Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39062162

RESUMO

Currently, there is a growing amount of evidence for the involvement of dopamine receptors and the functionally related trace amine-associated receptor, TAAR1, in upper intestinal function. In the present study, we analyzed their expression in the duodenum using publicly accessible transcriptomic data. We revealed the expression of DRD1, DRD2, DRD4, DRD5, and TAAR1 genes in different available datasets. The results of the gene ontology (GO) enrichment analysis for DRD2 and especially TAAR1 co-expressed genes were consistent with the previously described localization of D2 and TAAR1 in enteric neurons and secretory cells, respectively. Considering that co-expressed genes are more likely to be involved in the same biological processes, we analyzed genes that are co-expressed with TAAR1, DRD2, DRD4, and DRD5 genes in healthy mucosa and duodenal samples from patients with functional dyspepsia (FD) or diabetes-associated gastrointestinal symptoms. Both pathological conditions showed a deregulation of co-expression patterns, with a high discrepancy between DRDs and TAAR1 co-expressed gene sets in normal tissues and patients' samples and a loss of these genes' functional similarity. Meanwhile, we discovered specific changes in co-expression patterns that may suggest the involvement of TAAR1 and D5 receptors in pathologic or compensatory processes in FD or diabetes accordingly. Despite our findings suggesting the possible role of TAAR1 and dopamine receptors in functional diseases of the upper intestine, underlying mechanisms need experimental exploration and validation.

2.
Hum Genomics ; 18(1): 61, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863077

RESUMO

Trace Amine Associated Receptor 1 (TAAR1) is a novel pharmaceutical target under investigation for the treatment of several neuropsychiatric conditions. TAAR1 single nucleotide variants (SNV) have been found in patients with schizophrenia and metabolic disorders. However, the frequency of variants in geographically diverse populations and the functional effects of such variants are unknown. In this study, we aimed to characterise the distribution of TAAR1 SNVs in five different WHO regions using the Database of Genotypes and Phenotypes (dbGaP) and conducted a critical computational analysis using available TAAR1 structural data to identify SNVs affecting ligand binding and/or functional regions. Our analysis shows 19 orthosteric, 9 signalling and 16 micro-switch SNVs hypothesised to critically influence the agonist induced TAAR1 activation. These SNVs may non-proportionally influence populations from discrete regions and differentially influence the activity of TAAR1-targeting therapeutics in genetically and geographically diverse populations. Notably, our dataset presented with orthosteric SNVs D1033.32N (found only in the South-East Asian Region and Western Pacific Region) and T1945.42A (found only in South-East Asian Region), and 2 signalling SNVs (V1253.54A/T2526.36A, found in African Region and commonly, respectively), all of which have previously demonstrated to influence ligand induced functions of TAAR1. Furthermore, bioinformatics analysis using SIFT4G, MutationTaster 2, PROVEAN and MutationAssessor predicted all 16 micro-switch SNVs are damaging and may further influence the agonist activation of TAAR1, thereby possibly impacting upon clinical outcomes. Understanding the genetic basis of TAAR1 function and the impact of common mutations within clinical populations is important for the safe and effective utilisation of novel and existing pharmacotherapies.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Polimorfismo de Nucleotídeo Único/genética , Relação Estrutura-Atividade , Genótipo , Ligantes , Receptores Associados a Traços de Amina
3.
Biomedicines ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672247

RESUMO

Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs' role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs' involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions.

4.
Mol Cell Endocrinol ; 588: 112215, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548145

RESUMO

Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.


Assuntos
Monoaminas Biogênicas , Bivalves , Sistemas Neurossecretores , Animais , Sistemas Neurossecretores/metabolismo , Bivalves/metabolismo , Monoaminas Biogênicas/metabolismo , Transdução de Sinais , Invertebrados/metabolismo
5.
Pharmacol Ther ; 253: 108580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142862

RESUMO

Trace amines, a group of amines expressed at the nanomolar level in the mammalian brain, can modulate monoamine transmission. The discovery of and the functional research on the trace amine-associated receptors (TAARs), especially the most well-characterized TAAR1, have largely facilitated our understanding of the function of the trace amine system in the brain. TAAR1 is expressed in the mammalian brain at a low level and widely distributed in the monoaminergic system, including the ventral tegmental area and substantial nigra, where the dopamine neurons reside in the mammalian brain. Growing in vitro and in vivo evidence has demonstrated that TAAR1 could negatively modulate monoamine transmission and play a crucial role in many psychiatric disorders, including schizophrenia, substance use disorders, sleep disorders, depression, and anxiety. Notably, in the last two decades, many studies have repeatedly confirmed the pharmacological effects of the selective TAAR1 ligands in various preclinical models of psychiatric disorders. Recent clinical trials of the dual TAAR1 and serotonin receptor agonist ulotaront also revealed a potential efficacy for treating schizophrenia. Here, we review the current understanding of the TAAR1 system and the recent advances in the elucidation of behavioral and physiological properties of TAAR1 agonists evaluated both in preclinical animal models and clinical trials. We also discuss the potential TAAR1-dependent signaling pathways and the cellular mechanisms underlying the inhibitory effects of TAAR1 activation on drug addiction. We conclude that TAAR1 is an emerging target for the treatment of psychiatric disorders.


