Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.263
Filtrar
1.
BMC Cancer ; 24(1): 824, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987740

RESUMO

BACKGROUND: Colorectal cancer (CRC) is ranked as the third most commonly diagnosed cancer and the third cause of cancer related deaths. CRC is greatly attributed to genetic and epigenetic mutations and immune dysregulation. Tumor aberrant expression of Toll-like Receptors (TLRs) can contribute to tumorigenesis. Recent studies suggested that microRNAs act as direct ligands of TLRs altering their expression and signaling pathways. AIM: To prove our concept that specific miRNA mimics may act as antagonists of their specific toll like receptors inhibiting their expression that could limit the release of pro-inflammatory and pro-tumorigenic cytokines leading to apoptosis of tumor cells. METHODS: From public microarray databases, we retrieved TLRs and miRNAs related to CRC followed by in silico docking of the selected miRNA ligands into the TLRs. Clinical validation after co-immunoprecipitation of TLRs and their interacting miRNA ligands was done. Expression of TLRs 1, 7,8 was determined by ELISA while miRNAs was measured by RT-qPCR. In addition, microRNA mimics of the down regulated miRNAs were transfected into human CRC cell lines. RESULTS: Our data demonstrate that TLRs 1, 7, 8 are up regulated in CRC compared to controls. Further, three miRNAs (-122, -29b and -15b) are relatively downregulated, while 4 miRNAs (-202, miRNA-98, -21 and -let7i) are upregulated in CRC patients compared to those with benign tumor and healthy controls. Transfection of down regulated miRNA mimics into CRC cell lines resulted in a significant reduction of the number and viability of cells as well as down regulating the expression of TLRs 1, 7 and 8 with ultimate reduction of downstream effector IL6 protein, suggesting that these miRNAs are negative regulators of carcinogenesis. CONCLUSION: MicroRNAs could act as antagonistic ligands of TLRs limiting the inflammatory tumor microenvironment.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Receptor 8 Toll-Like , Microambiente Tumoral , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microambiente Tumoral/genética , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Linhagem Celular Tumoral , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Feminino , Masculino , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais
2.
Sci Rep ; 14(1): 16274, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009614

RESUMO

The α-helical antimicrobial peptide Kn2-7 enhances the activation of mouse macrophage-like RAW264.7 induced by DNA containing unmethylated cytosine-guanine motifs (CpG DNA). This enhancement is related to increased cellular uptake of DNA by Kn2-7, but the relevant properties of Kn2-7 are unknown. Physicochemical property analysis revealed that Kn2-7 has high amphipathicity. In contrast, the α-helical antimicrobial peptide L5, which increases the cellular uptake of CpG DNA but does not enhance CpG DNA-induced activation, has low amphipathicity. Kn2-7 derivatives with decreased amphipathicity but the same amino acid composition as Kn2-7 did not enhance CpG DNA-induced activation. On the other hand, L5 derivatives with high amphipathicity but the same amino acid composition as L5 enhanced CpG DNA-induced activation. Cellular uptake of DNA was not increased by the L5 derivatives, indicating that high amphipathicity does not affect DNA uptake. Furthermore, α-helical peptides with reversed sequences relative to the Kn2-7 and L5 derivatives with high amphipathicity were synthesized. The reversed-sequence peptides, which had the same amphipathicity but different amino acid sequences from their counterparts, enhanced CpG DNA-induced activation. Taken together, these observations indicate that the high amphipathicity of α-helical peptides enhances the CpG DNA-induced activation of RAW264.7.


Assuntos
Ilhas de CpG , Macrófagos , Animais , Camundongos , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , DNA/química , DNA/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Metilação de DNA/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química
3.
Int J Med Sci ; 21(9): 1649-1660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006841

