Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Arch Biochem Biophys ; 758: 110067, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908743

RESUMO

Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.

2.
Plant Physiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386687

RESUMO

Thioredoxins play an essential role in regulating enzyme activity in response to environmental changes, especially in photosynthetic organisms. They are crucial for metabolic regulation in cyanobacteria, but the key redox-regulated central processes remain to be determined. Physiological, metabolic, and transcriptomic characterization of a conditional mutant of the essential Synechocystis sp. PCC 6803 thioredoxin trxA gene (STXA2) revealed that decreased TrxA levels alter cell morphology and induce a dormant-like state. Furthermore, TrxA depletion in the STXA2 strain inhibited protein synthesis and led to changes in amino acid pools and nitrogen/carbon reserve polymers, accompanied by oxidation of the EF-Tu elongation factor. Transcriptomic analysis of TrxA depletion in STXA2 revealed a robust transcriptional response. Down-regulated genes formed a large cluster directly related to photosynthesis, ATP synthesis, and CO2 fixation. In contrast, up-regulated genes were grouped into different clusters related to respiratory electron transport, carotenoid biosynthesis, amino acid metabolism, and protein degradation, among others. These findings highlight the complex regulatory mechanisms that govern cyanobacterial metabolism, where TrxA acts as a critical regulator that orchestrates the transition from anabolic to maintenance metabolism and regulates carbon and nitrogen balance.

3.
Free Radic Biol Med ; 208: 394-401, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657763

RESUMO

Reactive Oxygen Species (ROS) and mitochondrial dysfunction are implicated in the pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disorder characterized by abnormal metabolism of the amyloid precursor protein (APP) in brain tissue. However, the exact mechanism by which abnormal APP leads to oxidative distress remains unclear. Damage to mitochondrial membrane and inhibition of mitochondrial respiration are thought to contribute to the progression of the disease. However, the lack of suitable human models that replicate pathological features, together with impaired cellular pathways, constitutes a major challenge in AD studies. In this work, we induced pluripotency in patient-derived skin fibroblasts carrying the Swedish mutation in App (APPswe), to generate human brain organoids that model AD, and studied redox regulation and mitochondrial homeostasis. We found time-dependent increases in AD-related pathological hallmarks in APPswe brain organoids, including elevated Aß levels, increased extracellular amyloid deposits, and enhanced tau phosphorylation. Interestingly, using live-imaging spinning-disk confocal microscopy, we found an increase in mitochondrial fragmentation and a significant loss of mitochondrial membrane potential in APPswe brain organoids when subjected to oxidative conditions. Moreover, ratiometric dyes in a live imaging setting revealed a selective increase in mitochondrial superoxide anion and hydrogen peroxide levels in APPswe brain organoids that were coupled to impairments in cytosolic and mitochondrial redoxin protein expression. Our results suggest a selective increase in mitochondrial vulnerability to oxidative conditions in APPswe organoids, indicating that the abnormal metabolism of APP leads to specific changes in mitochondrial homeostasis that enhance the vulnerability to oxidation in AD.


Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Encéfalo/metabolismo , Organoides/metabolismo , Organoides/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos
4.
Front Plant Sci ; 14: 1179112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332692

RESUMO

Plants contain several NADPH-producing enzymes including glucose-6-phosphate dehydrogenases (G6PDH) with different sub-cellular localizations. The activity of plastidial G6PDHs is redox-regulated by thioredoxins (TRX). Although specific TRXs are known to regulate chloroplastic isoforms of G6PDH, little information is available for plastidic isoforms found in heterotrophic organs or tissues. Here, we investigated TRX regulation of the two G6PDH plastidic isoforms of Arabidopsis roots during exposure to a mild salt stress. We report that in vitro m-type TRXs are the most efficient regulators of the G6PDH2 and G6PDH3 mainly found in Arabidopsis roots. While expression of the corresponding G6PD and plastidic TRX genes was marginally affected by salt, it impaired root growth of several of the corresponding mutant lines. Using an in situ assay for G6PDH, G6PDH2 was found to be the major contributor to salt-induced increases in activity, while data from ROS assays further provide in vivo evidence that TRX m acts in redox regulation during salt stress. Taken together, our data suggest that regulation of plastid G6PDH activity by TRX m may be an important player regulating NADPH production in Arabidopsis roots undergoing salt stress.

