Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904080

RESUMO

Time-on-task effect is a common consequence of long-term cognitive demand work, which reflects reduced behavioral performance and increases the risk of accidents. Neurofeedback is a neuromodulation method that can guide individuals to regulate their brain activity and manifest as changes in related symptoms and cognitive behaviors. This study aimed to examine the effects of functional near-infrared spectroscopy-based neurofeedback training on time-on-task effects and sustained cognitive performance. A randomized, single-blind, sham-controlled study was performed: 17 participants received feedback signals of their own dorsolateral prefrontal cortex activity (neurofeedback group), and 16 participants received feedback signals of dorsolateral prefrontal cortex activity from the neurofeedback group (sham-neurofeedback group). All participants received 5 neurofeedback training sessions and completed 2 sustained cognitive tasks, including a 2-back task and a psychomotor vigilance task, to evaluate behavioral performance changes following neurofeedback training. Results showed that neurofeedback relative to the sham-neurofeedback group exhibited increased dorsolateral prefrontal cortex activation, increased accuracy in the 2-back task, and decreased mean response time in the psychomotor vigilance task after neurofeedback training. In addition, the neurofeedback group showed slower decline performance during the sustained 2-back task after neurofeedback training compared with sham-neurofeedback group. These findings demonstrate that neurofeedback training could regulate time-on-task effects on difficult task and enhance performance on sustained cognitive tasks by increasing dorsolateral prefrontal cortex activity.


Assuntos
Cognição , Neurorretroalimentação , Desempenho Psicomotor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Adulto Jovem , Método Simples-Cego , Cognição/fisiologia , Adulto , Desempenho Psicomotor/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Tempo de Reação/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Psychol Sport Exerc ; 74: 102660, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734281

RESUMO

Acute mental fatigue, characterized by a transient decline in cognitive efficiency during or following prolonged cognitive tasks, can be managed through adaptive effort deployment. In response to mental fatigue, individuals can employ two main behavioral patterns: engaging a compensatory effort to limit performance decrements, or disengaging effort, leading to performance deterioration. This study investigated the behavioral pattern used by participants in mental fatigue conditions. Fifty participants underwent a sequential-task protocol with counterbalanced sessions who took place in two separate sessions: a 30-min incongruent Stroop task (fatiguing session) or a 30-min documentary viewing task (control session), followed by a time-to-exhaustion (TTE) handgrip task at 13 % of maximal voluntary contraction. Psychophysiological measures included the preejection period, heart rate variability, blood pressure, and respiration. Behavioral results showed deteriorated TTE handgrip performance after the Stroop task compared to after the documentary viewing task. During the Stroop task participants were more conservative and prioritized accuracy over speed. Self-reported fatigue was greater after the Stroop task. Psychophysiological data revealed a gradual decrease in sympathetic activity over time in both tasks, with the Stroop task showing a more pronounced decrease. Taken together, these findings suggest a disengagement of effort for a large proportion of participants (49 %) that could be partly attributed to a habituation to the demands of the Stroop task. This study illustrates the interplay of behavioral patterns of effort investment in the context of mental fatigue and underscores the role of disengagement as a dominant response to this phenomenon among healthy participants.

3.
Hum Brain Mapp ; 45(1): e26549, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224538

RESUMO

The ability to identify and resolve conflicts between standard, well-trained behaviors and behaviors required by the current context is an essential feature of cognitive control. To date, no consensus has been reached on the brain mechanisms involved in exerting such control: while some studies identified diverse patterns of activity across different conflicts, other studies reported common resources across conflict tasks or even across simple tasks devoid of the conflict component. The latter reports attributed the entire activity observed in the presence of conflict to longer time spent on the task (i.e., to the so-called time-on-task effects). Here, we used an extended Multi-Source Interference Task (MSIT) which combines Simon and flanker types of interference to determine shared and conflict-specific mechanisms of conflict resolution in fMRI and their separability from the time-on-task effects. Large portions of the activity in the dorsal attention network and decreases of activity in the default mode network were shared across the tasks and scaled in parallel with increasing reaction times. Importantly, the activity in the sensory and sensorimotor cortices, as well as in the posterior medial frontal cortex (pMFC) - a key region implicated in conflict processing - could not be exhaustively explained by the time-on-task effects.


