Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.652
Filtrar
1.
Small ; : e2402114, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989698

RESUMO

Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP). A new amphiphilic copolymer (specified as macrocross-linker) is designed by incorporating polydimethylsiloxane, poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride (PMETAC), and polymerizable norbornene (NB) pendant groups, allowing ssCAPROMP to produce antifog films under ambient conditions. This novel approach results in distinctive surface and molecular characteristics. Adjusting water-absorption and nanoscale assembly parameters produced ultra-thin (≤100 nm) antifog films with enhanced durability, particularly against strong acidic and alkaline environments, surpassing commercial antifog glasses. Thickness loss analysis against external disturbances further validated the stable surface-tethered chemistries introduced through ssCAPROMP, even with the incorporation of minimal content of cross-linkable NB moieties (5 mol%). Additionally, a potential zwitter-wettability mechanism elucidates antifog observations. This work establishes a unique avenue for exploring nanoengineered antifog coatings through facile and robust surface chemistries.

2.
Npj Spintron ; 2(1): 29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966324

RESUMO

Quantum magnonics investigates the quantum-mechanical properties of magnons, such as quantum coherence or entanglement for solid-state quantum information technologies at the nanoscale. The most promising material for quantum magnonics is the ferrimagnetic yttrium iron garnet (YIG), which hosts magnons with the longest lifetimes. YIG films of the highest quality are grown on a paramagnetic gadolinium gallium garnet (GGG) substrate. The literature has reported that ferromagnetic resonance (FMR) frequencies of YIG/GGG decrease at temperatures below 50 K despite the increase in YIG magnetization. We investigated a 97 nm-thick YIG film grown on 500 µm-thick GGG substrate through a series of experiments conducted at temperatures as low as 30 mK, and using both analytical and numerical methods. Our findings suggest that the primary factor contributing to the FMR frequency shift is the stray magnetic field created by the partially magnetized GGG substrate. This stray field is antiparallel to the applied external field and is highly inhomogeneous, reaching up to 40 mT in the center of the sample. At temperatures below 500 mK, the GGG field exhibits a saturation that cannot be described by the standard Brillouin function for a paramagnet. Including the calculated GGG field in the analysis of the FMR frequency versus temperature dependence allowed the determination of the cubic and uniaxial anisotropies. We find that the total crystallographic anisotropy increases more than three times with the decrease in temperature down to 2 K. Our findings enable accurate predictions of the YIG/GGG magnetic systems behavior at low and ultralow millikelvin temperatures, crucial for developing quantum magnonic devices.

3.
Nano Lett ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968419

RESUMO

This study introduces wavelength-dependent multistate programmable optoelectronic logic-in-memory (OLIM) operation using a broadband photoresponsive pNDI-SVS floating gate. The distinct optical absorption of the relatively large bandgap DNTT channel (2.6 eV) and the narrow bandgap pNDI-SVS floating gate (1.37 eV) lead to varying light-induced charge carrier accumulation across different wavelengths. In the proposed OLIM device comprising the p-type pNDI-SVS-based optoelectronic memory (POEM) transistor and an IGZO n-type transistor, we achieve controllable output voltage signals by modulating the pull-up performance through optical wavelength and applied bias manipulation. Real-time OLIM operation yields four discernible output values. The device's high mechanical flexibility and seamless surface integration among the paper substrate, pNDI-SVS, parylene gate dielectric, and DNTT region render it compatible for integration into paper-based optoelectronics. Our flexible POEM device on name card substrates demonstrates stable operational performance, with minimal variation (8%) after 100 cycles of repeated memory operation, remaining reliable across various angle measurements.

4.
Ceska Gynekol ; 89(3): 203-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38969514

RESUMO

AIM: The effect of platelet-rich autoplasma on endometrial thickness and receptor sensitivity to estrogen and progesterone. MATERIALS AND METHODS: This prospective clinical study included 200 patients. The participants in the study were divided into two groups. The first control group received hormone replacement therapy (HRT). The second study group received an intrauterine infusion of platelet-rich autoplasma (PRP group). On the 19th day of the menstrual cycle, an ultrasound examination was performed to assess endometrial thickness, as well as an immunohistochemical analysis to determine receptor sensitivity to estrogen and progesterone. RESULTS: In the course of the study, we found that the use of platelet-rich autoplasma increased the thickness of the endometrium by 0.85 mm; the average thickness of the endometrium in the group who received PRP therapy was 8.25 (8.25-8.61)  mm; and in the group of patients who only received HRT, it was 7.40 (7.34-7.65)  mm. The sensitivity of receptors to estrogen in the experimental group increased by 3.5, in the experimental group it was 75.00 (71.43-74.22), and in the control group it was 71.50 (67.05-70.85). The sensitivity of receptors to progesterone also increased by 9.0, in the experimental group it was 95.0 (91.4-93.8), and in the control group it was 86.0 (83.47-86.27). CONCLUSION: Due to the action of platelet factors, PRP therapy has a positive effect on the endometrium, increasing its thickness and improving its receptivity. Therefore, it can be concluded that this method can find great practical application to improve the outcomes of assisted reproductive technology programs.