5.
Gene ; 877: 147540, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279861

RESUMO

Thioredoxins (TRXs) are a group of antioxidant enzymes that play a critical role in plant growth and resistance to stress. However, the functional role and mechanism of rice TRXs in response to pesticides (e.g. atrazine, ATZ) stress remain largely unexplored. Here, 24 differentially expressed TRX genes (14 up and 10 down) of ATZ-exposed rice were identified through high-throughput RNA-sequencing analysis. Twenty-four TRX genes were unevenly mapped to 11 chromosomes and some of the genes were validated by quantitative RT-PCR. Bioinformatics analysis revealed that ATZ-responsive TRX genes contain multiple functional cis-elements and conserved domains. To demonstrate the functional role of the genes in ATZ degradation, one representative TRX gene LOC_Os07g08840 was transformed into yeast cells and observed significantly lower ATZ content compared to the control. Using LC-Q-TOF-MS/MS, five metabolites were characterized. One hydroxylation (HA) and two N-dealkylation products (DIA and DEA) were significantly increased in the medium with positive transformants. Our work indicated that TRX-coding genes here were responsible for ATZ degradation, suggesting that thioredoxins could be one of the vital strategies for pesticide degradation and detoxification in crops.


Assuntos
Atrazina , Oryza , Praguicidas , Atrazina/toxicidade , Atrazina/metabolismo , Oryza/genética , Oryza/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida
6.
J Pers Med ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836401

RESUMO

Periodontitis is a multifactorial and infective oral disease that leads to the destruction of periodontal tissues and tooth loss. Although the treatment of periodontitis has improved recently, the effective treatment of periodontitis and the periodontitis-affected periodontal tissues is still a challenge. Therefore, exploring new therapeutic strategies for a personalized approach is urgent. For this reason, the aim of this study is to summarize recent advances and the potential of oxidative stress biomarkers in the early diagnosis and personalized therapeutic approaches in periodontitis. Recently, ROS metabolisms (ROMs) have been studied in the physiopathology of periodontitis. Different studies show that ROS plays a crucial role in periodontitis. In this regard, the reactive oxygen metabolites (ROMs) started to be searched for the measures of the oxidizing capacity of the plasma understood as the total content of oxygen free radicals (ROS). The oxidizing capacity of plasma is a significant indicator of the body's oxidant state as well as homocysteine (Hcy), sulfur amino acid, which has pro-oxidant effects as it favors the production of superoxide anion. More specifically, the thioredoxin (TRX) and peroxiredoxin (PRX) systems control reactive oxygen species (ROS), such as superoxide and hydroxyl species, to transduce redox signals and change the activities of antioxidant enzymes to remove free radicals. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), among other antioxidant enzymes, change their activity when ROS are produced in order to neutralize free radicals. The TRX system is triggered and transduces redox signals to do this.

7.
Biochem J ; 480(1): 87-104, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36594794

RESUMO

Thioredoxins (Trxs) are ubiquitous proteins that play vital roles in several physiological processes. Alr2205, a thioredoxin-like protein from Anabaena PCC 7120, was found to be evolutionarily closer to the Trx-domain of the NADPH-Thioredoxin Reductase C than the other thioredoxins. The Alr2205 protein showed disulfide reductase activity despite the presence a non-canonical active site motif 'CPSC'. Alr2205 not only physically interacted with, but also acted as a physiological reductant of Alr4641 (the typical 2-Cys-Peroxiredoxin from Anabaena), supporting its peroxidase function. Structurally, Alr2205 was a monomeric protein that formed an intramolecular disulfide bond between the two active site cysteines (Cys-38 and Cys-41). However, the Alr2205C41S protein, wherein the resolving cysteine was mutated to serine, was capable of forming intermolecular disulfide bond and exist as a dimer when treated with H2O2. Overproduction of Alr2205 in E. coli protected cells from heavy metals, but not oxidative stress. To delve into its physiological role, Alr2205/Alr2205C41S was overexpressed in Anabaena, and the ability of the corresponding strains (An2205+ or An2205C41S+) to withstand environmental stresses was assessed. An2205+ showed higher resistance to H2O2 than An2205C41S+, indicating that the disulfide reductase function of this protein was critical to protect cells from this peroxide. Although, An2205+ did not show increased capability to withstand cadmium stress, An2205C41S+ was more susceptible to this heavy metal. This is the first study that provides a vital understanding into the function of atypical thioredoxins in countering the toxic effects of heavy metals/H2O2 in prokaryotes.