Assuntos
Transtornos Mentais , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Aminas/metabolismo , Mamíferos/metabolismo
6.
Biomolecules ; 13(11)2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-38002300

RESUMO

Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet ß-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.


Assuntos
Ilhotas Pancreáticas , Síndrome Metabólica , Humanos , Síndrome Metabólica/metabolismo , Secreção de Insulina , Aminas/metabolismo , Transdução de Sinais , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Front Neural Circuits ; 17: 1250694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841893

RESUMO

Interkingdom signalling within a holobiont allows host and symbionts to communicate and to regulate each other's physiological and developmental states. Here we show that a suite of signalling molecules that function as neurotransmitters and neuromodulators in most animals with nervous systems, specifically dopamine and trace amines, are produced exclusively by the bacterial symbionts of the demosponge Amphimedon queenslandica. Although sponges do not possess a nervous system, A. queenslandica expresses rhodopsin class G-protein-coupled receptors that are structurally similar to dopamine and trace amine receptors. When sponge larvae, which express these receptors, are exposed to agonists and antagonists of bilaterian dopamine and trace amine receptors, we observe marked changes in larval phototactic swimming behaviour, consistent with the sponge being competent to recognise and respond to symbiont-derived trace amine signals. These results indicate that monoamines synthesised by bacterial symbionts may be able to influence the physiology of the host sponge.


Assuntos
Dopamina , Poríferos , Animais , Poríferos/microbiologia , Aminas , Neurotransmissores , Comunicação
8.
Biomolecules ; 13(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37759760

RESUMO

Currently, the contribution of trace amine-associated receptors (TAARs) to breast cancer (BC) is recognized, but their associations with various pathological characteristics are not yet understood. There is accumulated transcriptomic data for BC tumors, which are represented in publicly accessible databases. We estimated TAARs' (including TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) associations with BC stage, grade, and molecular subtypes in these data and identified that the expression of all TAARs was associated with more unfavorable cancer subtypes, including basal-like and HER2-positive tumors. Also, the significant upregulation of all TAARs was demonstrated in circulating tumor cells compared to the metastatic lesions. Considering that co-expressed genes are more likely to be involved in the same biologic processes, we analyzed genes that are co-expressed with TAARs in BC. These gene sets were enriched with the genes of the olfactory transduction pathway and neuroactive ligand-receptor interaction participants. TAARs are co-expressed with G-protein-coupled receptors of monoamine neurotransmitters including dopamine, norepinephrine, and serotonin as well as with other neuroactive ligand-specific receptors. Since TAAR1 is able to modulate the activity of monoamine receptors that are involved in the regulation of BC growth, TAAR1 and potentially other TAARs may be regarded as prospective therapeutic targets for breast cancer.

9.
Vascul Pharmacol ; 151: 107191, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399882

RESUMO

Sympathomimetic amines, including ß-phenylethylamine (PEA), constrict animal blood vessels but their mechanism of action is not now thought to be through α-adrenoceptors and release of noradrenaline but via trace amine-associated receptors (TAARs). This information is not available for human blood vessels. Functional studies were therefore performed on human arteries and veins to establish whether they constrict to PEA and whether any constrictions are adrenoceptor-mediated. Isolated internal mammary artery or saphenous vein rings were set up in Kreb's-bicarbonate solution at 37 ± 0.5 °C gassed with O2:CO2 (95:5) under class 2 containment. Isometric contractions were measured and cumulative concentration-response curves for PEA or the α-adrenoceptor agonist, phenylephrine were established. PEA showed concentration-related contractions. The maximum was significantly greater in arteries (1.53 ± 0.31 g, n = 9) than veins (0.55 ± 0.18 g, n = 10), but not when plotted as % of KCl contractions. PEA showed slowly developing contractions plateauing at 17,3 ± 3.7 min in mammary artery. The reference α-adrenoceptor agonist, phenylephrine, exhibited more rapid onset (peak 5.0 ± 1.2 min) but non-sustained contractions. In saphenous veins, PEA (62.8 ± 10.7%) and phenylephrine (61.4 ± 9.7%, n = 4) displayed the same maximum, but phenylephrine was more potent. The α1-adrenoceptor antagonist, prazosin (1 µM), blocked phenylephrine contractions of mammary arteries but not PEA contractions in either vessel. PEA causes substantial vasoconstriction of human saphenous vein and mammary artery, which explains its vasopressor actions. This response, however, was not mediated via α1-adrenoceptors, but likely due to TAARs. The classification of PEA as a sympathomimetic amine on human blood vessels is therefore no longer valid and requires revision.