Assuntos
Encéfalo , Conflito Psicológico , Humanos , Encéfalo/diagnóstico por imagem , Tempo de Reação , Lobo Frontal , Mapeamento Encefálico
4.
Biol Psychol ; 185: 108727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056707

RESUMO

Fatigue-specific changes in the autonomic nervous system are often assumed to underlie the development of mental fatigue caused by prolonged cognitive tasks (i.e. Time-on-Task). Therefore, several previous studies have chosen to investigate the Time-on-Task related changes in heart rate variability (HRV). However, previous studies have used many different HRV indices, and their results often show inconsistencies. The present study, therefore, systematically reviewed previous empirical HRV studies with healthy individuals and in which mental fatigue is induced by prolonged cognitive tasks. Articles relevant to the objectives were systematically searched and selected by applying the PRISMA guidelines. We screened 360 records found on 4 databases and found that 19 studies were eligible for full review in accordance with the inclusion criteria. In general, all studies reviewed (with the exception of two studies) found significant changes in HRV with increasing Time-on-Task, suggesting that HRV is a reliable autonomic marker for Time-on-Task induced fatigue. The most conclusive HRV indices that showed a consistent Time-on-Task effect were the low frequency component of HRV and the time domain indices, particularly the root mean square of successive differences. Time-on-Task typically induced an increasing trend in both type of measures.


Assuntos
Sistema Nervoso Autônomo , Frequência Cardíaca , Fadiga Mental , Humanos , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia
5.
Brain Res ; 1822: 148618, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820849

RESUMO

Our minds tend to wander, sometimes with little control. Despite this phenomenon, that can affect our ability to perform everyday tasks gaining much interest, relatively little is understood about the actual time course of MW across an experimental task. With this in mind, we collated data from two previously reported studies investigating the effect of auditory beat stimulation on MW. Taking experience sampling probes intermittently dispersed throughout a sustained-attention-to-response task (SART), we re-evaluated responses to theta monaural beat stimulation, as well as to two control conditions (silence (headphones only) and a sine wave control tone). The experience sampling probes were binned into shorter intervals of approximately five minutes duration, chronologically as they appeared within the paradigm. Experience sampling probes assayed whether MW had occurred, with or without meta-awareness, and lastly in which temporal orientation (past/present/future). By applying this somewhat temporally better resolved approach, we were able to examine the time course of attentional fluctuations related to MW during the execution of the SART, as well as interactions arising from the auditory beat stimulation. As anticipated, MW increased during task execution, most prominently at the beginning of the experiment. We also observed that levels of meta-awareness declined over time. Moreover, the temporal evolution of meta-awareness and past-orientation appeared to depend on the stimulation condition. These data demonstrate that time-on-task is a crucial factor in measuring MW, during the performance of an attentional task.


Assuntos
Atenção , Atenção/fisiologia , Estimulação Acústica
6.
Front Psychol ; 14: 1286022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034298

RESUMO

Introduction: The present study examined the influence of emotional states when learning with self-generated drawings. It was assumed that learners in a positive emotional state would profit from learning with self-generated drawings, while learners in a negative emotional state would not profit from this strategy to the same extent but would rather benefit through reading. Methods: University students (N = 123) were randomly assigned to one of four conditions resulting from a 2 × 2 design with self-generated drawings (yes vs. no) and emotional state (positive vs. negative) as independent variables. Results: Results showed that learning with self-generated drawings was more beneficial for a following transfer test than learning without drawings - irrespective of a learner's emotional state. The quality of self-generated drawings predicted the learning outcomes of the retention and pictorial test, but not for transfer. Discussion: Missing effects of emotional states and the missing interaction with self-generated drawings will be discussed.

7.
Biol Futur ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889452

RESUMO

Neuroimaging studies investigating the association between mental fatigue (henceforth fatigue) and brain physiology have identified many brain regions that may underly the cognitive changes induced by fatigue. These studies focused on the functional changes and functional connectivity of the brain relating to fatigue. The structural correlates of fatigue, however, have received little attention. To fill this gap, this study explored the associations of fatigue with cortical thickness of frontal and parietal regions. In addition, we aimed to explore the associations between reward-induced improvement in performance and neuroanatomical markers in fatigued individuals. Thirty-nine healthy volunteers performed the psychomotor vigilance task for 15 min (i.e., 3 time-on-task blocks of 5 min) out of scanner; followed by an additional rewarded block of the task lasting 5 min. Baseline high-resolution T1-weigthed MR images were obtained. Reaction time increased with time-on-task but got faster again in the rewarded block. Participants' subjective fatigue increased during task performance. In addition, we found that higher increase in subjective mental fatigue was associated with the cortical thickness of the following areas: bilateral precuneus, right precentral gyrus; right pars triangularis and left superior frontal gyrus. Our results suggest that individual differences in subjective mental fatigue may be explained by differences in the degree of cortical thickness of areas that are associated with motor processes, executive functions, intrinsic alertness and are parts of the default mode network.