Assuntos
Anabaena , Cianobactérias , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Proteínas de Bactérias/metabolismo , Anabaena/genética , Anabaena/metabolismo , Cianobactérias/metabolismo , Tiorredoxinas/química , Dissulfetos/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016015

RESUMO

Helicobacter pylori (Hp) infection is one of the main causes of gastric cancer. The virulence factors of Hp, cytotoxin⁃associated gene A (CagA) and vacuolating cytotoxin A (VacA), are closely related to the pathogenicity of Hp in European and American countries. However, the positivity rate of CagA is as high as 90% in East Asian countries, indicating that the above⁃mentioned virulence factors could not fully explain the differences in pathogenicity of Hp, and other pathogenic factors might be speculated. In our previous studies, thioredoxin⁃1 (Trx1) was found to be a virulence factor of highly pathogenic Hp, and a series of studies were conducted on Hp Trx1 in cytology, zoology and human histology. This article reviewed the progress in research on Hp Trx1.

9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-994213

RESUMO

Objective:To evaluate the effect of dexmedetomidine on the thioredoxin-interacting protein (TXNIP)/apoptosis signal-regulated kinase 1 (ASK1) signaling pathway in a mouse model of intestinal ischemia-reperfusion (I/R).Methods:Thirty-two SPF healthy adult male C57BL/6J mice, aged 8-10 weeks, weighing 18-22 g, were divided into 4 groups ( n=8 each) using a random number table method: sham operation group (Sham group), intestinal I/R group (I/R group), TXNIP inhibitor resveratrol group (Res group) and dexmedetomidine group (Dex group). The mouse model of intestinal I/R injury was developed by clamping the superior mesenteric artery for 45 min followed by 120-min reperfusion in anesthetized animals. Resveratrol 30 mg/kg was intraperitoneally injected before developing the model in Res group, and dexmedetomidine 25 μg/kg was intraperitoneally injected at 30 min before ischemia in Dex group. Blood samples were collected by cardiac puncture at the end of 120-min reperfusion, then the mice were sacrificed, and the small intestine tissues were removed for microscopic examination and for determination of the serum diamine oxidase (DAO) concentration (by enzyme-linked immunosorbent assay) and expression of TXNIP, ASK1 and cleaved-caspase-3 in small intestinal tissues (by Western blot). The apoptosis rate of intestinal epithelial cells was calculated. The intestinal damage was assessed and scored according to Chiu. Results:Compared with group Sham, the Chiu′s score, serum DAO concentrations and apoptosis rate of intestinal epithelial cells were significantly increased, and the expression of TXNIP, ASK-1 and cleaved-caspase-3 was up-regulated in group I/R ( P<0.05). Compared with group I/R, the Chiu′s score, serum DAO concentration and apoptosis rate of intestinal epithelial cells were significantly decreased, and the expression of TXNIP, ASK-1 and cleaved-caspase-3 was down-regulated in group Res ( P<0.05). Compared with I/R group, the Chiu′s score, serum DAO concentration and apoptosis rate of intestinal epithelial cells were significantly decreased, and the expression of TXNIP, ASK-1 and cleaved-caspase-3 was down-regulated in Dex group ( P<0.05). Conclusions:The mechanism by which dexmedetomidine alleviates intestinal I/R injury may be related to inhibition of the TXNIP/ASK1 signaling pathway and reduction of cell apoptosis in mice.

