Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.003
Filtrar
1.
Front Cell Dev Biol ; 12: 1279723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086660

RESUMO

Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.

2.
Mol Nutr Food Res ; : e2400230, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086054

RESUMO

Tight junction disruption can lead to pathogenesis of various diseases without therapeutic strategy to recover intestinal barrier integrity. The main objective of this study is to demonstrate the effect of Solanum melongena L. extract (SMLE) on intestinal tight junction recovery and its underlying mechanism. Intestinal barrier function is attenuated by Ca2+ depletion. SMLE treatment increased TER value across T84 cell monolayers. Permeability assay reveals that Ca2+ depletion promotes 4-kDa FITC-dextran permeability, but not 70-kDa FITC-dextran. SMLE suppresses the rate of 4-kDa FITC-dextran permeability, indicating that SMLE inhibits paracellular leak pathway permeability. SMLE-mediated TER increase and leak pathway suppression are abolished by neither calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor nor AMP-activated protein kinase (AMPK) inhibitor. Furthermore, mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) inhibitors have no effects on SMLE-mediated TER increase and leak pathway suppression. Interestingly, SMLE is unable to enhance TER value and diminish leak pathway permeability in T84 cell monolayers pre-treated with sirtuin-1 (SIRT-1) inhibitor. Immunofluorescence staining reveals that SMLE enhances re-assembly of tight junction proteins, including occludin and ZO-1 to intercellular space but this effect is abolished by SIRT-1 inhibitor. These data suggest that SMLE promotes intestinal tight junction re-assembly via SIRT-1-dependent manner.

3.
ACS Nano ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096293

RESUMO

A general platform for the safe and effective oral delivery of biologics would revolutionize the administration of protein-based drugs, improving access for patients and lowering the financial burden on the health-care industry. Because of their dimensions and physiochemical properties, nanomaterials stand as promising vehicles for navigating the complex and challenging environment in the gastrointestinal (GI) tract. Recent developments have led to materials that protect protein drugs from degradation and enable controlled release in the small intestine, the site of absorption for most proteins. Yet, once present in the small intestine, the protein must transit through the secreted mucus and epithelial cells of the intestinal mucosa into systemic circulation, a process that remains a bottleneck for nanomaterial-based delivery. One attractive pathway through the intestinal mucosa is the paracellular route, which avoids cell trafficking and other degradative processes in the interior of cells. Direct flux between cells is regulated by epithelial tight junctions (TJs) that seal the paracellular space and prevent protein flux. Here, we describe a smart nanoparticle system that directly and transiently disrupts TJs for improved protein delivery, an unrealized goal to-date. We take inspiration from enteropathogenic bacteria that adhere to intestinal epithelia and secrete inhibitors that block TJ interactions in the local environment. To mimic these natural mechanisms, we engineer nanoparticles (EnteroPatho NPs) that attach to the epithelial glycocalyx and release TJ modulators in response to the intestinal pH. We show that EnteroPatho NPs lead to TJ disruption and paracellular protein delivery, giving rise to a general platform for oral delivery.

4.
Toxicol Lett ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39096942

RESUMO

Diacylglycerol O-acyltransferase 1 (DGAT1) is a key enzyme for fat absorption step in the enterocytes. We previously reported that DGAT1 inhibition increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in corn oil-loaded rats via protein kinase C (PKC) activation. In the present study, we investigated the mechanism with respect to the morphology and permeability of the small intestine, focusing on PKC function, and found that shortening of the intestinal villi and a decrease in the number of tdT-mediated dUTP-biotin nick-end labeling-positive cells in the tips of the villi were observed in the jejunum of DGAT1 inhibitor-treated rats loaded with corn oil. These results suggested that the tips of the villi were shed into the intestinal lumen. Next, fluorescein isothiocyanate-dextran, 110kDa (FD-110) was administered intraduodenally to DGAT1 inhibitor-treated rats loaded with corn oil and we found that plasma FD-110 concentrations increased, indicating that the intestinal permeability to molecules with a molecular weight of approximately 110,000 (e.g., ALT and AST) increased. Taken together, the present results suggested that DGAT1 inhibitor-treatment in combination with corn oil causes ALT and AST to leak from the enterocytes into the blood by shedding the tips of the intestinal villi and increasing intestinal permeability.

