Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Cancer ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989970

RESUMO

Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.

2.
Dev Comp Immunol ; 139: 104563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36209842

RESUMO

Congenital immunity mediated by Toll-like receptor (TLR) family is the first line of defense for disease-resistant immunity of fish and plays a vital role as a bridge between innate immunity and acquired immunity. As a less known member of the TLR family TLR13 can participate in the immune and inflammatory reactions of the body for recognizing the conserved sequence of 23S rRNA in bacteria and induce immune response. In this study, the full-length cDNA of TLR13 from Nibea albiflora (named as NaTLR13) was cloned and was functionally characterized. It was 4210bp (GenBank accession no. MT701899) including an open reading frame (ORF) of 2886bp to encode 962 amino acids with molecular weight of 110.37 kDa and the theoretical isoelectric point of 9.08. There were several conservative structures in NaTLR13 such as 15 leucine-rich repeat sequences (LRRs), a Toll-IL-1 receptor domain (TIR), an LRR-CT terminal domain, two LRR-TYP structures and two transmembrane domains. The multiple sequence alignment and phylogenetic analysis manifested that NaTLR13 had high similarity with Larimichthys crocea and Collichthys lucidus (88.79% and 87.02%, respectively) and they fell into the same branch. The Real-time PCR showed that NaTLR13 was expressed in all selected tissues, with the highest in the spleen, followed by the liver, kidney, gill, heart and muscle. After being challenged by Vibrio alginolyticus, Vibrio parahaemolyticus or Poly (I:C), the expression of NaTLR13 increased firstly, then decreased and finally stabilized with time for its immune defense function. Subcellular localization analysis revealed that NaTLR13 was unevenly distributed in the cytoplasm with green fluorescence and MyD88 was evenly spread in the cytoplasm with red signals. When NaTLR13 and MyD88 were co-transfected, they obviously overlapped and displayed orange-yellow color, which showed that the homologous TLR13 might interact with MyD88 for NFκB signaling pathway transmission. The functional domains of NaTLR13 (named NaTLR13-TIR and NaTLR13-LRR) were expressed in E.coli BL21 (DE3) and purified by Ni-NAT Superflow Resin conforming to the expected molecular weights, and the recombinant proteins could bind to three Vibrios (V.alginolyticus, V.parahaemolyticus and Vibrio harveyi), indicating that NaTLR13 could be bounden to bacteria through its functional domain. These results suggested that NaTLR13 might play an important role in the defense of N.albiflora against bacteria or viral infection and the data would provide some information for further understanding the regulatory mechanism of the innate immune system in fish.


Assuntos
Receptores Toll-Like , Animais , Filogenia , Receptores Toll-Like/genética
3.
Mol Immunol ; 132: 60-78, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545626