RESUMO

Graft-versus-host disease (GVHD) is a common complication following hematopoietic stem cell transplantation and can be life-threatening. Mesenchymal stem cells (MSCs), adult stem cells with immunomodulatory properties, have been used as therapeutic agents in a variety of ways and have demonstrated efficacy against acute GVHD (aGVHD); however, variability in MSC pro- and anti-inflammatory properties and the limitation that they only exhibit immunosuppressive effects at high levels of inflammation have prevented their widespread clinical use. The outcomes of GVHD treated with MSCs in the clinic have been variable, and the underlying mechanisms remain unclear. Therefore, the unique biological effects of Toll-like receptor 5 (TLR5) agonists led us to compare and validate the efficacy of MSCs primed with KMRC011, a TLR5 agonist. KMRC011 is a stimulant that induces the secretion of cytokines, which play an important role in immune regulation. In this study, we found that MSCs pretreated with KMRC011 increased the secretion of immunosuppressive cytokines indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX2) and increased the expression of M2 macrophage polarizing cytokines macrophage colony-stimulating factor (M-CSF) and interleukin 10 (IL-10) in vitro. We investigated the immunosuppressive effects of TLR5 agonist (KMRC011)-primed MSCs on lymphocytes and their preventive and therapeutic effects on an in vivo mouse aGVHD model. In vitro experiments showed that KMRC011-primed MSCs had enhanced immunosuppressive effects on lymphocyte proliferation. In vivo experiments showed that KMRC011-primed MSCs ameliorated GVHD severity in a mouse model of induced GVHD disease. Finally, macrophages harvested from the spleens of mice treated with KMRC011-primed MSCs showed a significant increase in the anti-inflammatory M2 phenotype. Overall, the results suggest that KMRC011-primed MSCs attenuated GVHD severity in mice by polarizing macrophages to the M2 phenotype and increasing the proportion of anti-inflammatory cells, opening new horizons for GVHD treatment.


Assuntos
Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Macrófagos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Receptor 5 Toll-Like , Animais , Doença Enxerto-Hospedeiro/tratamento farmacológico , Camundongos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Receptor 5 Toll-Like/agonistas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
4.
Int Immunopharmacol ; 139: 112668, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39008938

RESUMO

Sepsis-associated acute kidney injury (SA-AKI) is one of common critical illnesses with high morbidity and mortality. At present, effective therapeutic drugs for SA-AKI are remain lacking. SKLB023 is a synthetic small-molecule compound which exerts potent anti-inflammatory effects in our previous studies. Here, this study aimed to characterize the protective effect of SKLB023 on SA-AKI and explore its underlying mechanism. The SA-AKI experimental models have been established by cecum ligation/puncture (CLP) and lipopolysaccharide (LPS) injection in male C57BL/6J mice. SKLB023 was administered by gavage (50 or 25 mg/kg in CLP model and 50 mg/kg in LPS model) daily 3 days in advance and 30 min earlier on the day of modeling. Our results confirmed SKLB023 treatment could improve the survival of SA-AKI mice and ameliorate renal pathological injury, inflammation, and apoptosis in the two types of septic AKI mice. Mechanically, SKLB023 deceased the expression of TLR4 in LPS-triggered renal tubular epithelial cells, and inhibited the activation of downstream pathways including NF-κB and MAPK pathways. Our study suggested that SKLB023 is expected to be a potential drug for the prevention and treatment of septic AKI.

5.
Biosci Microbiota Food Health ; 43(3): 227-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966044

RESUMO

Lactic acid bacteria (LAB) are commonly used in fermented foods, and some LAB modulate the immune response. We aimed to investigate the mechanism by which LAB isolates from fermented Brassica rapa L. induce the production of anti-inflammatory interleukin (IL)-10 by the murine spleen and RAW264 cells. Spleen cells from BALB/c mice or the mouse macrophage cell line RAW264 were cultured with heat-killed LAB isolated from fermented B. rapa L., and the IL-10 level in the supernatant was measured. Latilactobacillus curvatus K4G4 provided the most potent IL-10 induction among 13 isolates. Cell wall components of K4G4 failed to induce IL-10, while treatment of the bacteria with RNase A under a high salt concentration altered K4G4 induction of IL-10 by spleen cells. In general, a low salt concentration diminished the IL-10 induction by all strains, including K4G4. In addition, chloroquine pretreatment and knock down of toll-like receptor 7 through small interfering RNA suppressed K4G4 induction of IL-10 production by RAW264 cells. Our results suggest that single-stranded RNA from K4G4 is involved, via endosomal toll-like receptor 7, in the induction of IL-10 production by macrophages. K4G4 is a promising candidate probiotic strain that modulates the immune response by inducing IL-10 from macrophages.