Assuntos
Endométrio , Progesterona , Humanos , Feminino , Endométrio/diagnóstico por imagem , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Adulto , Estrogênios , Receptores de Estrogênio/metabolismo , Estudos Prospectivos , Plaquetas/metabolismo , Plasma Rico em Plaquetas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38959422

RESUMO

In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.

6.
ACS Appl Mater Interfaces ; 16(26): 33877-33884, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961576

RESUMO

In general, the electronic and optical properties of oxide films can significantly benefit from highly textured crystallinity. However, oxide films grown by atomic layer deposition (ALD), a powerful technique for the synthesis of high-quality, nanoscale thin films, usually exhibit amorphous or randomly oriented polycrystalline phases. Here, we demonstrate the growth of highly textured rutile phase ALD TiO2 films through rational substrate design. Both a- and c-axis preferentially oriented TiO2 films are obtained by varying the lattice parameters of the initial ALD growth surface. Under optimized conditions, we find that it is possible to deposit high-quality, c-axis preferentially aligned TiO2 films with a bulk dielectric constant approaching 185, rivaling the single crystal limit. These films display a remarkably high dielectric constant of 117 despite thin thickness of 5.2 nm. Moreover, the addition of a single doping sequence of Al2O3 successfully suppresses leakage currents to levels compatible with modern dynamic random access memory cells, all the while maintaining the high bulk dielectric constant of 137. These results clearly highlight the prospect of utilizing crystal orientation engineering in ALD thin films for emerging semiconductor devices.

7.
J Oral Implantol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962854

RESUMO

BACKGROUND: Bone expansion is where the existing bone at the implant site is split and separated to create a gap to widen it. This article introduces a novel concept of bone expansion for the ultra-thin alveolar ridges to place dental implants with zero wastage of existing natural bone in long-term edentulous arches. Instead of using twist drills and piezo surgery kits, the bone is split with a surgical scalpel blade to prevent natural bone wastage. METHODS: The split will help to expand the bone horizontally by using expanders to accommodate the smaller diameter implants. This technique was applied to 12 individuals to rehabilitate their atrophic edentulous mandibles to facilitate the implant-supported overdentures, and it revealed that all the cases achieved successful osseointegration after placing implants following this method. CONCLUSIONS: The "Scalp-Spilt Technique" is a promising technique for providing implant- retained or implant-supported prostheses over ultra-thin edentulous alveolar ridges.

8.
Beilstein J Nanotechnol ; 15: 743-754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952414

RESUMO

This paper presents an investigation into the influence of repeating cycles of hydrothermal growth processes and rapid thermal annealing (HT+RTA) on the properties of CuO thin films. An innovative hydrothermal method ensures homogeneous single-phase films initially. However, their electrical instability and susceptibility to cracking under the influence of temperature have posed a challenge to their utilization in electronic devices. To address this limitation, the HT+RTA procedure has been developed, which effectively eliminated the issue. Comprehensive surface analysis confirmed the procedure's ability to yield continuous films in which the content of organic compounds responsible for the formation of cracks significantly decreases. Structural analysis underscored the achieved improvements in the crystalline quality of the films. The implementation of the HT+RTA procedure significantly enhances the potential of CuO films for electronic applications. Key findings from Kelvin probe force microscopy analysis demonstrate the possibility of modulating the work function of the material. In addition, scanning capacitance microscopy measurements provided information on the changes in the local carrier concentration with each repetition. These studies indicate the increased usefulness of CuO thin films obtained from the HT+RTA procedure, which expands the possibilities of their applications in electronic devices.