5.
Theriogenology ; 227: 120-127, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39059123

RESUMO

Although bitter receptors, known as Tas2Rs, have been identified in the testes and mature sperm, their expression in testicular Sertoli cells (SCs) and their role in recognizing harmful substances to maintain the immune microenvironment remain unknown. To explore their potential function in spermatogenesis, this study utilized TM4 cells and discovered the high expression of the bitter receptor Tas2R143 in the cells. Interestingly, when the Tas2R143 gene was knocked down for 24 and 48 h, there was a significant downregulation (P < 0.05) in the expression of tight junction proteins (occludin and ZO-1) and NF-κB. Additionally, Western blot results demonstrated that the siRNA-133+NF-κB co-treatment group displayed a significant downregulation (P < 0.05) in the expression of occludin and ZO-1 compared to both the siRNA-133 transfection group and the NF-κB inhibitors treatment group. These findings suggest that Tas2R143 likely regulates the expression of occludin and ZO-1 through the NF-κB signaling pathway and provides a theoretical basis for studying the regulatory mechanism of bitter receptors in the reproductive system, aiming to attract attention to the chemical perception mechanism of spermatogenesis.

6.
CNS Neurosci Ther ; 30(7): e14853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034473

RESUMO

AIMS: Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION: A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION: This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.


Assuntos
Barreira Hematoencefálica , Hemorragia Cerebral , Humanos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/imunologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/metabolismo , Animais
7.
Front Physiol ; 15: 1380713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040079

RESUMO

The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.

8.
Mol Nutr Food Res ; : e2400191, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021322

RESUMO

SCOPE: High-fat diet (HFD) consumption causes obesity and gut dysbiosis which induces kidney injury. It has been reported that prebiotics improve gut dysbiosis and insulin sensitivity and decelerate the progression of kidney disease. This study investigates the impact of fructooligosaccharides (FOS) on renoprotection and the prevention of gut dysbiosis and intestinal barrier injury in obese rats. METHODS AND RESULTS: Wistar rats are treated with HFD for 16 weeks. Then, the HFD fed rats (HF) are given FOS 1 g day-1 (HFFOS1), 2 g day-1 (HFFOS2), or metformin 30 mg kg-1 day-1 (HFMET), by intragastric feeding for 8 weeks. Blood, urine, feces, kidney, and intestine are collected to determine the metabolic changes, gut dysbiosis, and the expression of proteins involved in kidney and intestinal injury. FOS can attenuate insulin resistance and hypercholesterolemia concomitant with the inhibition of renal inflammation, oxidative stress, fibrosis, and apoptosis, which are related to the deceleration of the overexpression of renal Toll-like receptor 4 (TLR4) and NADPH oxidase (NOX4). Moreover, FOS shows a greater efficacy than metformin in the reduction of the intestinal injury and loss of tight junction proteins induced by HFD. CONCLUSION: FOS may be used as a supplement for therapeutic purposes in an obese condition to improve intestinal integrity and prevent renal complications.