6.
Int J Cancer ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989970

RESUMO

Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.

7.
J Physiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980987

RESUMO

Growing evidence supports the role of gut microbiota in chronic inflammation, insulin resistance (IR) and sex hormone production in polycystic ovary syndrome (PCOS). Adropin plays a pivotal role in the regulation of glucose and lipid metabolism and is negatively correlated with IR, which affects intestinal microbiota and sex hormones. However, the effect of adropin administration in PCOS has yet to be investigated. The present study aimed to assess the effects of adropin on letrozole (LTZ)-induced PCOS in rats and the potential underlying mechanisms. The experimental groups were normal, adropin, letrozole and LTZ + adropin. At the end of the experiment, adropin significantly ameliorated PCOS, as evidenced by restoring the normal ovarian structure, decreasing the theca cell thickness in antral follicles, as well as serum testosterone and luteinizing hormone levels and luteinizing hormone/follicle-stimulating hormone ratios, at the same time as increasing granulosa cell thickness in antral follicles, oestradiol and follicle-stimulating hormone levels. The ameliorating effect could be attributed to its effect on sex hormone-binding globulin, key steroidogenic genes STAR and CYP11A1, IR, lipid profile, gut microbiota metabolites-brain-ovary axis components (short chain fatty acids, free fatty acid receptor 3 and peptide YY), intestinal permeability marker (zonulin and tight junction protein claudin-1), lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B inflammatory pathway and oxidative stress makers (malondialdehyde and total antioxidant capacity). In conclusion, adropin has a promising therapeutic effect on PCOS by regulating steroidogenesis, IR, lipid profile, the gut microbiota inflammatory axis and redox homeostasis. KEY POINTS: Adropin treatment reversed endocrine and ovarian morphology disorders in polycystic ovary syndrome (PCOS). Adropin regulated the ovarian steroidogenesis and sex hormone-binding globulin in PCOS. Adropin improved lipid profile and decreased insulin resistance in PCOS. Adropin modulated the components of the gut-brain-ovary axis (short chain fatty acids, free fatty acid receptor 3 and peptide YY) in PCOS. Adropin improved intestinal barrier integrity, suppressed of lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B signalling pathway and oxidative stress in PCOS.

8.
Sci Rep ; 14(1): 15789, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982195

RESUMO

Red blood cells (RBCs) express the nucleic acid-binding toll-like receptor 9 (TLR9) and bind CpG-containing DNA. However, whether human RBCs express other nucleic acid-binding TLRs is unknown. Here we show that human RBCs express the RNA sensor TLR7. TLR7 is present on the red cell membrane and is associated with the RBC membrane protein Band 3. In patients with SARS-CoV2-associated sepsis, TLR7-Band 3 interactions in the RBC membrane are increased when compared with healthy controls. In vitro, RBCs bind synthetic ssRNA and RNA from ssRNA viruses. Thus, RBCs may serve as a previously unrecognized sink for exogenous RNA, expanding the repertoire of non-gas exchanging functions performed by RBCs.


Assuntos
COVID-19 , Eritrócitos , SARS-CoV-2 , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Eritrócitos/metabolismo , COVID-19/virologia , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Sepse/metabolismo , Sepse/sangue , Sepse/genética , Membrana Eritrocítica/metabolismo , Masculino , RNA/metabolismo , RNA/genética , Feminino
9.
Gene ; : 148773, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029768

RESUMO

PURPOSE: Breast cancer (BC) is heterogeneous in clinical manifestation, of which the triple-negative (TNBC) subtype is the most aggressive. This study examines the associations between Toll-Like Receptor (TLR)-2 polymorphisms and the susceptibility to BC and TNBC. METHODS: Genotyping of TLR-2 rs1898830 and rs4696483 polymorphisms was done by real-time PCR in 488 women with BC (130 TNBC, 358 non-TNBC) and 476 cancer-free control women. RESULTS: The minor allele frequency (MAF) of rs4696483 was significantly lower in BC cases compared to controls, and significantly lower frequencies of rs4696483 C/T and higher frequencies of rs1898830 G/G genotypes were seen in BC cases. Significantly higher MAF of rs4696483 and higher C/T and T/T rs4696483 genotypes frequencies were seen in TNBC than in non-TNBC cases. Considering the prevalent AC haplotype as a reference, 2-locus TLR-2 haplotype analysis did not identify any 2-locus TLR-2 haplotype associated with an altered risk of BC or TNBC. Positive associations of rs1898830 and rs4966483 were seen with the histological type in TNBC and negatively with distant metastasis and HR status in TNBC and non-TNBC rs1898830 carriers. In addition, rs4696483 was positively correlated with hormonotherapy and surgery in non-TNBC cases, while rs1898830 was negatively associated with hormonotherapy. Furthermore, rs1898830 was negatively and positively correlated with BMI in TNBC and TNBC cases, respectively, but positively with Ki-67 status. CONCLUSIONS: Our study highlights the association between TLR-2 genetic polymorphisms and BC and TNBC susceptibility, suggesting these variants' diagnostic/prognostic capacity in BC patients and patient subgroups.

