Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.834
Filtrar
1.
Hum Immunol ; 85(5): 110835, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972268

RESUMO

Leptospirosis (LTPS) is a bacterial infection that affects humans, often with mild or no symptoms. It is estimated that approximately 10 % of patients with LTPS may experience multi-organ dysfunction, including renal abnormalities. In regions where LTPS is widespread, a considerable number of instances involving acute kidney injury (AKI) and chronic kidney disease (CKD) of unknown etiology (CKDu) have been reported. Additionally, studies have shown a correlation between kidney graft dysfunction in patients with stable kidney transplants after LTPS. These findings indicate that exposure to LTPS may increase the likelihood of kidney transplantation due to the onset of both acute and chronic kidney injuries. Simultaneously, it poses a potential risk to the stability of kidney grafts. Unfortunately, there is limited scientific literature addressing this issue, making it difficult to determine the negative impact that LTPS may have, such as its role as a risk factor for the need of kidney transplantation or as a threat to individuals who have undergone kidney transplants. This study aims to shed light on the immune mechanisms triggered during LTPS infection and their importance in both kidney damage and allograft dysfunction.

2.
Odontology ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951301

RESUMO

The aim of this study was to evaluate the influence of liver fibrosis (LF) on the expression of Toll-like receptors (TLR) 2 and 4 in apical periodontitis (AP) in Wistar rats. Forty Wistar rats were allocated in the following groups (n = 10): C-control; AP-apical periodontitis; LF-liver fibrosis; AP + LF-rats with AP and LF. LF and AP were induced by established methodologies. Histological, bacteriological, and immunohistochemical analyses were performed according to pre-established scores. For comparisons between AP and AP + LF groups, the Mann-Whitney test was used (P < .05). The livers of the LF and AP + LF groups showed generalized portal inflammatory infiltrate and collagen fibers confirming the presence of LF. Histopathological analysis in the maxilla of the AP + LF group showed areas of necrosis comprising the entire dental pulp and periapical tissue surrounded by a more intense inflammatory infiltrate than observed in the AP group (P = 0.032). A significant number of specimens in the AP + LF group showed microorganisms beyond the apical foramen adhered to the extraradicular biofilm, demonstrating greater invasion compared to the AP group (P = .008). Immunohistochemical analysis showed a large number of cells immunoreactive for TLR2 and TLR4 in the AP + LF group, compared to the AP group (P < 0.05). Liver fibrosis favors the inflammation and contamination of microorganisms in apical periodontitis and triggers the expression of TLR2 and TLR4, modulating innate immunity response in periapical lesions.

3.
EMBO Mol Med ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977927

RESUMO

In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.

4.
Immunol Cell Biol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979698

RESUMO

Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.

5.
Data Brief ; 54: 110498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868379

RESUMO

The prognosis of COVID-19 could influence by innate immune sensors such as toll-like receptors (TLRs). The purpose of this data was to investigate TLR3, 7, and 8 expression levels in COVID-19 patients and their relationship to outcome of disease. 75 confirm COVID-19 were included sequentially and separated into three groups: mild, severe, and critical. Peripheral blood mononuclear cells were isolated from the whole blood, and RNA was then extracted. The qRT-PCR technique was used to examine the expression of TLR3, TLR7, and TLR8 genes. The patients average ages were 52.69 ± 1.9 and 13 of the 25 individuals in each group were male. TLR3 (p < 0.001), TLR7 (p < 0.001), and TLR8 (p < 0.001) expression levels were considerably greater in COVID-19 patients compared to the control group. The findings also showed that individuals with critical and severe COVID-19 disease had significantly greater TLR7 and TLR8 gene expression levels than patients in mild stage of disease (p < 0.05). The data showed a significant difference (p = 0.01) in the TLR3 transcript levels between critical and mild COVID-19 patients. Furthermore, male severe (p = 0.02) and critical (p = 0.008) patients had significantly higher TLR8 expression levels than female patients in terms of gender. TLR3 (p = 0.2) and TLR7 (p = 0.08) transcripts were more elevated in males than females, but not significantly.