9.
J Anim Sci ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022917

RESUMO

The study investigated the effects of dietary probiotic of dual-strain Bacillus subtilis (BS) on production performance, intestinal barrier parameters, and microbiota in broiler chickens. In a randomized trial, male broiler chickens were allocated into three groups, a control group (basal diet), BS300 group (basal diet with 300 mg/kg BS), and BS500 group (basal diet with 500 mg/kg BS). The inclusion of 500 mg/kg BS significantly reduced the feed conversion ratio by 4.55% during the starting phase. Both 300 and 500 mg/kg BS supplementation increased jejunal villus height (by 17.89% and 24.8%, respectively) significantly and decreased jejunal crypt depth (by 27.2% and 31.9%, respectively) on day 21. The addition of 500 mg/kg BS significantly elevated the gene expression of occludin on day 35. Moreover, BS supplementation enhanced cytokine levels and immunoglobulins in both serum and jejunal mucosa. Microbial analysis indicated that BS increased the abundance of potential probiotics (Sutterella) and butyrate-producing bacteria (Lachnoclostridium, Tyzzerella, Anaerostipes, Clostridium_sensu_stricto_13, Prevotellaceae_NK3B31_group, and Lachnospiraceae_UCG-010). The abundances of Anaerostipes and Sutterella, are significantly correlated with growth performance and immune function. In conclusion, dietary supplementation with BS improved the growth performance, potentially through the regulation of immunity, intestinal barrier function, and microbiota in broilers. Notably, 500 mg/kg of BS exhibited more benefits for broilers compared to the 300 mg/kg.

10.
Pathol Res Pract ; 260: 155448, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39004000

RESUMO

BACKGROUND AND AIM: Tight junctions maintain gut homeostasis by forming a physical barrier that protects the gut from invasion by microbiota. Cldn-7 is an important component involved in this protection, but the relationship between Cldn-7, intestinal inflammation, and gut microbiota has not been clarified. Here, we hypothesize that Cldn-7 depletion affects intestinal inflammation by altering the gut microbiota. METHODS: Based on the induced intestinal condition of Cldn-7 knockout mice (Cldn7fl/fl;villin-CreaERT2), we established the intestinal flora depletion model and colitis model by antibiotic drinking and feeding with dextran sodium sulfate (DSS). The environment of Cldn-7 gene deletion mice was changed by co-housing experiment. AB-PAS staining and Muc2 were used to detect the effect of co-housing and Cldn-7 deficiency on the mucus layer after flora depletion. qRT-PCR was used to detect the expression of intestinal inflammatory factors and AMPs in mice. Feces were collected and proportions of microbiota were analyzed by 16 S rRNA amplicon sequencing. RESULTS: Mice in the co-housing experiment had altered intestinal microbiota, including diversity, composition, and functional prediction, compared to controls. Intestinal inflammation was restored to some extent following altered intestinal microbiota. The intestinal inflammation caused by Cldn-7 deficiency and susceptibility to DSS could be reduced after antibiotic administration compared to controls, in terms of phenotype, pathological changes, inflammatory factors, mucus barrier, and expression of AMPs. CONCLUSIONS: In analyses of intestinal tissues, colitis induction, and gut microbiota in mice with intestinal disruption of Cldn-7, we found this protein to prevent intestinal inflammation by regulating the gut microbiota. Cldn-7might therefore be an important mediator of host-microbiome interactions. Our research has revealed that Cldn-7 plays an indispensable role in maintaining intestinal homeostasis by regulating the gut microbiota and impacting intestinal inflammation. These findings provide new insights into the pathogenesis of ulcerative colitis.

11.
Heliyon ; 10(12): e33077, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994107

RESUMO

Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-ß (Aß) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aß, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 765-773, 2024 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-39014955