10.
Front Immunol ; 15: 1411872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034997

RESUMO

During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports. Here, we identified molecular and cellular factors involved in driving FBGC formation in vitro. Macrophages demonstrated distinct fusion competencies dependent on monocyte differentiation. The transition from a proinflammatory to a reparative microenvironment, characterised by specific cytokine and growth factor programmes, accompanied FBGC formation. Toll-like receptor signalling licensed the formation of FBGCs containing more than 10 nuclei but was not essential for cell-cell fusion to occur. Moreover, the fibroblast-macrophage crosstalk influenced FBGC development, with the fibroblast secretome inducing macrophages to secrete more PDGF, which enhanced large FBGC formation. These findings advance our understanding as to how a specific and timely combination of cellular and microenvironmental factors is required for an effective FBR, with monocyte differentiation and fibroblasts being key players.


Assuntos
Diferenciação Celular , Fusão Celular , Microambiente Celular , Fibroblastos , Reação a Corpo Estranho , Células Gigantes de Corpo Estranho , Macrófagos , Macrófagos/metabolismo , Macrófagos/imunologia , Reação a Corpo Estranho/imunologia , Fibroblastos/metabolismo , Humanos , Células Gigantes de Corpo Estranho/metabolismo , Células Gigantes de Corpo Estranho/patologia , Animais , Monócitos/imunologia , Monócitos/metabolismo , Camundongos , Citocinas/metabolismo , Transdução de Sinais , Células Cultivadas
11.
Immunopharmacol Immunotoxicol ; : 1-24, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013809

RESUMO

Inflammatory Bowel Disease (IBD) poses a persistent challenge in the realm of gastroenterology, necessitating continual exploration of innovative treatment strategies. The limited efficacy and potential side effects associated with existing therapeutic modalities underscore the urgent need for novel approaches in IBD management. Recent advancements in the understanding of the disease's intricate pathogenesis have unveiled promising therapeutic targets, with a spotlight on the gut microbiome, immune dysregulation, and genetic predispositions. This abstract delves into the pressing demand for new avenues in IBD treatment, examines potential therapeutic targets such as, phosphodiesterase 4 (PDE4) inhibitor, immune system, Tyrosine kinase receptors (TYK), Toll-like receptors (TLRs), Modulation of the gut microbiota, Stem cell therapy, Fibrosis Management, interleukins (ILs) regulation and oxidative stress and provides insights into recent breakthroughs that herald a transformative era in the therapeutic landscape for IBD. Advances in precision medicine, biologics, small molecule inhibitors, and the exploration of microbiome modulation techniques stand out as pivotal milestones, offering renewed hope for enhanced efficacy, reduced side effects, and improved patient outcomes in the treatment of IBD.