6.
Immunol Res ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879717

RESUMO

Adjuvants were used to modulate response towards relevant immune cells. The present study aims to investigate FlaA-conjugated Per a 10 and T cell peptides in amelioration of allergic airway disease in mice. Mice given Per a 10 showed allergic features with higher cellular infiltration, IgE, Th-2 cytokines and alarmins. Fusion protein treatment reduced lung inflammation (p < 0.0001) and cellular infiltrates (p < 0.001) with higher IgG2a/IgE indicating resolution of disease. Immunotherapy with FPT1 and FPT3 reduces IL-4, IL-5 and IL-13 levels (p < 0.0001) with a fourfold increase in IFN-γ secretion in BALF. FPT1- and FPT3-treated mice have increased IL-10 and TGF-ß levels (p < 0.001) with CD4+Foxp3+ T cells (p < 0.01) indicating Treg response. There was enhanced expression of claudin-1 (1.7-fold) and occludin (fourfold) in lungs of FPT1- and FPT3-treated mice with reduced TSLP (p < 0.01) and IL-33 (p < 0.0001) secretion in BALF indicating recovery of epithelial function. Peptide-conjugated FlaA proteins showed protective immunity in mice and have potential for immunotherapy with restoration of cellular function.

7.
Fish Shellfish Immunol ; : 109720, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945413

RESUMO

Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.

8.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892317

RESUMO

The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.


Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Escleroderma Sistêmico , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Camundongos , Bleomicina/efeitos adversos , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Pele/patologia , Pele/metabolismo , Pele/imunologia , Fibrose , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia , Glicoproteínas de Membrana
9.
Front Immunol ; 15: 1418025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903515

RESUMO

Toll-like receptors (TLRs) are a key family of pattern recognition receptors (PRRs) in the innate immune system. The activation of TLRs will not only prevent pathogen infection but also respond to damage-induced danger signaling. Increasing evidence suggests that TLRs play a critical role in breast cancer development and treatment. However, the activation of TLRs is a double-edged sword that can induce either pro-tumor activity or anti-tumor effect. The underlying mechanisms of these opposite effects of TLR signaling in cancer are not fully understood. Targeting TLRs is a promising strategy for improving breast cancer treatment, either as monotherapies or by improving other current therapies. Here we provide an update on the role of TLRs in breast cancer immunity and immunotherapy.


Assuntos
Neoplasias da Mama , Imunoterapia , Transdução de Sinais , Receptores Toll-Like , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Feminino , Imunoterapia/métodos , Animais , Imunidade Inata
10.
Stroke ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920054

RESUMO

BACKGROUND: Dendritic cells (DCs) regulate the immune response associated with T lymphocytes, but their role in stroke remains unclear. In this study, we investigated the causal relationship between DCs and T-cell response in intracerebral hemorrhage (ICH) by focusing on TLRs (toll-like receptors) that may modulate the function of DCs. METHODS: We studied the effects of TLR4, TLR2, and TLR9 on DC-mediated T-cell response and the outcomes of ICH using male C57BL/6 and CD11c-DTx (diphtheria toxin) receptor mice. We administered specific agents intraperitoneally or orally and evaluated the results using flow cytometry, real-time polymerase chain reaction, Western blotting, immunofluorescence staining, histopathology, and behavioral tests. RESULTS: TLR4 and TLR2 activation induces DC maturation and reduces the ratio of regulatory T to T-helper 17 cells in the brain and periphery after ICH. When either of these receptors is activated, it can worsen neuroinflammation and exacerbate ICH outcomes. TLR9 also promotes DC maturation, stabilizing the number of DCs, particularly conventional DCs. TLR9 has the opposite effects on regulatory T/T-helper 17 balance, neuroinflammation, and ICH outcomes compared with TLR4 and TLR2. Upon stimulation, TLR4 and TLR9 may achieve these effects through the p38-MAPK (p38-mitogen-activated protein kinase)/MyD88 (myeloid differentiation primary response gene 88) and indoleamine 2,3-dioxygenase 1 (IDO1)/GCN2 (general control nonderepressible 2) signaling pathways, respectively. DCs act as intermediaries for TLR-mediated T-cell response. CONCLUSIONS: TLR-mediated opposing effects of DCs on T-cell response may provide novel strategies to treat ICH.