10.
Heliyon ; 8(10): e10776, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36203893

RESUMO

Thioredoxins (Trxs) and Glutaredoxins (Grxs) regulate several cellular processes by controlling the redox state of their target proteins. Trxs and Grxs belong to thioredoxin superfamily and possess characteristic Trx/Grx fold. Several phylogenetic, biochemical and structural studies have contributed to our overall understanding of Trxs and Grxs. However, comparative study of closely related Trxs and Grxs in organisms of all domains of life was missing. Here, we conducted in silico comparative structural analysis combined with amino acid sequence and phylogenetic analyses of 65 Trxs and 88 Grxs from 12 organisms of three domains of life to get insights into evolutionary and structural relationship of two proteins. Outcomes suggested that despite diversity in their amino acids composition in distantly related organisms, both Trxs and Grxs strictly conserved functionally and structurally important residues. Also, position of these residues was highly conserved in all studied Trxs and Grxs. Notably, if any substitution occurred during evolution, preference was given to amino acids having similar chemical properties. Trxs and Grxs were found more different in eukaryotes than prokaryotes due to altered helical conformation. The surface of Trxs was negatively charged, while Grxs surface was positively charged, however, the active site was constituted by uncharged amino acids in both proteins. Also, phylogenetic analysis of Trxs and Grxs in three domains of life supported endosymbiotic origins of chloroplast and mitochondria, and suggested their usefulness in molecular systematics. We also report previously unknown catalytic motifs of two proteins, and discuss in detail about effect of abovementioned parameters on overall structural and functional diversity of Trxs and Grxs.

11.
Plant Cell Environ ; 45(10): 2954-2971, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916195

RESUMO

Photosynthetic light reactions require strict regulation under dynamic environmental conditions. Still, depending on environmental constraints, photoinhibition of Photosystem (PSII) or PSI occurs frequently. Repair of photodamaged PSI, in sharp contrast to that of PSII, is extremely slow and leads to a functional imbalance between the photosystems. Slow PSI recovery prompted us to take advantage of the PSI-specific photoinhibition treatment and investigate whether the imbalance between functional PSII and PSI leads to acclimation of photosynthesis to PSI-limited conditions, either by short-term or long-term acclimation mechanisms as tested immediately after the photoinhibition treatment or after 24 h recovery in growth conditions, respectively. Short-term acclimation mechanisms were induced directly upon inhibition, including thylakoid protein phosphorylation that redirects excitation energy to PSI as well as changes in the feedback regulation of photosynthesis, which relaxed photosynthetic control and excitation energy quenching. Longer-term acclimation comprised reprogramming of the stromal redox system and an increase in ATP synthase and Cytochrome b6 f abundance. Acclimation to PSI-limited conditions restored the CO2 assimilation capacity of plants without major PSI repair. Response to PSI inhibition demonstrates that plants efficiently acclimate to changes occurring in the photosynthetic apparatus, which is likely a crucial component in plant acclimation to adverse environmental conditions.


Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Aclimatação , Transporte de Elétrons , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo
12.
Antioxidants (Basel) ; 11(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883902

RESUMO

Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reactive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation (also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols, can alter protein stability and activity and can result in changes of protein subcellular localization. Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation reaction are poorly understood. This review provides an overview of the biochemistry and regulation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems proposed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins (TRX) and the newly identified aldo-keto reductases (AKR).

13.
Plant J ; 111(3): 642-661, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665548

RESUMO

Reactive oxygen species (ROS) such as singlet oxygen, superoxide (O2●- ) and hydrogen peroxide (H2 O2 ) are the markers of living cells. Oxygenic photosynthesis produces ROS in abundance, which act as a readout of a functional electron transport system and metabolism. The concept that photosynthetic ROS production is a major driving force in chloroplast to nucleus retrograde signalling is embedded in the literature, as is the role of chloroplasts as environmental sensors. The different complexes and components of the photosynthetic electron transport chain (PETC) regulate O2●- production in relation to light energy availability and the redox state of the stromal Cys-based redox systems. All of the ROS generated in chloroplasts have the potential to act as signals and there are many sulphhydryl-containing proteins and peptides in chloroplasts that have the potential to act as H2 O2 sensors and function in signal transduction. While ROS may directly move out of the chloroplasts to other cellular compartments, ROS signalling pathways can only be triggered if appropriate ROS-sensing proteins are present at or near the site of ROS production. Chloroplast antioxidant systems serve either to propagate these signals or to remove excess ROS that cannot effectively be harnessed in signalling. The key challenge is to understand how regulated ROS delivery from the PETC to the Cys-based redox machinery is organised to transmit redox signals from the environment to the nucleus. Redox changes associated with stromal carbohydrate metabolism also play a key role in chloroplast signalling pathways.