13.
Heliyon ; 10(13): e33754, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040297

RESUMO

Objectives: Acute Lymphoblastic Leukemia (ALL) is a multifactorial disease that results from the interaction between multiple genetic factors. ALL is characterized by uncontrolled production of hematopoietic precursor cells of the lymphoid progenitors within the bone marrow. The development of hematological malignancies has been associated with malignant-like cells that express low levels of immunogenic surface molecules, thus, facilitating their escape from cellular antineoplastic immune responses. This risk may be partly influenced by variations in polymorphic genes that control immune function and regulation. Toll-like receptors (TLRs) are well known pattern recognition receptors playing key role in innate immune response. Abnormal expression and dysregulation of TLRs will provide an opportunity for cancer cells to escape from the immune system and enhance their proliferation and angiogenesis. Toll-like receptor 2 (TLR2) play an essential role in innate immunity. Single nucleotide polymorphisms (SNPs) are present in a number of TLR genes and have been associated with various disorders. Methods: In this study, 265 subjects have been divided into two groups included 150 patients with ALL and115 healthy volunteers. All subjects were genotyped using TaqMan PCR techniques. In total, Five SNPs were statistically evaluated in the TLR2 (rs1898830 A/G, rs3804099 T/C, rs3804100 T/C, rs1339 T/C, and rs1337 C/G), which may influence the susceptibility of ALL. Minor allele frequency and genotype distribution were compared across the study groups, and the relative risk and differences between patients and controls were estimated. Moreover, the mRNA expression level was evaluated in patients with ALL and the matched healthy individuals by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Results: TLR2 rs1898830 A/G; rs3804099 T/C; rs3804100 T/C; rs1339 T/C, were significantly decrease the risk in our population, overall and for certain subtypes and ALL samples exhibited significant increase in the mRNA levels of TLR2. Conclusions: This study shows that TLR2 could be an independent prognostic factor of ALL risks in the Saudi population. Suggesting that genetic variation in genes associated with an immune response may be important in the etiology of ALL. In addition, the results herein revealed that TLR2 overexpression is associated with ALL and has diverse biological significance in the context of the complex relationship between inflammation and cancer development. Therefore, these data could open further studies to explore the possible clinical relevance of TLRs as pathological markers for Leukemia and enhance the strategies regarding hematological malignancies prevention based on their gene expression.

14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 286-293, 2024 Jun 17.
Artigo em Chinês | MEDLINE | ID: mdl-38952315