RESUMO

OBJECTIVES: To investigate the role and mechanism of epithelial-mesenchymal transition (EMT) in a rat model of bronchopulmonary dysplasia (BPD). METHODS: The experiment consisted of two parts. (1) Forty-eight preterm rats were randomly divided into a normoxia group and a hyperoxia group, with 24 rats in each group. The hyperoxia group was exposed to 85% oxygen to establish a BPD model, while the normoxia group was kept in room air at normal pressure. Lung tissue samples were collected on days 1, 4, 7, and 14 of the experiment. (2) Rat type II alveolar epithelial cells (RLE-6TN) were randomly divided into a normoxia group (cultured in air) and a hyperoxia group (cultured in 95% oxygen), and cell samples were collected 12, 24, and 48 hours after hyperoxia exposure. Hematoxylin-eosin staining was used to observe alveolarization in preterm rat lungs, and immunofluorescence was used to detect the co-localization of surfactant protein C (SPC) and α-smooth muscle actin (α-SMA) in preterm rat lung tissue and RLE-6TN cells. Quantitative real-time polymerase chain reaction and protein immunoblotting were used to detect the expression levels of EMT-related mRNA and proteins in preterm rat lung tissue and RLE-6TN cells. RESULTS: (1) Compared with the normoxia group, the hyperoxia group showed blocked alveolarization and simplified alveolar structure after 7 days of hyperoxia exposure. Co-localization of SPC and α-SMA was observed in lung tissue, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 7 and 14 days of hyperoxia exposure compared to the normoxia group. In the hyperoxia group, the mRNA and protein levels of TGF-ß1, α-SMA, and N-cadherin were increased, while the mRNA and protein levels of SPC and E-cadherin were decreased at 7 and 14 days of hyperoxia exposure compared to the normoxia group (P<0.05). (2) SPC and α-SMA was observed in RLE-6TN cells, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 24 and 48 hours of hyperoxia exposure compared to the normoxia group. Compared to the normoxia group, the mRNA and protein levels of SPC and E-cadherin in the hyperoxia group were decreased, while the mRNA and protein levels of TGF-ß1, α-SMA, and E-cadherin in the hyperoxia group increased at 48 hours of hyperoxia exposure (P<0.05). CONCLUSIONS: EMT disrupts the tight connections between alveolar epithelial cells in a preterm rat model of BPD, leading to simplified alveolar structure and abnormal development, and is involved in the development of BPD. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 765-773.


Assuntos
Displasia Broncopulmonar , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Hiperóxia , Ratos Sprague-Dawley , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/metabolismo , Hiperóxia/complicações , Ratos , Actinas/análise , Actinas/metabolismo , Actinas/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/análise , Animais Recém-Nascidos , Feminino , Proteína C Associada a Surfactante Pulmonar/genética , Pulmão/patologia , Pulmão/metabolismo , Masculino
13.
Artigo em Inglês | MEDLINE | ID: mdl-39016044

RESUMO

The weaning phase in piglets causes significant physiological stress, disrupts intestinal integrity and reduces productivity, necessitating strategies to improve intestinal health and nutrient absorption. While current research highlights the role of diet in mitigating these adverse effects, identifying effective dietary supplements remains a challenge. This study evaluated the effects of Hermetia illucens (HI) larvae meal and astaxanthin (AST) on the intestinal histology of weaned piglets. In a controlled experiment, 48 weaned piglets were divided into six groups and received varying levels of HI larval meal (2.5% and 5%) and AST in their diets. The methodology involved comprehensive histological examinations of the small intestine, assessing absorption area, villi elongation, crypt depth, goblet cells, enterocytes and expression of ileal tight junction (TJ) proteins. The study found that HI larval meal significantly improved nutrient absorption in the jejunum and ileum (p < 0.001), thereby enhancing feed conversion. AST supplementation increased the number of enterocytes (p < 0.001). Both HI larval meal and AST positively affected intestinal morphology and function, increasing muscularis muscle mass and villi elongation (p < 0.001 and p < 0.05, respectively). The 2.5% HI meal improved the villi length to crypt depth ratio and slightly increased the goblet cell count (both p < 0.05). Ki-67 antibody analysis showed increased cell proliferation in the duodenal and jejunal crypts, particularly with the 2.5% HI meal (p < 0.001). Insect meal did not affect TJ protein expression, indicating that it had no effect on intestinal permeability. These findings suggest that HI larval meal and AST can enhance the intestinal wellness and productivity of weaned piglets.