8.
J Intell ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233332

RESUMO

The time on task (ToT) effect describes the relationship of the time spent on a cognitive task and the probability of successful task completion. The effect has been shown to vary in size and direction across tests and even within tests, depending on the test taker and item characteristics. Specifically, investing more time has a positive effect on response accuracy for difficult items and low ability test-takers, but a negative effect for easy items and high ability test-takers. The present study sought to test the replicability of this result pattern of the ToT effect across samples independently drawn from the same populations of persons and items. Furthermore, its generalizability was tested in terms of differential correlations across ability tests. To this end, ToT effects were estimated for three different reasoning tests and one test measuring natural sciences knowledge in 10 comparable subsamples with a total N = 2640. Results for the subsamples were highly similar, demonstrating that ToT effects are estimated with sufficient reliability. Generally, faster answers tended to be more accurate, suggesting a relatively effortless processing style. However, with increasing item difficulty and decreasing person ability, the effect flipped to the opposite direction, i.e., higher accuracy with longer processing times. The within-task moderation of the ToT effect can be reconciled with an account on effortful processing or cognitive load. By contrast, the generalizability of the ToT effect across different tests was only moderate. Cross-test relations were stronger in relative terms if performance in the respective tasks was more strongly related. This suggests that individual differences in the ToT effect depend on test characteristics such as their reliabilities but also similarities and differences of their processing requirements.

9.
Appl Ergon ; 111: 103995, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207523

RESUMO

Previous studies suggest that performance in visual inspection and typical vigilance tasks depend on time on task and task load. European regulation mandates that security officers (screeners) take a break or change tasks after 20 min of X-ray baggage screening. However, longer screening durations could reduce staffing challenges. We investigated the effects of time on task and task load on visual inspection performance in a four-month field study with screeners. At an international airport, 22 screeners inspected X-ray images of cabin baggage for up to 60 min, while a control group (N = 19) screened for 20 min. Hit rate remained stable for low and average task loads. However, when the task load was high, the screeners compensated by speeding up X-ray image inspection at the expense of the hit rate over time on task. Our results support the dynamic-allocation resource theory. Moreover, extending the permitted screening duration to 30 or 40 min should be considered.


Assuntos
Aeroportos , Medidas de Segurança , Humanos , Raios X , Radiografia , Fatores de Tempo
10.
Sleep Adv ; 4(1): zpac045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193288

RESUMO

Study Objectives: The psychomotor vigilance test (PVT), a 10-min one-choice reaction time task with random response-stimulus intervals (RSIs) between 2 and 10 s, is highly sensitive to behavioral alertness deficits due to sleep loss. To investigate what drives the performance deficits, we conducted an in-laboratory total sleep deprivation (TSD) study and compared performance on the PVT to performance on a 10-min high-density PVT (HD-PVT) with increased stimulus density and truncated RSI range between 2 and 5 s. We hypothesized that the HD-PVT would show greater impairments from TSD than the standard PVT. Methods: n = 86 healthy adults were randomized (2:1 ratio) to 38 h of TSD (n = 56) or corresponding well-rested control (n = 30). The HD-PVT was administered when subjects had been awake for 34 h (TSD group) or 10 h (control group). Performance on the HD-PVT was compared to performance on the standard PVTs administered 1 h earlier and 1 h later. Results: The HD-PVT yielded approximately 60% more trials than the standard PVT. The HD-PVT had faster mean response times (RTs) and equivalent lapses (RTs > 500 ms) compared to the standard PVT, with no differences between the TSD effects on mean RT and lapses between tasks. Further, the HD-PVT had a dampened time-on-task effect in both the TSD and control conditions. Conclusions: Contrary to expectation, the HD-PVT did not show greater performance impairment during TSD, indicating that stimulus density and RSI range are not primary drivers of the PVT's responsiveness to sleep loss.