9.
J Chromatogr A ; 1730: 465090, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38955129

RESUMO

A new, versatile, and straightforward vapor phase deposition (VPD) approach was used to prepare continuous stationary phase gradients (cSPGs) on silica thin-layer chromatography (TLC) plates using phenyldimethylchlorosilane (PDCS) as a precursor. A mixture of paraffin oil and PDCS was placed at the bottom of an open-ended rectangular chamber, allowing the reactive silanes to evaporate and freely diffuse under a controlled atmosphere. As the volatile silane diffused across the length of the TLC plate, it reacted with the surface silanol groups thus functionalizing the surface in a gradient fashion. Characterization of the gradient TLC plates was done through UV visualization and diffuse reflectance spectroscopy (DRS). Visualizing the fluorescent gradient plates under UV radiation shows the clear presence of a gradient with the side closest to the vapor source undergoing the most modification. More quantitative characterization of the shape of the gradient was provided by DRS. The DRS showed that the degree of modification and shape of the gradient was dependent on the concentration of silane, VPD time, and relative humidity. To evaluate the chromatographic performance, a mixture of three aromatic compounds (acetaminophen (A), aspirin (As), and 3-hydroxy-2-naphthoic acid (3H)) was spotted on the high (GHP) and low phenyl (GLP) ends of the gradient TLC plates and the results compared to the separations carried out on unmodified and uniformly modified plates. The GHP TLC plates showed retention factors (Rf) of 0.060 ± 0.006, 0.391 ± 0.006, and 0.544 ± 0.006, whereas the unmodified plate displayed Rf values of 0.059 ± 0.006, 0.092 ± 0.003, and 0.037 ± 0.002 for the analytes A, As, and 3H, respectively. From the Rf values, it was observed that each modified plate exhibited different selectivity for the analytes. The GHP TLC plates exhibited better separation performance, and improved resolution compared to the GLP, unmodified, and uniformly modified plates. Overall, VPD is a new, cost-effective method for creating a gradient on the stationary phase which has the potential to advance chromatographic separation capabilities.

10.
Adv Sci (Weinh) ; : e2405188, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958233

RESUMO

Nickel cobalt oxides (NCOs) are promising, non-precious oxygen evolution reaction (OER) electrocatalysts. However, the stoichiometry-dependent electrochemical behavior makes it crucial to understand the structure-OER relationship. In this work, NCO thin film model systems are prepared using atomic layer deposition. In-depth film characterization shows the phase transition from Ni-rich rock-salt films to Co-rich spinel films. Electrochemical analysis in 1 m KOH reveals a synergistic effect between Co and Ni with optimal performance for the 30 at.% Co film after 500 CV cycles. Electrochemical activation correlates with film composition, specifically increasing activation is observed for more Ni-rich films as its bulk transitions to the active (oxy)hydroxide phase. In parallel to this transition, the electrochemical surface area (ECSA) increases up to a factor 8. Using an original approach, the changes in ECSA are decoupled from intrinsic OER activity, leading to the conclusion that 70 at.% Co spinel phase NCO films are intrinsically the most active. The studies point to a chemical composition dependent OER mechanism: Co-rich spinel films show instantly high activities, while the more sustainable Ni-rich rock-salt films require extended activation to increase the ECSA and OER performance. The results highlight the added value of working with model systems to disclose structure-performance mechanisms.

11.
Angew Chem Int Ed Engl ; : e202409609, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976376

RESUMO

Antimony selenosulfide (Sb2(S,Se)3), featuring large absorption coefficient, excellent crystal structure stability, benign non-toxic characteristic, outstanding humidity and ultraviolet tolerability, has recently attracted enormous attention and research interest regarding its photoelectric conversion properties. However, the open-circuit voltage (Voc) for Sb2(S,Se)3-based photovoltaic devices is relatively low, especially for the device with a high power conversion efficiency (η). Herein, an innovative Se-elemental concentration gradient regulation strategy has been exploited to produce high-quality Sb2(S,Se)3 films on TiO2/CdS substrates through a thioacetamide(TA)-synergistic dual-sulfur source hydrothermal-processed method. The Se-elemental gradient distribution produces a favorable energy band structure, which suppresses the energy level barriers for hole transport and enhances the driving force for electron transport in Sb2(S,Se)3 film. This facilitates efficient charge transport/separation of photogenerated carriers and boosts significantly the Voc of Sb2(S,Se)3 photovoltaic devices. The champion TA-Sb2(S,Se)3 planar heterojunction (PHJ) solar cell displays an considerable η of 9.28% accompanied by an exciting Voc rising to 0.70 V that is currently the highest among Sb2(S,Se)3-based solar cells with efficiencies exceeding 9.0%. This research is anticipated to contribute to the preparation of high-quality Sb2(S,Se)3 thin film and the achievement of efficient inorganic Sb2(S,Se)3 PHJ photovoltaic device.

