Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Nucl Med Technol ; 52(2): 121-131, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627013

RESUMO

In cardiac nuclear medicine examinations, absorption in the body is the main factor in the degradation of the image quality. The Chang and external source methods were used to correct for absorption in the body. However, fundamental studies on attenuation correction for electrocardiogram (ECG)-synchronized CT imaging have not been performed. Therefore, we developed and improved an ECG-synchronized cardiac dynamic phantom and investigated the synchronized time-phase-gated attenuation correction (STPGAC) method using ECG-synchronized SPECT and CT images of the same time phase. Methods: As a basic study, SPECT was performed using synchronized time-phase-gated (STPG) SPECT and non-phase-gated (NPG) SPECT. The attenuation-corrected images were, first, CT images with the same time phase as the ECG waveform of the gated SPECT acquisition (with CT images with the ECG waveform of the CT acquisition as the reference); second, CT images with asynchronous ECG; third, CT images of the 75% region; and fourth, CT images of the 40% region. Results: In the analysis of cardiac function in the phantom experiment, left ventricle ejection fraction (heart rate, 11.5%-13.4%; myocardial wall, 49.8%-55.7%) in the CT images was compared with that in the STPGAC method (heart rate, 11.5%-13.3%; myocardial wall, 49.6%-55.5%), which was closer in value to that of the STPGAC method. In the phantom polar map segment analyses, none of the images showed variability (F (10,10) < 0.5, P = 0.05). All images were correlated (r = 0.824-1.00). Conclusion: In this study, we investigated the STPGAC method using a SPECT/CT system. The STPGAC method showed similar values of cardiac function analysis to the CT images, suggesting that the STPGAC method accurately reconstructed the distribution of blood flow in the myocardial region. However, the target area for attenuation correction of the heart region was smaller than that of the whole body, and changing the gated SPECT conditions and attenuation-corrected images did not affect myocardial blood flow analysis.


Assuntos
Eletrocardiografia , Coração , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Emissão de Fóton Único de Sincronização Cardíaca/métodos
2.
Fluids Barriers CNS ; 21(1): 25, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454518

RESUMO

BACKGROUND: Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS: Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS: RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS: RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.


Assuntos
Ventrículos Cerebrais , Imageamento por Ressonância Magnética , Humanos , Ventrículos Cerebrais/fisiologia , Aqueduto do Mesencéfalo/diagnóstico por imagem , Aqueduto do Mesencéfalo/fisiologia , Respiração , Pressão , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia
3.
Childs Nerv Syst ; 40(5): 1377-1388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38206441

RESUMO

PURPOSE: In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation. This study aims to establish reference values of CSF and venous flow in healthy subjects using RT-PC MRI and to determine their age dependency. METHODS: RT-PC MRI was performed in 44 healthy volunteers (20 females, age 5-40 years). CSF flow was quantified at the aqueduct (Aqd), cervical (C3) and lumbar (L3) spinal levels. Venous flow measurements comprised epidural veins, internal jugular veins and inferior vena cava. Parameters analyzed were peak velocity, net flow, pulsatility, and area of region of interest (ROI). STATISTICAL TESTS: linear regression, student's t-test and analysis of variance (ANOVA). RESULTS: In adults volunteers, no significant changes in flow parameters were observed. In contrast, pediatric subjects exhibited a significant age-dependent decrease of CSF net flow and pulsatility in Aqd, C3 and L3. Several venous flow parameters decreased significantly over age at C3 and changed more variably at L3. CONCLUSION: Flow parameters varies depending on anatomical location and age. We established changes of brain and spinal fluid dynamics over an age range from 5-40 years. The application of RT-PC MRI in clinical care may improve our understanding of CSF flow pathology in individual patients.


Assuntos
Ventrículos Cerebrais , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Pré-Escolar , Aqueduto do Mesencéfalo , Encéfalo/irrigação sanguínea , Hemodinâmica , Líquido Cefalorraquidiano/fisiologia
4.
ACS Nano ; 17(21): 21850-21864, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37874620

