking out the gene through insertional mutagenesis, markerless deletion or through abolition of its catalytic activity. Whole genome sequencing of this diverse collection of Ppol mutants showed spontaneous loss of function mutation in the helicase-nuclease AddAB in every ppol mutant isolated. Given that AddAB is a major player in recombinational repair in many prokaryotes, with similar activity to the proteobacterial RecBCD complex, we have performed a detailed characterization of the ppol mutants in combination with addAB mutants. The results show that knockout addAB mutants are more sensitive to DNA damage agents than the wild type, and present a dramatic three orders of magnitude increase in natural transformation efficiencies with both plasmid and lineal DNA, whereas ppol mutants show defects in plasmid stability. Interestingly, DNA-integrity comet assays showed that the genome of all the ppol and/or addAB mutants was severely affected by widespread fragmentation, however, this did not translate in neat loss of viability of the strains. All these data support that Ppol appears to keep in balance the activity of AddAB as a part of the DNA housekeeping maintenance in T. thermophilus HB27, thus, playing a key role in its genome stability.

20.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1384-1398, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322421

RESUMO

This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SßαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SßαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SßαR motif, was first determined to 2.19 Šresolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Šresolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.


Assuntos
Bacteriófagos , DNA Polimerase I , DNA Polimerase I/química , DNA Polimerase I/genética , Fosfodiesterase I , Thermus , Taq Polimerase/química , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...