Assuntos
Artéria Torácica Interna , Animais , Humanos , Artéria Torácica Interna/fisiologia , Vasoconstrição , Veia Safena , Fenilefrina/farmacologia , Norepinefrina , Receptores Adrenérgicos
10.
J Pharm Anal ; 13(3): 315-322, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37102107

RESUMO

Trace amines (TAs) are metabolically related to catecholamine and associated with cancer and neurological disorders. Comprehensive measurement of TAs is essential for understanding pathological processes and providing proper drug intervention. However, the trace amounts and chemical instability of TAs challenge quantification. Here, diisopropyl phosphite coupled with chip two-dimensional (2D) liquid chromatography tandem triple-quadrupole mass spectrometry (LC-QQQ/MS) was developed to simultaneously determine TAs and associated metabolites. The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS. This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib. The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells. This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.

11.
Toxicol Appl Pharmacol ; 461: 116399, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716863

RESUMO

Development of targeted therapeutics to alleviate gastrointestinal (GI) inflammation and its debilitating consequences are required. In this context, the trace aminergic system may link together sex, diet and inflammation. Utilising a zebrafish larval model of GI inflammation, the current study aimed to investigate mechanisms by which excess amounts of trace amines (TAs) may influence GI health. In addition, we probed the potential role of 17ß-estradiol (E2) and its receptors, given the known female-predominance of many GI disorders. To assess GI functionality and integrity, live imaging techniques (neutral red staining) and post-mortem immunofluorescent staining of tight junction proteins (occludin and ZO-1) were analyzed respectively. In addition, behavioural assays, as an indication of overall wellbeing, as well as whole body H2O2 and prostaglandin E2 assays were performed to inform on oxidative and inflammatory status. Excess ß-phenethylamine (PEA), tryptamine (TRP) and ρ-tyramine (TYR) resulted in adverse GI and systemic effects. In this regard, clear beneficial effects of E2 to modulate the effects of PEA, TRP and TYR was evident. Moreover, agmatine displayed potential protective effects on GI epithelium and whole body oxidative status, however, potential to induce systemic inflammation suggests the importance of dosage and administration optimisation. Taken together, TYR seems like the most prominent TA to have damaging GI effects, feasibly exacerbating GI inflammation. In this context, the relative lack of E2 may provide mechanistic insights into the reported female-predominance of GI disorders. Moreover, an effective therapeutic in this context may be required to maintain GI TA load despite fluctuating E2 levels.


Assuntos
Tiramina , Peixe-Zebra , Animais , Feminino , Estradiol/farmacologia , Peróxido de Hidrogênio , Inflamação/metabolismo , Larva
12.
Cell Host Microbe ; 31(1): 33-44.e5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36495868

RESUMO

Diarrhea-predominant irritable bowel syndrome (IBS-D), a globally prevalent functional gastrointestinal (GI) disorder, is associated with elevated serotonin that increases gut motility. While anecdotal evidence suggests that the gut microbiota contributes to serotonin biosynthesis, mechanistic insights are limited. We determined that the bacterium Ruminococcus gnavus plays a pathogenic role in IBS-D. Monocolonization of germ-free mice with R. gnavus induced IBS-D-like symptoms, including increased GI transit and colonic secretion, by stimulating the production of peripheral serotonin. R. gnavus-mediated catabolism of dietary phenylalanine and tryptophan generated phenethylamine and tryptamine that directly stimulated serotonin biosynthesis in intestinal enterochromaffin cells via a mechanism involving activation of trace amine-associated receptor 1 (TAAR1). This R. gnavus-driven increase in serotonin levels elevated GI transit and colonic secretion but was abrogated upon TAAR1 inhibition. Collectively, our study provides molecular and pathogenetic insights into how gut microbial metabolites derived from dietary essential amino acids affect serotonin-dependent control of gut motility.