14.
Nutrients ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999898

RESUMO

Alpinia officinarum Hance is rich in carbohydrates and is flavored by natives. The polysaccharide fraction 30 is purified from the rhizome of A. officinarum Hance (AOP30) and shows excellent immunoregulatory ability when administered to regulate immunity. However, the effect of AOP30 on the intestinal epithelial barrier is not well understood. Therefore, the aim of this study is to investigate the protective effect of AOP30 on the intestinal epithelial barrier using a lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction model and further explore its underlying mechanisms. Cytotoxicity, transepithelial electrical resistance (TEER) values, and Fluorescein isothiocyanate (FITC)-dextran flux are measured. Simultaneously, the protein and mRNA levels of tight junction (TJ) proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, are determined using Western blotting and reverse-transcription quantitative polymerase chain reaction methods, respectively. The results indicate that AOP30 restores the LPS-induced decrease in the TEER value and cell viability. Furthermore, it increases the mRNA and protein expression of ZO-1, Occludin, and Claudin-1. Notably, ZO-1 is the primary tight junction protein altered in response to LPS-induced intestinal epithelial dysfunction. Additionally, AOP30 downregulates the production of TNFα via the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, the findings of this study indicate that AOP30 can be developed as a functional food ingredient or natural therapeutic agent for addressing intestinal epithelial barrier dysfunction. It sheds light on the role of AOP30 in improving intestinal epithelial function.


Assuntos
Alpinia , Mucosa Intestinal , Lipopolissacarídeos , NF-kappa B , Polissacarídeos , Rizoma , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Rizoma/química , Polissacarídeos/farmacologia , Células CACO-2 , Alpinia/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
15.
EMBO Rep ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039298

RESUMO

Transmigration of circulating monocytes from the bloodstream to tissues represents an early hallmark of inflammation. This process plays a pivotal role during viral neuroinvasion, encephalitis, and HIV-associated neurocognitive disorders. How monocytes locally unzip endothelial tight junction-associated proteins (TJAPs), without perturbing impermeability, to reach the central nervous system remains poorly understood. Here, we show that human circulating monocytes express the TJAP Occludin (OCLN) to promote transmigration through endothelial cells. We found that human monocytic OCLN (hmOCLN) clusters at monocyte-endothelium interface, while modulation of hmOCLN expression significantly impacts monocyte transmigration. Furthermore, we designed OCLN-derived peptides targeting its extracellular loops (EL) and show that transmigration of treated monocytes is inhibited in vitro and in zebrafish embryos, while preserving vascular integrity. Monocyte transmigration toward the brain is an important process for HIV neuroinvasion and we found that the OCLN-derived peptides significantly inhibit HIV dissemination to cerebral organoids. In conclusion, our study identifies an important role for monocytic OCLN during transmigration and provides a proof-of-concept for the development of mitigation strategies to prevent monocyte infiltration and viral neuroinvasion.

16.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3340-3347, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041097