RESUMO

OBJECTIVE: To investigate the involvement of the high mobility group box protein B1 (HMGB1)-Toll-like receptor 2 (TLR2)/TLR4-nuclear factor κB (NF-κB) pathway in the intestinal mucosal injury induced by Cryptosporidium parvum infection, and to examine the effect of oxymatrine (OMT) on C. parvum infection in mice. METHODS: Forty SPF 4-week-old BALB/c mice were randomly divided into four groups, including the control group, infection group, glycyrrhizin (GA) group and OMT group. Each mouse was orally administered with 1 × 105 C. parvum oocysts one week in the infection, GA and OMT groups following dexamethasone-induced immunosuppression to model C. parvum intestinal infections in mice. Upon successful modeling, mice in the GA group were intraperitoneally injected with GA at a daily dose of 25.9 mL/kg for successive two weeks, and animals in the OMT group were orally administered OMT at a daily dose of 50 mg/kg for successive two weeks, while mice in the control group were given normal food and water. All mice were sacrificed two weeks post-treatment, and proximal jejunal tissues were sampled. The pathological changes of mouse intestinal mucosal specimens were observed using hematoxylin-eosin (HE) staining, and the mouse intestinal villous height, intestinal crypt depth and the ratio of intestinal villous height to intestinal crypt depth were measured. The occludin and zonula occludens protein 1 (ZO1) expression was determined in mouse intestinal epithelial cells using immunohistochemistry, and the relative expression of HMGB1, TLR2, TLR4, myeloid differentiation primary response gene 88 (MyD88) and NF-κB p65 mRNA was quantified in mouse jejunal tissues using quantitative real-time PCR (qPCR) assay. RESULTS: HE staining showed that the mouse intestinal villi were obviously atrophic, shortened, and detached, and the submucosal layer of the mouse intestine was edematous in the infection group as compared with the control group, while the mouse intestinal villi tended to be structurally intact and neatly arranged in the GA and OMT groups. There were significant differences among the four groups in terms of the mouse intestinal villous height (F = 6.207, P = 0.000 5), intestinal crypt depth (F = 6.903, P = 0.000 3) and the ratio of intestinal villous height to intestinal crypt depth (F = 37.190, P < 0.000 1). The mouse intestinal villous height was lower in the infection group than in the control group [(321.9 ± 41.1) µm vs. (399.5 ± 30.9) µm; t = 4.178, P < 0.01] and the GA group [(321.9 ± 41.1) µm vs. (383.7 ± 42.7) µm; t = 3.130, P < 0.01], and the mouse intestinal crypt depth was greater in the infection group [(185.0 ± 35.9) µm] than in the control group [(128.4 ± 23.6) µm] (t = 3.877, P < 0.01) and GA group [(143.3 ± 24.7) µm] (t = 2.710, P < 0.05). The mouse intestinal villous height was greater in the OMT group [(375.3 ± 22.9) µm] than in the infection group (t = 3.888, P < 0.01), and there was no significant difference in mouse intestinal villous height between the OMT group and the control group (t = 1.989, P > 0.05). The mouse intestinal crypt depth was significantly lower in the OMT group [(121.5 ± 27.3) µm] than in the infection group (t = 4.133, P < 0.01), and there was no significant difference in mouse intestinal crypt depth between the OMT group and the control group (t = 0.575, P > 0.05). The ratio of the mouse intestinal villous height to intestinal crypt depth was significantly lower in the infection group (1.8 ± 0.2) than in the control group (3.1 ± 0.3) (t = 10.540, P < 0.01) and the GA group (2.7 ± 0.3) (t = 7.370, P < 0.01), and the ratio of the mouse intestinal villous height to intestinal crypt depth was significantly higher in the OMT group (3.1 ± 0.2) than in the infection group (t = 15.020, P < 0.01); however, there was no significant difference in the ratio of the mouse intestinal villous height to intestinal crypt depth between the OMT group and the control group (t = 0.404, P > 0.05). Immunohistochemical staining showed significant differences among the four groups in terms of occludin (F = 28.031, P < 0.000 1) and ZO1 expression (F = 14.122, P < 0.000 1) in mouse intestinal epithelial cells. The proportion of positive occluding expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.3 ± 4.5)% vs. (28.3 ± 0.5)%; t = 3.810, P < 0.01], and the proportions of positive occluding expression were significantly higher in mouse intestinal epithelial cells in the GA group [(30.3 ± 1.3)%] and OMT group [(25.8 ± 1.5)%] than in the infection group (t = 7.620 and 5.391, both P values < 0.01); however, there was no significant differences in the proportion of positive occluding expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 1.791 and 2.033, both P values > 0.05). The proportion of positive ZO1 expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.4 ± 1.8)% vs. (24.2 ± 2.8)%; t = 4.485, P < 0.01], and the proportions of positive ZO1 expression were significantly higher in mouse intestinal epithelial cells in the GA group [(24.1 ± 2.3)%] (t = 5.159, P < 0.01) and OMT group than in the infection group [(22.5 ± 1.9)%] (t = 4.441, P < 0.05); however, there were no significant differences in the proportion of positive ZO1 expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 0.037 and 0.742, both P values > 0.05). qPCR assay showed significant differences among the four groups in terms of HMGB1 (F = 21.980, P < 0.000 1), TLR2 (F = 20.630, P < 0.000 1), TLR4 (F = 17.000, P = 0.000 6), MyD88 (F = 8.907, P = 0.000 5) and NF-κB p65 mRNA expression in mouse jejunal tissues (F = 8.889, P = 0.000 7). The relative expression of HMGB1 [(5.97 ± 1.07) vs. (1.05 ± 0.07); t = 6.482, P < 0.05] 、TLR2 [(5.92 ± 1.29) vs. (1.10 ± 0.14); t = 5.272, P < 0.05] 、TLR4 [(5.96 ± 1.50) vs. (1.02 ± 0.03); t = 4.644, P < 0.05] 、MyD88 [(3.00 ± 1.26) vs. (1.02 ± 0.05); t = 2.734, P < 0.05] and NF-κB p65 mRNA [(2.33 ± 0.72) vs. (1.04 ± 0.06); t = 2.665, P < 0.05] was all significantly higher in mouse jejunal tissues in the infection group than in the control group. A significant reduction was detected in the relative expression of HMGB1 (0.63 ± 0.01), TLR2 (0.42 ± 0.10), TLR4 (0.35 ± 0.07), MyD88 (0.70 ± 0.11) and NF-κB p65 mRNA (0.75 ± 0.01) in mouse jejunal tissues in the GA group relative to the control group (t = 8.629, 5.830, 11.500, 4.729 and 6.898, all P values < 0.05), and the relative expression of HMGB1, TLR2, TLR4, MyD88 and NF-κB p65 mRNA significantly reduced in mouse jejunal tissues in the GA group as compared to the infection group (t = 7.052, 6.035, 4.084, 3.165 and 3.274, all P values < 0.05). In addition, the relative expression of HMGB1 (1.14 ± 0.60), TLR2 (1.00 ± 0.24), TLR4 (1.14 ± 0.07), MyD88 (0.96 ± 0.25) and NF-κ B p65 mRNA (1.12 ± 0.17) was significantly lower in mouse jejunal tissues in the OMT group than in the infection group (t = 7.059, 5.320, 3.510, 3.466 and 3.273, all P values < 0.05); however, there were no significant differences between the OMT and control groups in terms of relative expression of HMGB1, TLR2, TLR4, MyD88 or NF-κB p65 mRNA in mouse jejunal tissues (t = 0.239, 0.518, 1.887, 0.427 and 0.641, all P values > 0.05). CONCLUSIONS: C. parvum infection causes intestinal inflammatory responses and destruction of intestinal mucosal barrier through up-regulating of the HMGB1-TLR2/TLR4-NF-κB pathway. OMT may suppress the intestinal inflammation and repair the intestinal mucosal barrier through inhibiting the activity of the HMGB1-TLR2/TLR4-NF-κB pathway.