RESUMO

The scalable development of an environmentally adaptive and homogeneous Li+ supplementary route remains a formidable challenge for the existing prelithiation technologies, restricting the full potential of high-capacity anodes. In this study, we present a moisture-tolerant interfacial prelithiation approach through casting a hydrophobic poly(vinylidene-co-hexafluoropropylene) membrane blended with a deep-lithiated alloy (Li22Si5@C/PVDF-HFP) onto Si based anodes. This strategy could not only extend to various high-capacity anode systems (SiOx@C, hard carbon) but also align with industrial roll-to-roll assembly processes. By carefully adjusting the thickness of the prelithiation layer, the densely packed Si@C electrode (4.5 mAh cm-2) exhibits significantly improved initial Coulombic efficiency until a close-to-unit value, as well as extreme moisture tolerance (60% relative humidity). Furthermore, it achieves more than 10-fold enhancement of ionic conductivity across the electrode. As pairing the prelithiated Si@C anode with the LiNi0.8Co0.1Mn0.1O2 cathode, the 2 Ah pouch-format prototype balances an energy density of ∼371 Wh kg-1 and an extreme power output of 2450 W kg-1 as well as 83.8% capacity retention for 1000 cycles. The combined operando phase tracking and spatial arrangement analysis of the intermediate alloy elucidate that the enhanced Li utilization derives from the gradient stress dissipation model upon a spontaneous Li+ redistribution process.

5.
Entropy (Basel) ; 25(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37895529

RESUMO

Quantum communication systems are susceptible to various perturbations and drifts arising from the operational environment, with phase drift being a crucial challenge. In this paper, we propose an efficient real-time phase drift compensation scheme in which only existing data from the quantum communication process is used to establish a stable closed-loop control subsystem for phase tracking. This scheme ensures the continuous operation of transmission by tracking and compensating for phase drift in the phase-encoding quantum communication system. The experimental results demonstrate the effectiveness and feasibility of the proposed scheme with an average quantum bit error rate of 1.60% and a standard deviation of 0.0583% for 16 h of continuous operation.

6.
Magn Reson Med ; 90(5): 1932-1948, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37448116

RESUMO

PURPOSE: To improve the image reconstruction for prospective motion correction (PMC) of simultaneous multislice (SMS) EPI of the brain, an update of receiver phase and resampling of coil sensitivities are proposed and evaluated. METHODS: A camera-based system was used to track head motion (3 translations and 3 rotations) and dynamically update the scan position and orientation. We derived the change in receiver phase associated with a shifted field of view (FOV) and applied it in real-time to each k-space line of the EPI readout trains. Second, for the SMS reconstruction, we adapted resampled coil sensitivity profiles reflecting the movement of slices. Single-shot gradient-echo SMS-EPI scans were performed in phantoms and human subjects for validation. RESULTS: Brain SMS-EPI scans in the presence of motion with PMC and no phase correction for scan plane shift showed noticeable artifacts. These artifacts were visually and quantitatively attenuated when corrections were enabled. Correcting misaligned coil sensitivity maps improved the temporal SNR (tSNR) of time series by 24% (p = 0.0007) for scans with large movements (up to ˜35 mm and 30°). Correcting the receiver phase improved the tSNR of a scan with minimal head movement by 50% from 50 to 75 for a United Kingdom biobank protocol. CONCLUSION: Reconstruction-induced motion artifacts in single-shot SMS-EPI scans acquired with PMC can be removed by dynamically adjusting the receiver phase of each line across EPI readout trains and updating coil sensitivity profiles during reconstruction. The method may be a valuable tool for SMS-EPI scans in the presence of subject motion.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Humanos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Movimentos da Cabeça , Movimento (Física) , Artefatos
7.
J Magn Reson Imaging ; 58(3): 763-771, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36468562

RESUMO

BACKGROUND: Hemodynamic assessment of left atrial (LA) flow using phase contrast MRI provides insight into thromboembolic risk in atrial fibrillation (AF). However, conventional flow imaging techniques are averaged over many heartbeats. PURPOSE: To evaluate beat-to-beat variability and LA hemodynamics in patients with AF using real time phase contrast (RTPC) MRI. STUDY TYPE: Prospective. SUBJECTS: Thirty-five patients with history of AF (68 ± 10 years, nine female), 10 healthy controls (57 ± 19 years, four female). FIELD STRENGTH/SEQUENCE: 5T, 2D RTPC with through-plane velocity-encoded gradient echo sequence and 4D flow MRI with three-directional velocity-encoded gradient echo sequence. ASSESSMENT: RTPC was continuously acquired for a mid-LA slice in all subjects. 4D flow data were interpolated at the RTPC location and normally projected for comparison with RTPC. RR intervals extracted from RTPC were used to calculate heart rate variability (HRV = interquartile range over median × 100%). Patients were classified into low (<9.7%) and high (>9.7%) HRV groups. LA peak/mean velocity and stasis (%velocities < 5.8 cm/sec) were calculated from segmented 2D images. Variability in RTPC flow metrics was quantified by coefficient of variation (CV) over all cycles. STATISTICAL TESTS: Pearson's correlation coefficient (r), Bland-Altman analysis, Kruskal-Wallis test. A P value < 0.05 was considered statistically significant. RESULTS: RTPC and 4D flow measurements were strongly/significantly correlated for all hemodynamic parameters (R2  = 0.75-0.83) in controls. Twenty-four patients had low HRV (mean = 4 ± 2%) and 11 patients had high HRV (27 ± 9%). In patients, increased HRV was significantly correlated with CV of peak velocity (r = 0.67), mean velocity (r = 0.51), and stasis (r = 0.41). A stepwise decrease in peak/mean velocity and increase in stasis was observed when comparing controls vs. low HRV vs. high HRV groups. Mean velocity and stasis differences were significant for control vs. high HRV groups. CONCLUSIONS: RTPC may be suitable for assessing the impact of HRV on hemodynamics and provide insight for AF management in highly arrhythmic patients. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Fibrilação Atrial , Humanos , Feminino , Fibrilação Atrial/diagnóstico por imagem , Estudos Prospectivos , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica , Imageamento por Ressonância Magnética/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35682368