RESUMO

This study aims to explore the protective effect of Albizia chinensis saponin on ethanol-induced acute gastric ulcer in rats and elucidate its mechanisms. SD rats were deprived of water for 24 hours before the experiment. The control group and model group were administered water by gavage, and the positive drug group received rabeprazole sodium solution(40 mg·kg~(-1)) by gavage. The experimental groups were given different doses of Albizia chinensis saponin solution(3, 10, and 30 mg·kg~(-1)). After 30 minutes, the control group received 1.5 mL of water by gavage, while the other groups were administered an equal volume of 95% ethanol for modeling. After six hours, the rats were killed by cervical dislocation, and the stomachs were collected. The ulcer area was measured, and the ulcer index was calculated. Hematoxylin-eosin(HE) staining was performed to assess histopathological changes in gastric tissue. Periodic acid-Schiff(PAS) staining was used to evaluate the distribution of gastric mucosal surface mucus. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of phospholipids and aminohexose in the gastric mucosa. Western blot was performed to determine the expression levels of the bicarbonate transporter, matrix metalloproteinase, and tight junction-associated proteins in gastric tissue. Immunohistochemistry(IHC) staining was conducted to quantify the number of positive cells for secreted mucin and tight junction-associated proteins. The results showed that the gastric tissue surface of rats in the control group was smooth without ulceration, and the gastric ulcer index of rats in the model group was 35±11. Albizia chinensis saponin at doses of 3, 10, and 30 mg·kg~(-1) resulted in inhibition rates of gastric ulcer of 46%(P<0.01), 85%(P<0.001), and 100%(P<0.001), respectively. Severe disruption of gastric mucosal structure and absence of the mucus layer were observed in the model group. Compared with the model group, the Albizia chinensis saponin group showed intact gastric mucosal surface mucus layer, significantly increased levels of phospholipids and aminohexose in the mucus, increased number of MUC5AC positive cells, and upregulated expression levels of the bicarbonate transporter SLC26A3 and CFTR. It also showed decreased phosphorylation of JNK and c-Jun, reduced expression levels of MMP-8, elevated expression of TIMP-1, and increased expression levels of Occludin and ZO-1. In conclusion, Albizia chinensis saponin enhances the function of the mucus-bicarbonate barrier by upregulating the content of MUC5AC, phospholipids, and aminohexose and increasing the expression levels of the bicarbonate transporter SLC26A3 and CFTR. Moreover, Albizia chinensis saponin exerts its protective effects on gastric ulcers by inhibiting the JNK signaling pathway to prevent excessive activation of MMP-8, thereby reducing the degradation of Occludin and ZO-1 and enhancing the mucosal barrier function. In summary, Albizia chinensis saponin exerts its anti-gastric ulcer effects by simultaneously enhancing the mucus barrier and the mucosal barrier.


Assuntos
Albizzia , Medicamentos de Ervas Chinesas , Etanol , Mucosa Gástrica , Muco , Ratos Sprague-Dawley , Saponinas , Úlcera Gástrica , Animais , Saponinas/farmacologia , Ratos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Etanol/efeitos adversos , Masculino , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/prevenção & controle , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Albizzia/química , Muco/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Humanos
17.
Vitam Horm ; 126: 97-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39029978

RESUMO

Sonic hedgehog (Shh) is a secreted glycopeptide belonging to the hedgehog family that is essential for morphogenesis during embryonic development. The Shh signal is mediated by two membrane proteins, Patched-1 (Ptch-1) and Smoothened (Smo), following the activation of transcription factors such as Gli. Shh decreases the permeability of the blood-brain barrier (BBB) and plays a key role in its function. In the damaged brain, BBB function is remarkably disrupted. The BBB disruption causes brain edema and neuroinflammation resulting from the extravasation of serum components and the infiltration of inflammatory cells into the cerebral parenchyma. Multiple studies have suggested that astrocyte is a source of Shh and that astrocytic Shh production is increased in the damaged brain. In various experimental animal models of acute brain injury, Shh or Shh signal activators alleviate BBB disruption by increasing tight junction proteins in endothelial cells. Furthermore, activation of astrocytic Shh signaling reduces reactive astrogliosis, neuroinflammation, and increases the production of vascular protective factors, which alleviates BBB disruption in the damaged brain. These findings suggest that astrocytic Shh and Shh signaling protect BBB function in the damaged brain and that target drugs for Shh signaling are expected to be novel therapeutic drugs for acute brain injuries.


Assuntos
Astrócitos , Barreira Hematoencefálica , Proteínas Hedgehog , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Barreira Hematoencefálica/metabolismo , Astrócitos/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
18.
J Cell Mol Med ; 28(14): e18534, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031467