11.
Int J Psychophysiol ; 183: 92-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455720

RESUMO

Vigilance refers to the ability to maintain attention and to remain alert to stimuli in prolonged and monotonous tasks. Vigilance decrement describes the decline in performance in the course of such sustained attention tasks. Time-related alterations in attention have been found to be associated with changes in EEG. We investigated these time-on-task effects on the basis of changes in the conventional EEG spectral bands with the aim of finding a compound measure of vigilance. 148 healthy adults performed a cued Go/NoGo task that lasted approximately 21 min. Behavioural performance was examined by comparing the number of errors in the first and last quarters of the task using paired t-test. EEG data were epoched per trial, and time-on-task effects were modelled by using multiple linear regression, with frequency spectra band power values as independent variables and trial number as the dependent variable. Behavioural performance decreased in terms of omission errors only. Performance of the models, expressed by predicted R-squared, was between 0.10 and 0.27, depending on the particular task condition. The time-on-task EEG spectral changes were characterized by broad changes in the alpha and frontal changes in the beta and gamma bands. We were able to identify a set of EEG spectral features that predict time-on-task. Our output is considered to be a measure of vigilance, reflecting the allocation of mental resources for the maintenance of attention.


Assuntos
Atenção , Vigília , Adulto , Humanos , Tempo de Reação/fisiologia , Atenção/fisiologia , Sinais (Psicologia) , Eletroencefalografia
12.
Front Psychol ; 13: 998393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389536

RESUMO

Mental fatigue can be studied by using either the time-on-task protocol or the sequential task protocol. In the time-on-task protocol, participants perform a long and effortful task and a decrease in performance in this task is generally observed over time. In the sequential task protocol, a first effortful or control task is followed by a second effortful task. The performance in the second task is generally worse after the effortful task than after the control task. The principal aim of the present experiment is to examine the relationship between these two decrements in performance while concomitantly using a sequential task protocol and assessing the performance of the first effortful task as a function of time-on-task. We expect a positive correlation between these two decrements in performance. A total of 83 participants performed a 30-min fatiguing mental task (i.e., a modified Stroop task) or a control task followed by a time-to-exhaustion handgrip task. As expected, this protocol combining the time-on-task and sequential task protocols allowed us to observe (1) a decrease in performance over time during the Stroop task, (2) a worst performance in the handgrip task after the Stroop task by comparison to the control task, (3) a positive correlation between these two effects. The decrease in performance during the Stroop task also correlated with the subjective measures of boredom and fatigue, whereas the detrimental effect observed in the handgrip task did not. Our findings suggest that the two fatigue-related phenomena share a common mechanism but are not completely equivalent.

13.
Front Hum Neurosci ; 16: 960286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188173

RESUMO

Conventional wisdom suggests mid-task rest as a potential approach to relieve the time-on-task (TOT) effect while accumulating evidence indicated that acute exercise might also effectively restore mental fatigue. However, few studies have explored the neural mechanism underlying these different break types, and the results were scattered. This study provided one of the first looks at how different types of fatigue-recovery break exerted influence on the cognitive processes by evaluating the corresponding behavioral improvement and neural response (EEG power spectral) in a sustained attention task. Specifically, 19 participants performed three sessions of psychomotor vigilance tasks (PVT), with one session including a continuous 30-min PVT while the other two sessions additionally inserted a 15-min mid-task cycling and rest break, respectively. For behavioral performance, both types of break could restore objective vigilance transiently, while subjective feeling was only maintained after mid-task rest. Moreover, divergent patterns of EEG change were observed during post-break improvement. In detail, relative theta decreased and delta increased immediately after mid-task exercise, while decreased delta was found near the end of the rest-inserted task. Meanwhile, theta and delta could serve as neurological indicators to predict the reaction time change for exercise and rest intervention, respectively. In sum, our findings provided novel evidence to demonstrate divergent neural patterns following the mid-task exercise and rest intervention to counter TOT effects, which might lead to new insights into the nascent field of neuroergonomics for mental fatigue restoration.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35954585

RESUMO

Saccadic eye movements are directed to the objects of interests and enable high-resolution visual images in the exploration of the visual world. There is a trial-to-trial variation in saccade dynamics even in a simple task, possibly attributed to arousal fluctuations. Previous studies have showed that an increase of fatigue level over time, also known as time-on-task, can be revealed by saccade peak velocity. In addition, pupil size, controlled by the autonomic nervous system, has long been used as an arousal index. However, limited research has been done with regards to the relation between pupil size and saccade behavior in the context of trial-to-trial variation. To investigate fatigue and arousal effects on saccadic and pupillary responses, we used bright and emotional stimuli to evoke pupillary responses in tasks requiring reactive and voluntary saccade generation. Decreased voluntary saccade peak velocities, reduced tonic pupil size and phasic pupillary responses were observed as time-on-task increased. Moreover, tonic pupil size affected saccade latency and dynamics, with steeper saccade main sequence slope as tonic pupil size increased. In summary, saccade dynamics and tonic pupil size were sensitive to fatigue and arousal level, together providing valuable information for the understanding of human behavior.