RESUMO

Toll-like receptors (TLRs) play a crucial role in the innate immune system, which is the first line of defence against pathogens and pathogenic products in fish. In the present study, we cloned the full-length cDNA and genome sequences of two TLR13 s (OnTLR13a, OnTLR13b) from Nile tilapia (Oreochromis niloticus). TLR family motifs, i.e., the leucine-rich repeat (LRR) domains and Toll/interleukin (IL)-1 receptor (TIR) domains, were conserved in the putative proteins OnTLR13a and OnTLR13b, with fifteen LRR domains and one TIR domain. Four exons and three introns were identified in the OnTLR13a genome sequence, and three exons and two introns were identified in the OnTLR13b genome sequence. In healthy Nile tilapia tissues, OnTLR13a and OnTLR13b were ubiquitously expressed in all 11 tested tissues/organs. The highest expression levels were observed in the spleen (OnTLR13a) and blood (OnTLR13b), and the lowest expression levels were observed in the liver (OnTLR13a) and stomach (OnTLR13b). The expression level of OnTLR13b at 5.5 days postfertilization (dpf) was significantly higher than that at the other 8 time points (2.5, 3.5, 4.5, 5, 6, 6.5, 7.5 and 8.5 dpf). Upon stimulation with an intraperitoneal injection of 200 µL (107 CFU/mL) Streptococcus agalactiae, the expression levels of OnTLR13a and OnTLR13b were significantly upregulated in the intestine and gill. After cotransfection with MyD88, OnTLR13a significantly increased MyD88-dependent NF-κB activation in 293 T cells. However, OnTLR13b significantly impaired MyD88-dependent NF-κB activation. In addition, TLR13a slightly increased MyD88-dependent AP-1 activation, and TLR13b significantly increased MyD88-dependent AP-1 activation. TLR13a significantly increased MyD88-dependent interferon-ß (IFN-ß) activation, and TLR13b had no effect on MyD88-dependent IFN-ß activation. These findings suggest that although the deduced protein structure of OnTLR13 is evolutionarily conserved between OnTLR13 and other TLR members, its signal transduction function is markedly different. Co-immunoprecipitation (Co-IP) assays showed that both OnTLR13a and OnTLR13b could interact with OnMyD88. RNA pulldown assays showed that TLR13a and TLR13b could combine with the 23S rRNA of S. agalactiae. These results indicate that TLR13a and TLR13b play important roles in the innate immune response against bacterial infection in Nile tilapia.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Imunidade Inata/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Streptococcus agalactiae/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Sangue/metabolismo , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Éxons , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferon beta/metabolismo , Íntrons , Fígado/metabolismo , NF-kappa B/metabolismo , Filogenia , Domínios Proteicos , RNA Ribossômico 23S/genética , Alinhamento de Sequência , Transdução de Sinais/imunologia , Baço/metabolismo , Fator de Transcrição AP-1/metabolismo
4.
J Allergy Clin Immunol ; 139(2): 667-678.e5, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27544739

RESUMO

BACKGROUND: Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. OBJECTIVE: We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. METHODS: L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4+ T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. RESULTS: L lactis G121-treated murine BMDCs and human moDCs released TH1-polarizing cytokines and induced TH1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of TH1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13-/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The TH1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. CONCLUSION: Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8.


Assuntos
Antígenos de Bactérias/imunologia , Células Dendríticas/imunologia , Endossomos/metabolismo , Lactococcus lactis/imunologia , Pulmão/imunologia , Hipersensibilidade a Leite/imunologia , RNA Bacteriano/imunologia , Animais , Bovinos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipersensibilidade a Leite/prevenção & controle , Proteína Adaptadora de Sinalização NOD2/metabolismo , Células Th1/imunologia , Receptor 8 Toll-Like/antagonistas & inibidores , Receptores Toll-Like/genética
5.
FEBS J ; 283(9): 1631-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26676765

RESUMO

Toll-like receptor 13 (TLR13) recognizes a conserved 10-nucleotide sequence from bacterial 23S ribosomal RNA, and binding of TLR13 to the target rRNA molecule triggers immune responses. Recently, the crystal structure of the TLR13 ectodomain bound by a 13-nucleotide single-stranded RNA (ssRNA13) was determined by using the initial phases provided by a cryo-electron microscopy map of TLR13 in complex with a 25-nucleotide ssRNA (ssRNA25). This structural snapshot describes a unique method for solving the crystal structure of the TLR13-ssRNA13 complex based on medium-resolution reconstruction of TLR13-ssRNA25 cryo-electron microscopy images.


Assuntos
RNA Bacteriano/química , RNA Ribossômico 23S/química , Receptores Toll-Like/química , Animais , Sítios de Ligação , Sequência Conservada , Microscopia Crioeletrônica , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Polinucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Bacteriano/genética , RNA Ribossômico 23S/genética , Receptores Toll-Like/genética
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-209796

RESUMO

Toll-like receptors are required for detection of pathogen-associated molecular patterns and play critical roles in protection of host from infection. Murine TLR13 was recently reported to be involved in recognition of bacterial 23S ribosomal RNA sequence that is the binding site of different antibiotics.


Assuntos
Antibacterianos , Sítios de Ligação , RNA Ribossômico 23S , Staphylococcus aureus , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...