12.
ACS Appl Bio Mater ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976598

RESUMO

Organic material-based bioelectronic nonvolatile memory devices have recently received a lot of attention due to their environmental compatibility, simple fabrication recipe, preferred scalability, low cost, low power consumption, and numerous additional advantages. Resistive random-access memory (RRAM) devices work on the principle of resistive switching, which has the potential for applications in memory storage and neuromorphic computing. Here, natural organically grown orange peel was used to extract biocompatible pectin to design a resistive switching-based memory device of the structure Ag/Pectin/Indium tin oxide (ITO), and the behavior was studied between a temperature range of 10K and 300K. The microscopic characterization revealed the texture of the surface and thickness of the layers. The memristive current-voltage characteristics performed over 1000 consecutive cycles of repeated switching revealed sustainable bipolar resistive switching behavior with a high ON/OFF ratio. The underlying principle of Resistive Switching behavior is based on the formation of conductive filaments between the electrodes, which is explained in this work. Further, we have also designed a 2 × 2 crossbar array of RRAM devices to demonstrate various logic circuit operations useful for neuromorphic computing. The robust switching characteristics suggest possible uses of such devices for the design of ecofriendly bioelectronic memory applications and in-memory computing.

13.
Lab Invest ; : 102108, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977078

RESUMO

Full-thickness high-grade squamous intraepithelial lesions (HSIL) are precursors of invasive cervical squamous cell carcinoma (SCC). The World Health Organization (WHO) and Lower Anogenital Squamous Terminology (LAST) Standardization Project for human papilloma virus (HPV)-associated lesions divide full-thickness HSIL of the cervix into thin HSIL with one to nine cell layers thickness and the typical full-thickness HSIL of more than ten cell layers. Although HPV oncogene transcripts and p16ink4a overexpression, as markers of transforming HPV infection, are detectable in thin HSIL, the biological significance of thin HSIL in cervical carcinogenesis remains poorly understood. To further characterize thin HSIL, we performed a comparative study of chromosomal copy number variations (CNV), analysis of dysregulated genes present in the segments with CNV, and a generalized genetic complexity calculation for 31 thin HSIL, 31 thick HSIL, 24 microinvasive SCC (pT1a SCC), and 22 highly invasive SCC samples. Thin HSIL share various CNV and specific dysregulated gene pathways with thick HSIL and invasive SCC. Thin HSIL exhibited an average CNV of 11.6%, compared with 14.1% for thick HSIL, 15.5% for pT1a SCC, and 26.6% for highly invasive SCC. The CNV included gains at 1q and 3q (40 and 43%, respectively), partial loss of 3p, and loss of chromosomes 11 (18%), 16 (50%), 20 (35%), and 22 (40%). Pathways affected solely in thin HSIL were those enhancing immune evasion and primarily involved the interleukin (IL)6, IL21, and IL23 genes. ILs are transiently upregulated in response to infection and play a crucial role in mounting antitumor T-cell activity. Deregulation reflects an attempt by the HPV to evade the initial immune response of the host. The primary pathways shared by thick HSIL and invasive SCC were interactions between lymphoid and non-lymphoid cells, Notch2 signaling, tight junction (TJ) interactions (primarily of the claudin family), and FGR2 alternative splicing. Our results show that thin HSIL carry similar genetic changes as thick HSIL and SCC, indicating that thin HSIL are true precursor lesions that can progress to thick HSIL and SCC.

14.
Adv Mater ; : e2406625, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970526

RESUMO

Analogous to linear dielectric, amorphous perovskite dielectrics characterized of high breakdown strength and low remanent polarization possess in-depth application in the sea, land, and air fields. Amorphous engineering is a common approach to balance the inverse relationship between polarization and breakdown strength in dielectric ceramic capacitor, however, the low polarization is the major barrier limiting the improvement of energy storage density. To address this concern, the polymorphic localized heterostructure confirmed by high-resolution transmission electron microscope (HR-TEM) and HADDF images is constructed in BaTiO3-Bi(Ni0.5Zr0.5)O3 amorphous/nanocrystalline composite film with SiO2 addition (BT-BNZ-xS, x = 3, 5, 7, 10 mol%). The stability of nanocrystalline region achieved by Si-rich transition region and the enhancive ultra-short-range ordering in the amorphous region synergistically result in large breakdown strength and nonhysteretic polarized response. This polymorphic localized heterostructure optimizes the thermal stability in a wide temperature range and contributes ultrahigh energy storage density of 149.9 J cm-3 with markedly enhanced efficiency of 79.0%. This study provides a universal strategy to design the polarization behavior in other amorphous perovskite-based dielectrics.