Assuntos
Movimentos Sacádicos , Pupila Tônica , Nível de Alerta/fisiologia , Fadiga , Humanos , Estimulação Luminosa , Tempo de Reação/fisiologia
15.
Brain Sci ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884719

RESUMO

Anodal transcranial direct current stimulation (a-tDCS) aims to hone motor skills and improve the quality of life. However, the non-repeatability of experimental results and the inconsistency of research conclusions have become a common phenomenon, which may be due to the imprecision of the experimental protocol, great variability of the participant characteristics within the group, and the irregularities of quantitative indicators. The aim of this study systematically summarised and analysed the effect of a-tDCS on lower extremity sensorimotor control under different experimental conditions. This narrative review was performed following the PRISMA guidelines until June 2022 in Web of Science, PubMed, Science Direct, Google Scholar, and Scopus. The findings of the present study demonstrated that a-tDCS can effectively improve the capabilities of lower extremity sensorimotor control, particularly in gait speed and time-on-task. Thus, a-tDCS can be used as an effective ergogenic technology to facilitate physical performance. In-depth and rigorous experimental protocol with larger sample sizes and combining brain imaging technology to explore the mechanism have a profound impact on the development of tDCS.

16.
Sleep ; 45(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867054

RESUMO

Sleep deprivation and time of day have been shown to play a critical role in decreasing ability to sustain attention, such as when driving long distances. However, a gap in the literature exists regarding external factors, such as workload. One way to examine workload is via modulating time on task. This study investigated the combined effect of sleep deprivation, time of day, and time on task as a workload factor on driving performance. Twenty-one participants (18-34 years, 10 females) underwent 62 h of sleep deprivation within a controlled laboratory environment. Participants received an 8-h baseline and 9.5-h recovery sleep. Every 8 h, participants completed a Psychomotor Vigilance Task (PVT), Karolinska Sleepiness Scale (KSS), 30-min monotonous driving task and NASA-Task Load Index (TLX). Driving variables examined were lane deviation, number of crashes, speed deviation and time outside the safe zone. Workload was measured by comparing two 15-min loops of the driving track. A mixed model ANOVA revealed significant main effects of day and time of day on all driving performance measures (p < .001). There was a significant main effect of workload on lane deviation (p < .05), indicating that a longer time on task resulted in greater lane deviation. A significant main effect of day (p < .001) but not time of day for the NASA-TLX, PVT and KSS was found. Time on task has a significant further impact on driving performance and should be considered alongside sleep deprivation and time of day when implementing strategies for long-distance driving.


Assuntos
Condução de Veículo , Privação do Sono , Atenção , Feminino , Humanos , Desempenho Psicomotor , Sono , Vigília , Carga de Trabalho
17.
Front Aging Neurosci ; 14: 901203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754969

RESUMO

Fatigue is a highly prevalent and debilitating non-motor symptom in Parkinson's disease (PD), yet its' neural mechanisms remain poorly understood. Here we combined arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) with a sustained mental workload paradigm to examine the neural correlates of fatigue and time-on-task effects in PD patients. Twenty-one PD patients were scanned at rest and during continuous performance of a 20-min psychomotor vigilance test (PVT). Time-on-task effects were measured by the reaction time changes during the PVT and by self-reported fatigue ratings before and after the PVT. PD subjects demonstrated significant time-on-task effects, including progressively slower reaction time on the PVT and increased post-PVT fatigue ratings compared to pre-PVT. Higher levels of general fatigue were associated with larger increases in mental fatigue ratings after the PVT. ASL imaging data showed increased CBF in the right middle frontal gyrus (MFG), bilateral occipital cortex, and right cerebellum during the PVT compared to rest, and decreased CBF in the right MFG at post-task rest compared to pre-task rest. The magnitude of regional CBF changes in the right MFG and right inferior parietal lobe correlated with subjective fatigue rating increases after the PVT task. These results demonstrate the utility of continuous PVT paradigm for future studies of fatigue and cognitive fatigability in patients, and support the key role of the fronto-parietal attention network in mediating fatigue in PD.