Assuntos
Cloroplastos , Fotossíntese , Cloroplastos/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
J Bacteriol ; 204(5): e0008222, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35475633

RESUMO

Francisella tularensis is an intracellular, Gram-negative bacterium known for causing a disease known as tularemia in the Northern Hemisphere. F. tularensis is classified as a category A select agent by the CDC based on its possible use as a bioterror agent. F. tularensis overcomes oxidative stress encountered during its growth in the environment or host macrophages by encoding antioxidant enzymes such as superoxide dismutases, catalase, and alkylhydroperoxy reductase. These antioxidant enzymes are regulated by the oxidative stress response regulator, OxyR. In addition to these antioxidant enzymes, F. tularensis also encodes two thioredoxins, TrxA1 (FTL_0611) and TrxA2 (FTL_1224); however, their role in the oxidative stress response of F. tularensis is not known. This study investigated the role of thioredoxins of F. tularensis in the oxidative stress response and intracellular survival. Our results demonstrate that TrxA1 but not TrxA2 plays a major role in the oxidative stress response of F. tularensis. Most importantly, this study elucidates a novel mechanism through which the TrxA1 of F. tularensis controls the oxidative stress response by regulating the expression of the master regulator, oxyR. Further, TrxA1 is required for the intramacrophage survival and growth of Francisella. Overall, this study describes a novel role of thioredoxin, TrxA1, in regulating the oxidative stress response of F. tularensis. IMPORTANCE The role of thioredoxins in the oxidative stress response of F. tularensis is not known. This study demonstrates that of the two thioredoxins, TrxA1 is vital to counter the oxidative stress in F. tularensis live vaccine strain (LVS). Furthermore, this study shows differences in the well-studied thioredoxins of Escherichia coli. First, the expression of TrxA1 of F. tularensis is independent of the oxidative stress response regulator, OxyR. Second and most importantly, TrxA1 regulates the expression of oxyR and, therefore, the OxyR-dependent oxidative stress response of F. tularensis. Overall, this study reports a novel regulatory role of TrxA1 of F. tularensis in the oxidative stress response.


Assuntos
Francisella tularensis , Tularemia , Animais , Antioxidantes/metabolismo , Vacinas Bacterianas , Francisella tularensis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tularemia/microbiologia , Vacinas Atenuadas/metabolismo , Virulência
15.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 4): 144-149, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35400666

RESUMO

Bacilliredoxins are small proteins that are involved in redox homeostasis in bacillithiol-producing bacteria. They reduce mixed bacillithiol disulfides on protected proteins through a disulfide-exchange reaction, restoring the thiol group on the target protein. Bacilliredoxins contain an unusual conserved CGC motif, and their exact catalytic mechanism remains unclear. Here, a 1.6 Šresolution X-ray crystallographic structure of the bacilliredoxin BrxA (YphP) from Staphylococcus aureus is presented. The structure contains bacillithiol in a mixed disulfide with Cys54, as well as a disulfide linkage at Cys56, which may play a role in dimer stabilization. The structure presented here will provide insight into the function of BrxA and other bacilliredoxins.


Assuntos
Firmicutes , Staphylococcus aureus , Proteínas de Bactérias/química , Cristalografia por Raios X , Dissulfetos/metabolismo , Firmicutes/metabolismo , Homeostase , Oxirredução , Staphylococcus aureus/metabolismo
16.
Anaerobe ; 73: 102507, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979246

RESUMO

OBJECTIVES: Bacteroides fragilis has a pronounced ability to survive prolonged exposure to atmospheric oxygen. The major objective of this study was to biochemically characterize the components of the thioredoxin system in B. fragilis. The nitroreductase activity of TrxR was also assayed. METHODS: Components of the thioredoxin system were expressed in E. coli and used in a disulfide reductase activity assay. Activity of TrxR was measured with purified recombinant enzyme or with cell extracts after or without exposure to oxygen or hydrogen peroxide, respectively. RESULTS: Of all six thioredoxins tested, only thioredoxins A, D, and F were reduced by recombinant TrxR and natural TrxR present in B. fragilis cell extracts. Exposure to oxygen and hydrogen peroxide increased the activity of TrxR. Further, B. fragilis TrxR acts as a nitroreductase with furazolidone or 1-Chloro-2,4-dinitrobenzene as substrates but cannot reduce metronidazole. CONCLUSION: TrxR shows an increase in activity under the conditions of oxidative stress and exerts nitroreductase activity.