15.
Food Chem ; 458: 140225, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38970951

RESUMO

Solid Phase Microextraction (SPME) is a commonly used, robust method for characterization of aroma profiles in food matrices. However, challenges such as saturation, swelling, and competition can occur when sampling such complex matrices, resulting in decreased accuracy in the quantitation of polar compounds. In this study, sequential thin film micro-extraction (TFME) was employed to study the aroma profile of sparkling wine, with a focus to evaluate the displacement of polar analytes at extraction times longer than their corresponding equilibrium time. This investigation also describes advancements in the production of TFME devices, specifically the overcoating of hydrophilic-lipophilic balance/polydimethylsiloxane (HLB/PDMS) thin films to increase their matrix compatibility. Sequential thin film micro-extraction and overcoated HLB/PDMS thin films were evaluated for characterization of sparkling wine samples. The results were encouraging, showing that these advancements can decrease competition phenomena and increase the calibration linearity range compared to traditional micro-extraction approaches more commonly used for the characterization of such samples. In addition, multiphase equilibria investigation involving micellar systems enabled by the microextraction technology provides better understanding between wine aroma and its composition.

16.
Biosens Bioelectron ; 262: 116545, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38971040

RESUMO

Determination of plasma uracil was reported as a method for evaluation of Dihydropyrimidine dehydrogenase (DPD) activity that is highly demanded to ensure the safe administration of 5-fluorouracil (5-FU)-based therapies to cancer patients. This work reports the development of a simple electroanalytical method based on adsorptive stripping square wave voltammetry (AdSWV) at mercury film-coated glassy carbon electrode (MF/GCE) for the highly sensitive determination of uracil in biological fluids that can be used for diagnosis of decreased DPD activity. Due to the formation of the HgII-Uracil complex at the electrode surface, the accuracy of the measurement was not affected by the complicated matrices in biological fluids including human serum, plasma, and urine. The high sensitivity of the developed method results in a low limit of detection (≈1.3 nM) in human plasma samples, falling below the practical cut-off level of 15 ng mL-1 (≈0.14 µM). This threshold concentration is crucial for predicting 5-FU toxicity, as reported in buffer, and ≤1.15% in biological samples), and accuracy (recovery percentage close to 100%).

17.
Environ Res ; : 119568, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971357

RESUMO

The aim of this study was to synthesize effective and economical MoS2/CdNi@rGO photocatalysts and investigate their performance in the degradation of organic pollutants in synthetic effluent. The objective was to assess the characterization results of the synthesized photocatalysts using XRD, SEM/EDS, TEM/HR-TEM, Raman spectrum, and BET isotherm analysis tools. These analyses revealed the good adhesion of MoS2 with rGO and provided insights into the structure and properties of the materials. The results showed that the MoS2/CdNi@rGO photocatalysts exhibited remarkable degradation efficiency for organic pollutants such as Rhodamine-B, erichrome black, and malachite green. The outcomes of the study demonstrated that the MoS2/CdNi@rGO catalyst had the greatest rate constant for Rhodamine-B (RhB) decomposition. which would have been approximately 33 times higher than that of pure RGO (0.0121 min-1). The MoS2/CdNi@rGO photocatalysts also showed excellent recyclability and persistence across five recycle assays, indicating their potential for practical applications in wastewater treatment. The photocatalyst was moderately active, stable up to its fifth usage and stability of the photocatalyst before and after the photocatalytic reaction was also been studied using XRD and SEM. Further research in this area could lead to the development of advanced photocatalytic technologies for environmental remediation.