18.
Rev Neurosci ; 33(8): 889-917, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35700454

RESUMO

Sustained performance of cognitive tasks could lead to the development of state mental fatigue characterized by subjective sensation of mental weariness and decrease in cognitive performance. In addition to the occupational hazards associated with mental fatigue, it can also affect physical performance reducing endurance, balance, and sport-specific technical skills. Similarly, mental fatigue is a common symptom in certain chronic health conditions such as multiple sclerosis affecting quality of life of the patients. Despite its widely acknowledged negative impact, the neural mechanisms underlining this phenomenon are still not fully understood. We conducted a systematic review and activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies investigating the effect of mental fatigue due to time-on-task (TOT) on brain activity to elucidate the possible underlying mechanisms. Studies were included if they examined change in brain activity induced by experimental mental fatigue (TOT effect) or investigated the relationship between brain activity and subjective mental fatigue due to TOT. A total of 33 studies met the review's inclusion criteria, 13 of which were included in meta-analyses. Results of the meta-analyses revealed a decrease in activity with TOT in brain areas that constitute the cognitive control network. Additionally, an increased activity with TOT, as well as negative relationship with subjective mental fatigue was found in parts of the default mode network of the brain. The changes in cognitive control and the default mode networks of the brain due to state mental fatigue observed in this study were discussed in relation to the existing theories of mental fatigue.


Assuntos
Imageamento por Ressonância Magnética , Qualidade de Vida , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética/métodos , Fadiga Mental , Encéfalo/fisiologia
19.
Nat Sci Sleep ; 14: 457-473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321359

RESUMO

Introduction: It is widely admitted that both total sleep deprivation (TSD) and extended task engagement (Time-On-Task, TOT) induce a cognitive fatigue state in healthy subjects. Even if EEG theta activity and adenosine both increase with cognitive fatigue, it remains unclear if these modifications are common mechanisms for both sustained attention and executive processes. Methods: We performed a double-blind counter-balanced (placebo (PCBO) and caffeine (CAF) - 2×2.5 mg/kg/24 h)) study on 24 healthy subjects (33.7 ± 5.9 y). Subjects participated in an experimental protocol including an habituation/training day followed by a baseline day (D0 and D1) and a total sleep deprivation (TSD) day beginning on D1 at 23:00 until D2 at 21:00. Subjects performed the psychomotor vigilance test (PVT) assessing sustained attention, followed by the executive Go-NoGo inhibition task and the 2-NBack working memory task at 09:15 on D1 and D2. Results: We showed differential contributions of TSD and TOT on deficits in sustained attention and both executive processes. An alleviating effect of caffeine intake is only observed on sustained attention deficits related to TSD and not at all on TOT effect. The caffeine dose slows down the triggering of sustained attention deficits related to TOT effect. Discussion: These results suggest that sustained attention deficits induced by TSD rely on the adenosinergic mechanism whereas TOT effect observed for both sustained attention and executive would not.

20.
Cogn Sci ; 46(2): e13093, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35122312

RESUMO

Prior research suggests that visual features of the classroom environment (e.g., charts and posters) are potential sources of distraction hindering children's ability to maintain attention to instructional activities and reducing learning gains in a laboratory classroom. However, prior research only examined short-term exposure to elements of classroom décor, and it remains unknown whether children habituate to the visual environment with repeated exposure. In study 1, we explored experimentally the possibility that children may habituate to the visual environment if the visual displays are static. We measured kindergarten children's patterns of attention allocation in a decorated classroom environment over a 2-week period and compared the percentage of time children spent off-task to a baseline condition in which the classroom environment was streamlined (i.e., charts, posters, and manipulatives were removed). The findings indicate that with more prolonged exposure to a static visual environment, partial habitation effects were observed: Attention to the environment declined at the end of the exposure period compared to the beginning of the study; however, the environment remained a significant source of off-task behavior even after 2 weeks of exposure. In study 2, we extend this work by conducting a longitudinal observation of six primary classrooms in which we measured children's patterns of attention allocation in real classrooms for 15 weeks to investigate whether increasing familiarity with the classroom décor would influence attention toward the visual environment. No evidence of habituation was observed in genuine classrooms in study 2. Potential implications for classroom design and future directions are discussed.


Assuntos
Aprendizagem , Instituições Acadêmicas , Criança , Pré-Escolar , Humanos , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...