Assuntos
Síndrome do Intestino Irritável , Animais , Camundongos , Serotonina/metabolismo , Diarreia/metabolismo
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-991146

RESUMO

Trace amines(TAs)are metabolically related to catecholamine and associated with cancer and neuro-logical disorders.Comprehensive measurement of TAs is essential for understanding pathological pro-cesses and providing proper drug intervention.However,the trace amounts and chemical instability of TAs challenge quantification.Here,diisopropyl phosphite coupled with chip two-dimensional(2D)liquid chromatography tandem triple-quadrupole mass spectrometry(LC-QQQ/MS)was developed to simul-taneously determine TAs and associated metabolites.The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS.This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib.The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells.This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.

14.
Front Physiol ; 13: 1009320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505075

RESUMO

p-Tyramine (TYR) is an endogenous trace amine, which can also be synthesized by intestinal microbiota, and is present in commonly consumed diets. TYR is an agonist for the intracellular trace amine-associated receptor 1, which has been implicated in psychiatric, metabolic, and immune-related disorders. We have previously demonstrated TYR readily diffuses across lipid bilayers, while transport across Caco-2 cell membranes involves Organic Cation Transporter 2 (OCT2) and a Na+-dependent active transporter. Here we developed mathematical models to determine whether known kinetics for these processes are sufficient to explain observed transcellular TYR passage. Ordinary differential equations were developed for known TYR transport processes to predict concentration-time relationships. Michaelis-Menten kinetics were assumed for all transporter-mediated processes and a one phase exponential function used for simple diffusion. Modelled concentration-time plots were compared to published experimental results. Additional transporter functions were sequentially added to models to improve consistency, and a least squares error minimization approach utilized to determine added transporter kinetics. Finally, possible TYR compartmentalization was also modelled. Following apical loading, transport across the apical, but not the basolateral, membrane was modelled without additional transporters, suggesting a basolateral transporter was missing. Consistent with this, models of basolateral compartment loading did not match experimental observations, indicating missing basolateral transporters were bidirectional. Addition of a transporter with the kinetic characteristics of OCT2 did not improve models. Varying the kinetic parameters of the added transporter improved models of basolateral, but worsened apical, loading models, suggesting the need for either a directional preference in transporters, or intracellular TYR compartmentalization. Experimental parameters were recapitulated by introducing asymmetry into the apical OCT2 (Kt_OCT2_apicaltocell = 110.4 nM, Kt_OCT2_celltoapical = 1,227.9 nM), and a symmetric basolateral facilitated diffusion transporter (Vmax = 6.0 nM/s, Kt = 628.3 nM). The apparent directionality of OCT2 may reflect altered TYR ionization due to known pH differences between compartments. Models for asymmetry and compartmentalization were compared by root mean square deviation from experimental data, and it was found that TYR compartmentalization could only partially replace the need for asymmetry of OCT2. In conclusion, modelling indicates that known TYR transport processes are insufficient to explain experimental concentration-time profiles and that asymmetry of the apical membrane OCT2 combined with additional, low affinity, basolateral membrane facilitated diffusion transporters are required.

15.
Biomolecules ; 12(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36551221

RESUMO

Sympathomimetic agents are a group of chemical compounds that are able to activate the sympathetic nervous system either directly via adrenergic receptors or indirectly by increasing endogenous catecholamine levels or mimicking their intracellular signaling pathways. Compounds from this group, both used therapeutically or abused, comprise endogenous catecholamines (such as adrenaline and noradrenaline), synthetic amines (e.g., isoproterenol and dobutamine), trace amines (e.g., tyramine, tryptamine, histamine and octopamine), illicit drugs (e.g., ephedrine, cathinone, and cocaine), or even caffeine and synephrine. In addition to the effects triggered by stimulation of the sympathetic system, the discovery of trace amine associated receptors (TAARs) in humans brought new insights about their sympathomimetic pharmacology and toxicology. Although synthetic sympathomimetic agents are mostly seen as toxic, natural sympathomimetic agents are considered more complacently in the terms of safety in the vision of the lay public. Here, we aim to discuss the pharmacological and mainly toxicological aspects related to sympathomimetic natural agents, in particular of trace amines, compounds derived from plants like ephedra and khat, and finally cocaine. The main purpose of this review is to give a scientific and updated view of those agents and serve as a reminder on the safety issues of natural sympathomimetic agents most used in the community.


Assuntos
Cocaína , Simpatomiméticos , Humanos , Simpatomiméticos/farmacologia , Norepinefrina , Tiramina/farmacologia , Aminas , Cocaína/farmacologia
16.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555443

RESUMO

Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.