18.
BMC Oral Health ; 24(1): 753, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951790

RESUMO

BACKGROUND: Gutta-percha (GP) combined with an endodontic sealer is still the core material most widely used for tridimensional obturation. The sealer acts as a bonding agent between the GP and the root dentinal walls. However, one of the main drawbacks of GP core material is the lack of adhesiveness to the sealer. ZnO thin films have many remarkable features due to their considerable bond strength, good optical quality, and excellent piezoelectric, antibacterial, and antifungal properties, offering many potential applications in various fields. This study aimed to explore the influence of GP surface's functionalization with a nanostructured ZnO thin film on its adhesiveness to endodontic sealers. METHODS: Conventional GP samples were divided randomly into three groups: (a) Untreated GP (control); (b) GP treated with argon plasma (PT); (c) Functionalized GP (PT followed by ZnO thin film deposition). GP's surface functionalization encompassed a multi-step process. First, a low-pressure argon PT was applied to modify the GP surface, followed by a ZnO thin film deposition via magnetron sputtering. The surface morphology was assessed using SEM and water contact angle analysis. Further comprehensive testing included tensile bond strength assessment evaluating Endoresin and AH Plus Bioceramic sealers' adhesion to GP. ANOVA procedures were used for data statistical analysis. RESULTS: The ZnO thin film reproduced the underlying surface topography produced by PT. ZnO thin film deposition decreased the water contact angle compared to the control (p < 0.001). Endoresin showed a statistically higher mean bond strength value than AH Plus Bioceramic (p < 0.001). There was a statistically significant difference between the control and the ZnO-functionalized GP (p = 0.006), with the latter presenting the highest mean bond strength value. CONCLUSIONS: The deposition of a nanostructured ZnO thin film on GP surface induced a shift towards hydrophilicity and an increased GP's adhesion to Endoresin and AH Bioceramic sealers.


Assuntos
Colagem Dentária , Guta-Percha , Nanoestruturas , Materiais Restauradores do Canal Radicular , Propriedades de Superfície , Óxido de Zinco , Óxido de Zinco/química , Materiais Restauradores do Canal Radicular/química , Nanoestruturas/química , Guta-Percha/química , Colagem Dentária/métodos , Humanos , Teste de Materiais , Adesividade , Microscopia Eletrônica de Varredura , Resistência à Tração
19.
ACS Appl Mater Interfaces ; 16(27): 35463-35473, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946100

RESUMO

Solution-based processing of van der Waals (vdW) one- (1D) and two-dimensional (2D) materials is an effective strategy to obtain high-quality molecular chains or atomic sheets in a large area with scalability. In this work, quasi-1D vdW Ta2Pt3Se8 was exfoliated via liquid phase exfoliation (LPE) to produce a stably dispersed Ta2Pt3Se8 nanowire solution. In order to screen the optimal exfoliation solvent, nine different solvents were employed with different total surface tensions and polar/dispersive (P/D) component (P/D) ratios. The LPE behavior of Ta2Pt3Se8 was elucidated by matching the P/D ratios between Ta2Pt3Se8 and the applied solvent, resulting in N-methyl-2-pyrrolidone (NMP) as an optimal solvent owing to the well-matched total surface tension and P/D ratio. Subsequently, Ta2Pt3Se8 nanowire thin films are manufactured via vacuum filtration using a Ta2Pt3Se8/NMP dispersion. Then, gas sensing devices are fabricated onto the Ta2Pt3Se8 nanowire thin films, and gas sensing property toward NO2 is evaluated at various thin-film thicknesses. A 50 nm thick Ta2Pt3Se8 thin-film device exhibited a percent response of 25.9% at room temperature and 32.4% at 100 °C, respectively. In addition, the device showed complete recovery within 14.1 min at room temperature and 3.5 min at 100 °C, respectively.

20.
Nanotechnology ; 35(39)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955165

RESUMO

Transition metal dichalcogenides have been extensively studied in recent years because of their fascinating optical, electrical, and catalytic properties. However, low-cost, scalable production remains a challenge. Aerosol-assisted chemical vapor deposition (AACVD) provides a new method for scalable thin film growth. In this study, we demonstrate the growth of molybdenum disulfide (MoS2) thin films using AACVD method. This method proves its suitability for low-temperature growth of MoS2thin films on various substrates, such as glass, silicon dioxide, quartz, silicon, hexagonal boron nitride, and highly ordered pyrolytic graphite. The as-grown MoS2shows evidence of substrate-induced strain. The type of strain and the morphology of the as-grown MoS2highly depend on the growth substrate's surface roughness, crystallinity, and chemical reactivity. Moreover, the as-grown MoS2shows the presence of both direct and indirect band gaps, suitable for exploitation in future electronics and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...