Assuntos
Bacteroides fragilis , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase , Bacteroides fragilis/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
17.
Antioxidants (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829660

RESUMO

Photosynthesis includes a set of redox reactions that are the source of reducing power and energy for the assimilation of inorganic carbon, nitrogen and sulphur, thus generating organic compounds, and oxygen, which supports life on Earth. As sessile organisms, plants have to face continuous changes in environmental conditions and need to adjust the photosynthetic electron transport to prevent the accumulation of damaging oxygen by-products. The balance between photosynthetic cyclic and linear electron flows allows for the maintenance of a proper NADPH/ATP ratio that is adapted to the plant's needs. In addition, different mechanisms to dissipate excess energy operate in plants to protect and optimise photosynthesis under adverse conditions. Recent reports show an important role of redox-based dithiol-disulphide interchanges, mediated both by classical and atypical chloroplast thioredoxins (TRXs), in the control of these photoprotective mechanisms. Moreover, membrane-anchored TRX-like proteins, such as HCF164, which transfer electrons from stromal TRXs to the thylakoid lumen, play a key role in the regulation of lumenal targets depending on the stromal redox poise. Interestingly, not all photoprotective players were reported to be under the control of TRXs. In this review, we discuss recent findings regarding the mechanisms that allow an appropriate electron flux to avoid the detrimental consequences of photosynthesis redox imbalances.

18.
Arq. bras. cardiol ; 116(5): 970-978, nov. 2021. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1248893

RESUMO

Resumo Fundamento: A vitamina D (VD) tem um importante papel na função cardíaca. No entanto, a vitamina exerce uma curva "dose-resposta" bifásica na fisiopatologia cardiovascular e pode causar efeitos deletérios, mesmo em doses não tóxicas. A VD exerce suas funções celulares ligando-se ao seu receptor. Ainda, a expressão da proteína de interação com a tiorredoxina (TXNIP) é positivamente regulada pela VD. A TXNIP modula diferentes visa de sinalização celular que podem ser importantes para a remodelação cardíaca. Objetivos: Avaliar se a suplementação com VD leva à remodelação cardíaca, e se a TXNIP e a tiorredoxina (Trx) estão associadas com esse processo. Métodos: Duzentos e cinquenta ratos Wistar machos foram alocados em três grupos: controle (C, n=21), sem suplementação com VD; VD3 (n = 22) e VD10 (n=21), suplementados com 3,000 e 10,000 UI de VD/ kg de ração, respectivamente, por dois meses. Os grupos foram comparados por análise de variância (ANOVA) com um fator e teste post hoc de Holm-Sidak (variáveis com distribuição normal), ou pelo teste de Kruskal-Wallis e análise post-hoc de Dunn. O nível de significância para todos os testes foi de 5%. Resultados: A expressão de TXNIP foi mais alta e a atividade do Trx foi mais baixa no grupo VD10. Os animais que receberam suplementação com VD apresentaram aumento de hidroperóxido lipídico e diminuição de superóxido dismutase e glutationa peroxidase. A proteína Bcl-2 foi mais baixa no grupo VD10. Observou-se uma diminuição na β-oxidação de ácidos graxos, no ciclo do ácido tricarboxílico, na cadeia transportadora de elétrons, e um aumento na via glicolítica. Conclusão: A suplementação com VD levou à remodelação cardíaca e esse processo pode ser modulado por TXNIP e Trx, e consequentemente por estresse oxidativo.