RESUMO

Intestinal dysbiosis is believed to play a role in the development of necrotizing enterocolitis (NEC). The efficacy of JNK-inhibitory peptide (CPJIP) in treating NEC was assessed. Treatment with CPJIP led to a notable reduction in p-JNK expression in IEC-6 cells and NEC mice. Following LPS stimulation, the expression of RNA and protein of claudin-1, claudin-3, claudin-4 and occludin was significantly decreased, with this decrease being reversed by CPJIP administration, except for claudin-3, which remained consistent in NEC mice. Moreover, the expression levels of the inflammatory factors TNF-α, IL-1ß and IL-6 were markedly elevated, a phenomenon that was effectively mitigated by the addition of CPJIP in both IEC-6 cells and NEC mice. CPJIP administration resulted in improved survival rates, ameliorated microscopic intestinal mucosal injury, and increased the total length of the intestines and colon in NEC mice. Additionally, CPJIP treatment led to a reduction in serum concentrations of FD-4, D-lactate and DAO. Furthermore, our results revealed that CPJIP effectively inhibited intestinal cell apoptosis and promoted cell proliferation in the intestine. This study represents the first documentation of CPJIP's ability to enhance the expression of tight junction components, suppress inflammatory responses, and rescue intestinal cell fate by inhibiting JNK activation, ultimately mitigating intestinal severity. These findings suggest that CPJIP has the potential to serve as a promising candidate for the treatment of NEC.


Assuntos
Apoptose , Enterocolite Necrosante , Inflamação , Mucosa Intestinal , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Apoptose/efeitos dos fármacos , Peptídeos/farmacologia , Modelos Animais de Doenças , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos , Função da Barreira Intestinal
19.
J Cell Mol Med ; 28(14): e18545, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031471

RESUMO

Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.


Assuntos
Hipóxia Celular , Proteínas de Junções Íntimas , Junções Íntimas , Urotélio , Humanos , Urotélio/metabolismo , Urotélio/patologia , Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Linhagem Celular , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Impedância Elétrica , Regulação da Expressão Gênica
20.
Front Vet Sci ; 11: 1393434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988982

RESUMO

Introduction: Yeast peptides have garnered attention as valuable nutritional modifiers due to their potential health benefits. However, the precise mechanisms underlying their effects remain elusive. This study aims to explore the potential of yeast peptides, when added to diets, to mitigate lipopolysaccharide (LPS)-induced intestinal damage and microbiota alterations in rabbits. Methods: A total of 160 35-day-old Hyla line rabbits (0.96 ± 0.06 kg) were randomly assigned to 4 groups. These groups constituted a 2 × 2 factorial arrangement: basal diet (CON), 100 mg/kg yeast peptide diet (YP), LPS challenge + basal diet (LPS), LPS challenge +100 mg/kg yeast peptide diet (L-YP). The experiment spanned 35 days, encompassing a 7-day pre-feeding period and a 28-day formal trial. Results: The results indicated that yeast peptides mitigated the intestinal barrier damage induced by LPS, as evidenced by a significant reduction in serum Diamine oxidase and D-lactic acid levels in rabbits in the L-YP group compared to the LPS group (p < 0.05). Furthermore, in the jejunum, the L-YP group exhibited a significantly higher villus height compared to the LPS group (p < 0.05). In comparison to the LPS group, the L-YP rabbits significantly upregulated the expression of Claudin-1, Occludin-1 and ZO-1 in the jejunum (p < 0.05). Compared with the CON group, the YP group significantly reduced the levels of rabbit jejunal inflammatory cytokines (TNF-α, IL-1ß and IL-6) and decreased the relative mRNA expression of jejunal signaling pathway-associated inflammatory factors such as TLR4, MyD88, NF-κB and IL-1ß (p < 0.05). Additionally, notable changes in the hindgut also included the concentration of short-chain fatty acids (SCFA) of the YP group was significantly higher than that of the CON group (p < 0.05). 16S RNA sequencing revealed a substantial impact of yeast peptides on the composition of the cecal microbiota. Correlation analyses indicated potential associations of specific gut microbiota with jejunal inflammatory factors, tight junction proteins, and SCFA. Conclusion: In conclusion, yeast peptides have shown promise in mitigating LPS-induced intestinal barrier damage in rabbits through their anti-inflammatory effects, modulation of the gut microbiota, and maintenance of intestinal tight junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...