RESUMO

Foot stiffness is a modulator of sprint performance. However, studies that analysed foot angular velocities using inertial measuring units (IMU) for different events within the sprint contact time phase are scarce. The aim of this study was to investigate the relationship between angular foot step-by-step kinematics and sprint performance during a 50-metre sprint in experienced male and female sprinters. Foot kinematics were measured using IMU devices integrated with a 3-axis gyroscope and a laser gun. The main findings were that men performed faster sprints (6.11 ± 0.35 s vs. 6.77 ± 0.24 s), but the maximal angular foot kinematics were the same between sexes. Maximal angular velocities increased until strides 6-7, where they stabilized. Time from touchdown to maximal dorsiflexion velocity did not change between strides, whereas time from maximal dorsiflexion velocity to toe off decreased until stride 6. Plantarflexion velocities, especially in toe off, showed the greatest associations with sprint times, whereas maximal dorsiflexion velocity presented no association with sprint times. The time from dorsiflexion velocity to toe off from stride 7 onwards determined the sprint performance and was shorter for faster sprinters. The analysis of these variables provides essential information to athletes and coaches that may help to enhance the quality and efficiency of the sprint cycle by giving detailed information on each single stride of the sprint.


Assuntos
Corrida , Atletas , Fenômenos Biomecânicos , Feminino , , Humanos , Masculino
9.
Magn Reson Med ; 86(2): 804-819, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33720465

RESUMO

PURPOSE: To develop and evaluate a real-time phase contrast (PC) MRI protocol via complex-difference deep learning (DL) framework. METHODS: DL used two 3D U-nets to separately filter aliasing artifact from radial real-time velocity-compensated and complex-difference images. U-nets were trained with synthetic real-time PC generated from electrocardiograph (ECG) -gated, breath-hold, segmented PC (ECG-gated segmented PC) acquired at the ascending aorta of 510 patients. In 21 patients, free-breathing, ungated real-time (acceleration rate = 28.8) and ECG-gated segmented (acceleration rate = 2) PC were prospectively acquired at the ascending aorta. Hemodynamic parameters (cardiac output [CO], stroke volume [SV], and mean velocity at peak systole [peak mean velocity]) were measured for ECG-gated segmented and DL-filtered synthetic real-time PC and compared using Bland-Altman and linear regression analyses. Additionally, hemodynamic parameters were quantified from DL-filtered, compressed-sensing (CS) -reconstructed, and gridding reconstructed prospective real-time PC and compared to ECG-gated segmented PC. RESULTS: Synthetic real-time PC with DL showed strong correlation (R > 0.98) and good agreement with ECG-gated segmented PC for quantified hemodynamic parameters (mean-difference: CO = -0.3 L/min, SV = -4.3 mL, peak mean velocity = -2.3 cm/s). On average, DL required 0.39 s/frame to filter prospective real-time PC, which was 4.6-fold faster than CS. Compared to CS, DL showed superior correlation, tighter limits of agreement (LOAs), better bias for peak mean velocity, and worse bias for CO and SV. Compared to gridding, DL showed similar correlation, tighter LOAs for CO and SV, similar bias for CO, and worse bias for SV and peak mean velocity. CONCLUSION: The complex-difference DL framework accelerated real-time PC-MRI by nearly 28-fold, enabling rapid free-running real-time assessment of flow hemodynamics.