Abstract Background: Vitamin D (VD) has been shown to play an important role in cardiac function. However, this vitamin exerts a biphasic "dose response" curve in cardiovascular pathophysiology and may cause deleterious effects, even in non-toxic doses. VD exerts its cellular functions by binding to VD receptor. Additionally, it was identified that the thioredoxin-interacting protein (TXNIP) expression is positively regulated by VD. TXNIP modulate different cell signaling pathways that may be important for cardiac remodeling. Objective: To evaluate whether VD supplementation lead to cardiac remodeling and if TXNIP and thioredoxin (Trx) proteins are associated with the process. Methods: A total of 250 Male Wistar rats were allocated into three groups: control (C, n=21), with no VD supplementation; VD3 (n = 22) and VD10 (n=21), supplemented with 3,000 and 10,000 IU of VD/ kg of chow respectively, for two months. The groups were compared by one-way analysis of variance (ANOVA) and Holm-Sidak post hoc analysis, (variables with normal distribution), or by Kruskal-Wallis test and Dunn's test post hoc analysis. The significance level for all tests was 5%. Results: TXNIP protein expression was higher and Trx activity was lower in VD10. The animals supplemented with VD showed increased lipid hydroperoxide and decreased superoxide dismutase and glutathione peroxidase. The protein Bcl-2 was lower in VD10. There was a decrease in fatty acid β-oxidation, tricarboxylic acid cycle and electron transport chain with shift to increase in glycolytic pathway. Conclusion: VD supplementation led to cardiac remodeling and this process may be modulated by TXNIP and Trx proteins and consequently oxidative stress.


Assuntos
Animais , Masculino , Ratos , Tiorredoxinas/metabolismo , Remodelação Ventricular , Vitamina D , Ratos Wistar , Estresse Oxidativo , Proteínas de Ciclo Celular , Suplementos Nutricionais
19.
FEBS Lett ; 595(21): 2715-2730, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34561866

RESUMO

Thioredoxins (TRXs), a large subclass of ubiquitous oxidoreductases, are involved in thiol redox regulation. Here, we performed a comprehensive analysis of TRXs in the Arabidopsis thaliana genome, revealing 41 genes encoding 18 typical and 23 atypical TRXs, and 6 genes encoding thioredoxin reductases (TRs). The high number of atypical TRXs indicates special functions in plants that mostly await elucidation. We identified an atypical class of thioredoxins called TRX-c in the genomes of photosynthetic eukaryotes. Localized to the chloroplast, TRX-c displays atypical CPLC, CHLC and CNLC motifs in the active sites. In silico analysis of the transcriptional regulations of TRXs revealed high expression of TRX-c in leaves and strong regulation under cold, osmotic, salinity and metal ion stresses.


Assuntos
Arabidopsis , Tiorredoxinas , Cloroplastos , Regulação da Expressão Gênica de Plantas , Fotossíntese
20.
Plant J ; 108(1): 120-133, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288193

RESUMO

Thioredoxins (TRXs) are well-known redox signalling players, which carry out post-translational modifications in target proteins. Chloroplast TRXs are divided into different types and have central roles in light energy uptake and the regulation of primary metabolism. The isoforms TRX m1, m2, and m4 from Arabidopsis thaliana are considered functionally related. Knowing their key position in the hub of plant metabolism, we hypothesized that the impairment of the TRX m signalling would not only have harmful consequences on chloroplast metabolism but also at different levels of plant development. To uncover the physiological and developmental processes that depend on TRX m signalling, we carried out a comprehensive study of Arabidopsis single, double, and triple mutants defective in the TRX m1, m2, and m4 proteins. As light and redox signalling are closely linked, we investigated the response to high light (HL) of the plants that are gradually compromised in TRX m signalling. We provide experimental evidence relating the lack of TRX m and the appearance of novel phenotypic features concerning mesophyll structure, stomata biogenesis, and stomatal conductance. We also report new data indicating that the isoforms of TRX m fine-tune the response to HL, including the accumulation of the protective pigment anthocyanin. These results reveal novel signalling functions for the TRX m and underline their importance for plant growth and fulfilment of the acclimation/response to HL conditions.


Assuntos
Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/metabolismo , Transdução de Sinais , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Clorofila/metabolismo , Cloroplastos/metabolismo , Fluorescência , Luz , Mutação , Oxirredução , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...