11.
Can J Microbiol ; 70(7): 252-261, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855942

RESUMO

Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1ß, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1ß, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.


Assuntos
Citocinas , Reposicionamento de Medicamentos , Inibidores de Histona Desacetilases , Imunidade Inata , Infecções por Mycobacterium não Tuberculosas , Imunidade Inata/efeitos dos fármacos , Humanos , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Inibidores de Histona Desacetilases/farmacologia , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/imunologia , Mycobacterium/imunologia , Mycobacterium/efeitos dos fármacos
12.
Biomedicines ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927424

RESUMO

Heart failure (HF) is characterized by low-grade immune-mediated inflammation due to increased Toll-like receptor (TLR) expression as response to endotoxin increase and dysregulated gut barrier permeability. We investigated TLR expression and possible gut dysbiosis in HF patients compared to a control group. We enrolled 80 Caucasian HF patients and 20 controls. Low-grade immune-mediated inflammation was evaluated by TLR expression, while gut dysbiosis by the detection of zonulin and bacterial endotoxin activity in a semi-quantitative (endotoxin activity assay [EAA]) and quantitative (limulus amebocyte lysate [LAL] test) way. Compared to controls, patients with HF showed significantly higher age and blood pressure values, worse metabolic profile and kidney function, higher inflammatory biomarkers levels, and lower levels of zonulin and endotoxin activity. When dividing failing patients in those with reduced ejection fraction (HF-rEF) and those with preserved ejection fraction (HF-pEF), HF-rEF patients showed significantly higher values of inflammatory biomarkers and TLR expression than HF-pEF patients. Gut permeability biomarkers inversely correlated with the severity of HF and positively with renal function. eGFR was retained as an independent predictor of zonulin variation in all the three groups of failing patients. Present data work to extend current knowledge about the role of gut microbiota in immune-mediated inflammation in HF.

13.
Hum Gene Ther ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38887999

RESUMO

Adeno-associated virus (AAV) based viral vectors are widely used in human gene therapy and form the basis of approved treatments for several genetic diseases. Immune responses to vector and transgene products, however, substantially complicate these applications in clinical practice. The role of innate immune recognition of AAV vectors was initially unclear, given that inflammatory responses early after vector administration were typically mild in animal models. However, more recent research continues to identify innate immune pathways that are triggered by AAV vectors and that serve to provide activation signals for antigen-presenting cells and initiation of adaptive immune responses. Sensing of the AAV genome by the endosomal DNA receptor toll-like receptor 9 (TLR9) promotes early inflammatory response and interferon expression. Thus, activation of the TLR9>MyD88 pathway in plasmacytoid dendritic cells (pDCs) leads to the conditioning of antigen cross-presenting DCs through type I interferon (IFN-I) and ultimately CD8+ T cell activation. Alternatively, pDCs may also promote CD8+ T cell responses in a TLR9-independent manner by the production of IL-1 cytokines, thereby activating the IL-1R1>MyD88 signaling pathway. AAV can induce cytokine expression in monocyte-derived DCs, which in turn increases antibody formation. Binding of AAV capsid to complement components likely further elevates B cell activation. At high systemic vector doses in humans and in non-human primates, AAV vectors can trigger complement activation, with contributions by classical and alternative pathways, leading to severe toxicities. Finally, evidence for activation of TLR2 by the capsid and of additional innate receptors for nucleic acids has been presented. These observations show that AAV vectors can initiate several and likely redundant innate immune pathways resulting in an exaggerated adaptive immune response.