Assuntos
Aprendizado Profundo , Velocidade do Fluxo Sanguíneo , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Respiração , Volume Sistólico
10.
J Biomed Opt ; 25(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33319525

RESUMO

SIGNIFICANCE: Differential interference contrast (DIC) microscopes allow noninvasive in vivo observation of transparent microstructures in tissue without the use of fluorescent dyes or genetic modification. We show how to modify a DIC microscope to measure the sample phase distribution accurately and in real-time even deep inside sample tissue. AIM: Our aim is to improve the DIC microscope's phase measurement to remove the phase bias that occurs in the presence of strong scattering. APPROACH: A quarter-wave plate was added in front of the polarization camera, allowing a modified phase calculation to incorporate all four polarization orientation angles (0 deg, 45 deg, 90 deg, and 135 deg) captured simultaneously by the polarization camera, followed by deconvolution. RESULTS: We confirm that the proposed method reduces phase measurement error in the presence of scattering and demonstrate the method using in vivo imaging of a beating heart inside a medaka egg and the whole-body blood circulation in a young medaka fish. CONCLUSIONS: Modifying a polarization-camera DIC microscope with a quarter-wave plate allows users to image deep inside samples without phase bias due to scattering effects.


Assuntos
Microscopia , Animais , Microscopia de Interferência
11.
Naturwissenschaften ; 106(11-12): 56, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31654280

RESUMO

The complex agonistic repertoire between male lobster cockroaches (Nauphoeta cinerea) makes this species an excellent model for aggression studies. During the establishment of dominance hierarchies, 3-hydroxy-2-butanone (3H-2B) functions as a suppression pheromone, keeping the rivals in a submissive state. In the present study, we evaluated the release of 3H-2B by dominant individuals across four different time phases within the 24-h photoperiod, i.e., early scotophase (ES), late scotophase (LS), early photophase (EP), and late photophase (LP). For each time phase, we collected volatile pheromones during a 60-min first-encounter fight to measure the level of released 3H-2B. Subsequently, the amount of 3H-2B remaining in the sternal glands of dominant and subordinate individuals was measured and compared to socially naïve male controls. Release of 3H-2B was relatively high during ES or LP first-encounter fights, compared to LS or EP encounters. The attack duration and aggressive posture intensity in dominant males were positively correlated with the amount of 3H-2B release in all four phases. A similar statistical distribution was found between the amount of 3H-2B released by dominant males and the amount of 3H-2B in the sternal glands of naïve male sternal during LS, EP, and LP. However, during ES, the statistical distribution of 3H-2B released by the dominant was significantly greater than the distribution of 3H-2B content in socially naïve male sternal glands. The observed phase-dependence of 3H-2B release might be due to variations in 3H-2B biosynthesis or the scotophase-specific behavior of naïve males, wherein an aggressive posture is spontaneously adopted with concomitant 3H-2B release.


Assuntos
Baratas/fisiologia , Feromônios/metabolismo , Fotoperíodo , Animais , Baratas/metabolismo , Luz , Masculino
12.
Front Neurosci ; 12: 877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559641

RESUMO

Non-invasive brain stimulation techniques are entering widespread use for the investigation and treatment of a range of neurological and neuropsychiatric disorders. However, most current techniques are 'open-loop', without feedback from target brain region activity; this limitation could contribute to heterogeneous effects seen for nominally 'inhibitory' and 'excitatory' protocols across individuals. More potent and consistent effects may ensue from closed-loop and, in particular, phase-locked brain stimulation. In this work, a closed-loop brain stimulation system is introduced that can analyze EEG data in real-time, provide a forecast of the phase of an underlying brain rhythm of interest, and control pulsed transcranial electromagnetic stimulation to deliver pulses at a specific phase of the target frequency band. The technique was implemented using readily available equipment such as a basic EEG system, a low-cost Arduino board and MATLAB scripts. The phase-locked brain stimulation method was tested in 5 healthy volunteers and its phase-locking performance evaluated at 0, 90, 180, and 270 degree phases in theta and alpha frequency bands. On average phase locking values of 0.55° ± 0.11° and 0.52° ± 0.14° and error angles of 11° ± 11° and 3.3° ± 18° were achieved for theta and alpha stimulation, respectively. Despite the low-cost hardware implementation, signal processing time generated a phase delay of only 3.8° for theta and 57° for alpha stimulation, both readily accommodated in the pulse trigger algorithm. This work lays the methodological steps for achieving phase-locked brain stimulation for brief-pulse transcranial electrical stimulation (tES) and repetitive transcranial magnetic stimulation (rTMS), facilitating further research on the effect of stimulation phase for these techniques.