Assuntos
Alcaloides , Criptosporidiose , Cryptosporidium parvum , Proteína HMGB1 , Camundongos Endogâmicos BALB C , NF-kappa B , Quinolizinas , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Quinolizinas/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Alcaloides/farmacologia , Alcaloides/administração & dosagem , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Transdução de Sinais/efeitos dos fármacos , Masculino , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Matrinas
15.
Fitoterapia ; 177: 106111, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971330

RESUMO

Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1ß and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1ß expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.

16.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000127

RESUMO

The prevalence of prenatal alcohol exposure (PAE) is increasing, with evidence suggesting that PAE is linked to an increased risk of infections. PAE is hypothesized to affect the innate immune system, which identifies pathogens through pattern recognition receptors, of which toll-like receptors (TLRs) are key components. We hypothesized that light-to-moderate PAE would impair immune responses, as measured by a heightened response in cytokine levels following TLR stimulation. Umbilical cord samples (10 controls and 8 PAE) from a subset of the Ethanol, Neurodevelopment, Infant and Child Health Study-2 cohort were included. Peripheral blood mononuclear cells (PMBCs) were stimulated with one agonist (TLR2, TLR3, TLR4, or TLR9). TLR2 agonist stimulation significantly increased pro-inflammatory interleukin-1-beta in the PAE group after 24 h. Pro- and anti-inflammatory cytokines were increased following stimulation with the TLR2 agonists. Stimulation with TLR3 or TLR9 agonists displayed minimal impact overall, but there were significant increases in the percent change of the control compared to PAE after 24 h. The results of this pilot investigation support further work into the impact on TLR2 and TLR4 response following PAE to delineate if alterations in levels of pro- and anti-inflammatory cytokines have clinical significance that could be used in patient management and/or attention to follow-up.


Assuntos
Sangue Fetal , Receptores Toll-Like , Humanos , Feminino , Gravidez , Sangue Fetal/metabolismo , Projetos Piloto , Receptores Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Citocinas/metabolismo , Citocinas/sangue , Adulto , Recém-Nascido , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Etanol/farmacologia , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/agonistas
17.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000291

RESUMO

Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.


Assuntos
Microbioma Gastrointestinal , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Receptor 4 Toll-Like , Neoplasias da Bexiga Urinária , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Camundongos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Butilidroxibutilnitrosamina/toxicidade , Carcinogênese , Bexiga Urinária/patologia , Bexiga Urinária/microbiologia , Bexiga Urinária/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Microbiota , Humanos
18.
J Immunother Cancer ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009452