14.
Biochemistry (Mosc) ; 89(5): 784-798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880642

RESUMO

Formation of the transient protein complexes in response to activation of cellular receptors is a common mechanism by which cells respond to external stimuli. This article presents the concept of blocking interactions of signaling proteins by the peptide inhibitors, and describes the progress achieved to date in the development of signaling inhibitors that act by blocking the signal-dependent protein interactions.


Assuntos
Peptídeos , Transdução de Sinais , Humanos , Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Animais
15.
J Inflamm Res ; 17: 3587-3602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860009

RESUMO

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease with abnormal differentiation of follicular helper T (Tfh) cells, Total alkaloids of Sophora alopecuroides Linn. (Leguminosae) (TASA) have potential effects on collagen-induced arthritis (CIA) mice, while the mechanism needs further elucidation. The purpose of this study is to explore the regulation of TASA on rheumatoid arthritis and related mechanism. Methods: The proportion of Tfh and B lymphocytes in peripheral blood lymphocytes of RA patients was examined by flow cytometry. We constructed the collagen induced arthritis DBA/1J mice model. Between days 15 and 45 following the first immunization, the mice were treated intraperitoneally with saline, TASA (100, 50, and 25 mg/kg), and dexamethasone (DXM) for 30 days. Molecular biological techniques such as FCM, PCR, ELISA, and Western-blotting were used to examine Tfh cells and associated signal pathways. Results: Our results indicated that the follicular helper T cells and B lymphocytes in rheumatoid arthritis patients were significantly increased compared with the healthy control. The percentage of Tfh cells are correlated with RA related inflammatory factors. Total alkaloids of Sophora alopecuroides Linn. could significantly attenuate joint swelling. Meanwhile, it reduced the frequencies of spleen Tfh, B lymphocytes and the expression of TLR2, TLR9, p-NF-κBp65, CXCR5, Bcl-6, ICOS of ankle joints in CIA mice. Conclusion: Total alkaloids of Sophora alopecuroides Linn. may down-regulate the frequency and function of Tfh cells and inhibit GCB cells via TLRs/NF-κB signal pathway to relieve the immune-pathological progression of CIA mice.

16.
Cell Biochem Biophys ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918312

RESUMO

Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1ß, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.

17.
Fish Shellfish Immunol ; 150: 109627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754649

RESUMO

The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.


Assuntos
Aeromonas hydrophila , Peixes-Gato , Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Filogenia , Receptor 2 Toll-Like , Receptor 5 Toll-Like , Animais , Peixes-Gato/imunologia , Peixes-Gato/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Edwardsiella tarda/fisiologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Transcriptoma
18.
Biomed Pharmacother ; 175: 116724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761424

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.


Assuntos
Receptores de Reconhecimento de Padrão , Humanos , Animais , Receptores de Reconhecimento de Padrão/metabolismo , Fígado Gorduroso/metabolismo , Transdução de Sinais , Imunidade Inata
19.
J Innate Immun ; 16(1): 324-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768576

RESUMO

INTRODUCTION: We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS: Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS: Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1ß, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1ß, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1ß, IL-6, IL-8, MIP-1α, and MIP-1ß), with minimal effects by C5-inhibition. CONCLUSION: A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.


Assuntos
Aspergilose , Aspergillus fumigatus , Ativação do Complemento , Citocinas , Escherichia coli , Esporos Fúngicos , Aspergillus fumigatus/imunologia , Humanos , Ativação do Complemento/imunologia , Citocinas/metabolismo , Esporos Fúngicos/imunologia , Aspergilose/imunologia , Escherichia coli/imunologia , Antígeno CD11b/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Imunidade Inata , Inflamação/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Células Cultivadas , Monócitos/imunologia
20.
J Innate Immun ; 16(1): 295-323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740018

RESUMO

BACKGROUND: Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY: Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE: The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.


Assuntos
Receptores de Reconhecimento de Padrão , Transdução de Sinais , Humanos , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Imunidade Inata , Receptores Toll-Like/metabolismo , Inflamação/imunologia , Reprogramação Celular , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...