13.
J Magn Reson Imaging ; 46(2): 431-439, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28152239

RESUMO

PURPOSE: To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). MATERIALS AND METHODS: To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. RESULTS: In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. CONCLUSION: RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439.


Assuntos
Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microscopia de Contraste de Fase , Respiração , Adulto , Líquido Cefalorraquidiano , Simulação por Computador , Meios de Contraste , Feminino , Forame Magno , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Fluxo Pulsátil , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Software , Espaço Subaracnóideo , Decúbito Dorsal , Adulto Jovem
14.
Magn Reson Med ; 72(1): 202-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23922308

RESUMO

PURPOSE: Thoracic pulse wave velocity (PWV) variation due to modulated trans-mural pressure (TMP) may indicate mechanical properties of the aorta. Our aim was to measure beat-to-beat thoracic PWV and TMP to observe its normal variation during respiratory maneuvers. METHODS: We validated PWV measurements from a real-time velocity projection MRI scan in a pulsatile phantom. A volunteer study showed inter-scan repeatability of steady-state PWV, and observed PWV variation when performing Mueller and Valsalva maneuvers. Synchronized to the real-time projection velocity data, TMP was measured using a mouth piece and pressure sensor arrangement monitoring the intra-thoracic pressure and a single arterial pressure measurement. RESULTS: In the phantom, beat-to-beat PWV derived from real-time projection (5.33 ± 0.32 m s(-1) ) agreed well with experimentally derived PWV using ultrasound probes (5.72 ± 0.50 m s(-1) ). The within-subject PWV variation between scans was 0.28 m s(-1) . Volunteers' PWVs increased during Mueller maneuver (TMP increase of 14.67 ± 10.69 mmHg) by 32% (P < 0.001), and during Valsalva maneuver (TMP decrease of TMP = 17.01 ± 12.91 mmHg), PWV response were inconsistent with an average increase of 14% (P < 0.05). CONCLUSION: Gating TMP to beat-to-beat PWV allows insight into how aortic stiffness varies with strain. However, quantifying nonlinear arterial stiffness requires real-time arterial pressure measurement.


Assuntos
Aorta Torácica/anatomia & histologia , Aorta Torácica/fisiologia , Imageamento por Ressonância Magnética/métodos , Manobra de Valsalva , Adulto , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Voluntários Saudáveis , Hemorreologia , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Fluxo Pulsátil , Fluxo Sanguíneo Regional
15.
Int J Clin Exp Med ; 6(5): 404-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724161

RESUMO

UNLABELLED: The immunosuppressive agent cyclosporin A has been proven to reduce the rejection rate and prolong the survival time of transplanted hearts. But some reports showed that cyclosporine A did not completely suppress the rejection. We performed in vitro studies to model a time course to observe the effect of cyclosporin A. METHODS: The experiment was divided into a control group (group I), an antigen group (group II), a cyclosporin A group (group III) and an antigen + cyclosporin A group (group IV). After transplantation, at 2 h, 6 h, 12 h, 24 h, 48 h and 72 h, leukocyte molecules were monitored. RESULTS: The expression of IL-2R peaked at 12 h in group II and at 6 h in group III. There was a gradual decline in the expression of the P59 gene in group I, positive expression at 2 h and between 12 h and 24 h in group II, in group IV, there was a decrease at 48 h. The expression of the CD4 gene was lowest at 2 h in group I and at 6 h in group II. CD4 expression then quickly increased to a maximum at 48 h in group III, at 2 h in group IV. There was a minimal expression was reached at 12 h in group I and IV and at 6 h in group III in the expression of the CD8 gene. CONCLUSIONS: Alloantigen induced lymphocytes to release IL-2R and P59 and stimulated the induction of the CD4 gene' transcription for 6 h. Cyclosporin A stimulated the release of IL-2R for 2 h. These results provide an in vitro basis for describing the time phases of rejection inhibited by cyclosporin A.

16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-578777

RESUMO

Objective:To study the special values of the time phases in liver enhancement scanning with multi-slices helical CT.Methods:The relationship between the image features and the time phases was retrospectively analyzed with 143 cases that underwent liver enhancement scanning with multi-slices helical CT.Results:The time phases of liver enhancement scanning included hepatic artery earlier phase,hepatic artery metaphase,hepatic artery advanced phase,hepatic portal venous phase,hepatic portal venous-hepatic venous phase,hepatic venous phase and lag period.Conclusion:The different image features have the special value in the different time phases when liver was scanned with multi-slices helical CT.They ought to be differently treated and used according to the different objectives of liver enhancement scanning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...