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) poses unique challenges due to its complex nature and the need for more effective treatments. Recent studies showed encouraging outcomes from combining paclitaxel (PTX) with programmed cell death protein-1 (PD-1) blockade in treating TNBC, although the exact mechanisms behind the improved results are unclear. METHODS: We employed an integrated approach, analyzing spatial transcriptomics and single-cell RNA sequencing data from TNBC patients to understand why the combination of PTX and PD-1 blockade showed better response in TNBC patients. We focused on toll-like receptor 4 (TLR4), a receptor of PTX, and its role in modulating the cross-presentation signaling pathways in tumor-associated macrophages (TAMs) within the tumor microenvironment. Leveraging insights obtained from patient-derived data, we conducted in vitro experiments using immunosuppressive bone marrow-derived macrophages (iBMDMs) to validate if PTX could augment the cross-presentation and phagocytosis activities. Subsequently, we extended our study to an in vivo murine model of TNBC to ascertain the effects of PTX on the cross-presentation capabilities of TAMs and its downstream impact on CD8+ T cell-mediated immune responses. RESULTS: Data analysis from TNBC patients revealed that the activation of TLR4 and cross-presentation signaling pathways are crucial for the antitumor efficacy of PTX. In vitro studies showed that PTX treatment enhances the cross-presentation ability of iBMDMs. In vivo experiments demonstrated that PTX activates TLR4-dependent cross-presentation in TAMs, improving CD8+ T cell-mediated antitumor responses. The efficacy of PTX in promoting antitumor immunity was elicited when combined with PD-1 blockade, suggesting a complementary interaction. CONCLUSIONS: This study reveals how PTX boosts the effectiveness of PD-1 inhibitors in treating TNBC. We found that PTX activates TLR4 signaling in TAMs. This activation enhances their ability to present antigens, thereby boosting CD8+ T cell antitumor responses. These findings not only shed light on PTX's immunomodulatory role in TNBC but also underscore the potential of targeting TAMs' antigen presentation capabilities in immunotherapy approaches.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Humanos , Feminino , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral
20.
J Immunother Cancer ; 12(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038918

RESUMO

BACKGROUND: Toll-like receptor 9 (TLR9) agonists induce inflammatory responses that promote the killing of infectious micro-organisms, cancer cells and develop adaptive immune responses. Their ability as immunomodulators to enhance the activity of checkpoint inhibitors (CPI) in treating liver tumors is limited in part by the distinctive biology of intrahepatic myeloid-derived suppressor cells (MDSC) and challenges with tumor-specific therapeutic delivery. We have shown that the regional delivery of type C TLR9 agonist via pressure-enabled drug delivery (PEDD) system improves delivery to the tumor, enhances depletion of MDSCs and overall, stimulates the immune system in combination with or without CPI. Currently, CPIs are delivered intravenously, although there is a growing interest in its subcutaneous (SQ) administration. We compared nelitolimod formerly known as SD-101 administered using PEDD in combination with systemic (Sys) or SQ CPI in murine liver metastases (LM). METHODS: The LM model was developed by injecting MC38-Luc cells via the spleen of 8-12 week old male C57/BL6 mice followed by splenectomy. After a week, fluorescently labeled nelitolimod (10 µg/mouse) was delivered via PEDD and co-administered anti-programmed cell death-1 (α-PD-1) either via Sys or SQ. Tumor burden was monitored by in vivo imaging system. Serum cytokine levels were analyzed by Luminex. Tissues were harvested on Day 3 (D3) or Day 10 (D10) post-PEDD to enrich CD45+ cells and were analyzed via NanoString targeted transcriptomics (D3) or flow cytometry (FC, D10) to interrogate immune cell populations (D10). For NanoString analysis, the innate immune panels were selected, and for FC, MDSCs (CD11b+Gr1+), B cells (B220+), dendritic cells (DC, CD11c+), T (CD3+) cells, and M1-like macrophages (F4/80+CD38+Egr2-) were quantified. RESULTS: Nelitolimod delivered via PEDD resulted in changes in innate and adaptive immune cells within LM, including depletion of liver MDSC and increased M1-like macrophages in the liver, which are supportive of antitumor immunity. While CPI monotherapy failed to control tumor progression, nelitolimod and CPI combination improved LM control, survival and antitumor immunity beyond the nelitolimod monotherapy effect, irrespective of CPI delivery route. CONCLUSION: The SQ route of CPI delivery was equivalent to Sys in combination with nelitolimod, suggesting SQ-CPI may be a rational choice in combination with PEDD of nelitolimod for liver tumor treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Humanos , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...