Assuntos
Alcaptonúria , Dioxigenases , Humanos , Alcaptonúria/genética , Metabolômica , Ácido Homogentísico/metabolismo , Biomarcadores , Espectroscopia de Ressonância Magnética
17.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36145318

RESUMO

In order to promote gastrointestinal health, significant increases in the prevalence of gastrointestinal disorders should be paralleled by similar surges in therapeutics research. Nutraceutical interventions may play a significant role in patient management. The current study aimed to determine the potential of Aspalathus linearis (rooibos) to prevent gastrointestinal dysregulation resulting from high-dose trace-amine (TA) exposure. Considering the substantial female bias in functional gastrointestinal disorders, and the suggested phytoestrogenicity of rooibos, the study design allowed for a comparison between the effects of an ethanol extract of green rooibos and 17ß-estradiol (E2). High levels of ρ-tyramine (TYR) and agmatine (AGM), but not ß-phenethylamine (PEA) or tryptamine (TRP), resulted in prostaglandin E2 (PGE2) hypersecretion, increased tight-junction protein (TJP; occludin and ZO-1) secretion and (dissimilarly) disrupted the TJP cellular distribution profile. Modulating benefits of rooibos and E2 were TA-specific. Rooibos pre-treatment generally reduced IL-8 secretion across all TA conditions and prevented PGE2 hypersecretion after exposure to both TYR and AGM, but was only able to normalise TJP levels and the distribution profile in AGM-exposed cells. In contrast, E2 pre-treatment prevented only TYR-associated PGE2 hypersecretion and TJP dysregulation. Together, the data suggest that the antioxidant and anti-inflammatory effects of rooibos, rather than phytoestrogenicity, affect benefits illustrated for rooibos.

18.
Biomolecules ; 12(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139098

RESUMO

G protein-coupled trace amine-associated receptors (TAAR) recognize different classes of amine compounds, including trace amines or other exogenous and endogenous molecules. Yet, most members of the TAAR family (TAAR2-TAAR9) are considered olfactory receptors involved in sensing innate odors. In this study, TAAR6 mRNA expression was evaluated in the brain transcriptomic datasets available in the GEO, Allen Brain Atlas, and GTEx databases. Transcriptomic data analysis demonstrated ubiquitous weak TAAR6 mRNA expression in the brain, especially in the prefrontal cortex and nucleus accumbens. RNA sequencing of isolated cells from the nucleus accumbens showed that the expression of TAAR6 in some cell populations may be more pronounced than in whole-tissue samples. Curiously, in D1 and D2 dopamine receptor-expressing medium spiny GABAergic neurons of the nucleus accumbens, TAAR6 expression was co-regulated with genes involved in G protein-coupled receptor signaling. However, in cholinergic interneurons of the nucleus accumbens, TAAR6 expression was not associated with the activation of any specific biological process. Finally, TAAR6 expression in the mouse prefrontal cortex was validated experimentally by RT-PCR analysis. These data demonstrated that TAAR6 is expressed at low levels in the human and mouse brain, particularly in limbic structures involved in the pathogenesis of mental disorders, and thus might represent a new pharmacotherapeutic target.


Assuntos
Proteínas de Ciclo Celular , Transtornos Mentais , Receptores Acoplados a Proteínas G , Aminas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Colinérgicos/metabolismo , Análise de Dados , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma
19.
Brain Sci ; 12(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625001

RESUMO

It is known that the trace amine-associated receptor 1 (TAAR1) receptor is involved in limbic brain functions by regulating dopamine transmission and putative reward circuitry. Moreover, other TAARs are expressed in the olfactory system of all studied vertebrate species, sensing innate socially-relevant odors, including pheromones. Therefore, one can assume that TAARs may play a role in rodent social and sexual behavior. A comparative behavioral and biochemical analysis of TAAR1 knockout (TAAR1-KO) and wild-type mice is also important for the preliminary evaluation of the potential side effects of future TAAR1-based therapies. In our studies, we adapted a sexual incentive motivation test for mice to evaluate the sexual behavior of TAAR1-KO and wild-type mice. Previously, similar methods were primarily applied to rats. Furthermore, we measured testosterone and other biochemical parameters in the blood. As a result, we found only minimal alterations in all of the studied parameters. Thus, the lack of TAAR1 does not significantly affect sexual motivation and routine lipid and metabolic blood biochemical parameters, suggesting that future TAAR1-based therapies should have a favorable safety profile.

20.
Front Behav Neurosci ; 16: 847410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431833

RESUMO

Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity-particularly, decreased spectral power of the cortex and striatum in the 0, 9-20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...