Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1321921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505553

RESUMO

Onion purple blotch is the most indispensable foliar disease of crop and has become a major concern for farmers and research fraternity. An attempt to investigate the role of injury in parasitism by Alternaria porri indicated that disease incidence and severity enhance considerably with injury. Thrips injured plants inoculated with A. porri presented 100% incidence and 52-72% severity while mechanically injured plants inoculated with A. porri showed 60-70% incidence and 28-34% severity. The uninjured plants showed considerably less disease incidence (30-40%) and severity (10-16%). Injured inoculated plants presented reduced leaf length and leaf area while the leaf diameter remained unaffected. The lesion number, lesion length and size was substantially enhanced with concomitant infestation of pest and pathogen. Thrips tabaci injury led to more pronounced symptoms of purple blotch compared to Thrips parvispinus injury. There was substantial decrease in photosynthetic rate and chlorophyll content with stress imposed on plant whilst the relative stress injury was enhanced. The induction of injury and inoculation of A. porri had an impact on the concentration of total phenolics, total soluble sugars, total proteins and hydrogen peroxide in onion leaves. A. porri combined with injury caused a more pronounced decrease in total soluble sugars and total protein content while enhancement in total phenolics and hydrogen peroxide content compared to uninjured plants. The dynamic nature of morpho-physiological and biochemical changes owing to stress conditions imposed on onion plant adds an extra layer of complexity in understanding the onion plant physiology and their ability to work out in response to challenging environment conditions.

2.
Arch Insect Biochem Physiol ; 114(2): 1-15, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36915951

RESUMO

Thrips parvispinus is a serious sucking pest on a number of economically important crops in the oriental region. It has gained importance recently for its drastic range extension distribution as an invasive pest. Here, the complete mitochondrial genome (15,067 bp) of Thrips parvispinus was sequenced and characterized. It possesses 37 genes and the putative noncoding region is duplicated. Comparative analyses of nucleotide diversity, skewness, codon usage bias, and selection pressure in mitochondrial protein-coding genes of the available 31 thrips mitogenomes (24 Terebrantia + 7 Tubulifera) were performed. Phylogenetic analysis showed a sister relationship of T. parvispinus to the clade (T. florum + T. hawaiiensis). Phylogenetic analyses formed the monophyly of subfamilies Phlaeothripinae and Idolothripinae within the family Phlaeothripidae (Suborder Tubulifera). Low nucleotide diversity was indicative of reversal of strand asymmetry in the Tubulifera. Neutrality analysis showed that directional mutation plays a major role in shaping codon usage bias in both suborders. Principal component analysis indicated distinct codon usage patterns in each suborder. Our data suggested weaker selection constrains on Terebrantia than in the Tubulifera. More tubuliferan mitogenomes are required to resolve previous classification hypotheses and elucidate genome evolution in these two suborders.


Assuntos
Genoma Mitocondrial , Tisanópteros , Animais , Tisanópteros/genética , Filogenia , Sequência de Bases , Nucleotídeos
3.
PeerJ ; 10: e13868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36042857

RESUMO

Background and Objective: Invasive thrips, Thrips parvispinus Karny recently reported in India, causing a widespread severe infestation in more than 0.4 million ha of chilli (Capsicum annum L.) growing areas. This species is native to Thailand and most prevalent in other South East Asian countries. Large scale cultivation of the major host plants (chilli and papaya), and favourable climatic conditions in India and other countries similar to native range of Thrips parvispinus expected to favour its further spread and establishment to new areas. Materials and Methods: The present study was undertaken to confirm invasive thrips species identity through both morphological and molecular approaches and predict its potential invasion using the maximum entropy (MaxEnt) algorithm. Results: The model predicted species range in respect of discrimination of suitable and unsuitable areas for its occurrence both in current and future climatic scenarios. The model provided a good fit for species distribution with a high value of area under the curve (0.957). The jackknife test indicated annual mean temperature and precipitation were found to be the most important bioclimatic variable in determining the distribution of T. parvispinus. High suitability areas were predicted in the countries wherever its occurrence was reported with high discrimination ability of suitable and unsuitable areas. Key distinguishing morphological characters of T. parvispinus were illustrated through high-resolution scanning electron microscopic images. Conclusion: The identity of the thrips causing wide spread damage in chilli confirmed through morphological and molecular approaches. Key identifying characters were described through high resolution scanning electron microscopic images for accurate identification of the species. MaxEnt model identified high suitability regions for the potential establishment of T. parvispinus in India and other parts of the world. This study facilitates forecasting of further spread and also suggests imposing strict domestic quarantine measures to curtail its establishment in the new areas.


Assuntos
Tisanópteros , Animais , Mudança Climática , Espécies Introduzidas , Previsões , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA