Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(8): 1637-1645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38668928

RESUMO

PURPOSE: Thyroid cancer is one of the most common cancers worldwide, with ultrasound-guided biopsy being the method of choice for its early detection. The accuracy of diagnostics directly depends on the qualifications of the ultrasonographers, whose performance can be enhanced through training with phantoms. The aim of this study is to propose a reproducible methodology for designing a neck phantom for ultrasound training and research from widely available materials and to validate its applicability. METHODS: The phantom was made using polyvinyl chloride mixed with additives to reproduce different levels of brightness on ultrasound screens. 3D printing and casting were used to create the neck model and various structures of the neck, including bones, cartilage, arteries, veins, lymph nodes, thyroid gland, and soft tissues. The small objects, such as tumor and lymph node models, were shaped manually. All the phantom's materials were carefully selected to match the ultrasonic speed and attenuation values of real soft tissues and bones. RESULTS: The thyroid gland contains models of a cancerous and cystic nodule. In the neck, there are models of carotid arteries and jugular veins filled with ultrasound-transparent gel. Additionally, there are replicas of lymph nodes and bone structures such as hyoid bone, thyroid cartilage, trachea, and vertebrae. The resulting phantom covers the entire neck area and has been positively received by practicing ultrasound specialists. CONCLUSIONS: The proposed manufacturing technology offers a reliable and cost-effective approach to produce an anthropomorphic neck phantom for ultrasound diagnosis of the thyroid gland. The realistic simulation provided by the phantom enhances the quality and accuracy of ultrasound examinations, contributing to better training for medical professionals and improved patient care. Subsequent research efforts can concentrate on refining the fabrication process and exploring additional features to enhance the phantom's capabilities.


Assuntos
Pescoço , Imagens de Fantasmas , Neoplasias da Glândula Tireoide , Ultrassonografia , Humanos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos , Pescoço/diagnóstico por imagem , Impressão Tridimensional , Desenho de Equipamento , Glândula Tireoide/diagnóstico por imagem
2.
Int J Comput Assist Radiol Surg ; 19(1): 151-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37099215

RESUMO

PURPOSE: The WHO reported an increasing trend in the number of new cases of breast cancer, making it the most prevalent cancer in the world. This fact necessitates the availability of highly qualified ultrasonographers, which can be achieved by the widespread implementation of training phantoms. The goal of the present work is to develop and test an inexpensive, accessible, and reproducible technology for creating an anatomical breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. METHODS: We used FDM 3D printer and PLA plastic for printing an anatomical breast mold. We made a phantom using a mixture of polyvinyl chloride plastisol, graphite powder, and metallic glitter to simulate soft tissues and lesions. Various degrees of elasticity were imparted using plastisols of stiffness ranging from 3 to 17 on the Shore scale. The lesions were shaped by hand. The materials and methods used are easily accessible and reproducible. RESULTS: Using the proposed technology, we have developed and tested a basic, differential, and elastographic versions of the breast phantom. The three versions of the phantom are anatomical and intended for use in medical education: the basic version is for practicing primary hand-eye coordination skills; the differential one is for practicing the differential diagnosis skills; the elastographic version helps developing the skills needed for assessing the stiffness of tissues. CONCLUSION: The proposed technology allows the creation of breast phantoms for practicing hand-eye coordination and develop the critical skills for navigation and assessment of the shape, margins, and size of the lesion, as well as performing an ultrasound-guided biopsy. It is cost-effective, reproducible, and easily implementable, and could be instrumental in generating ultrasonographers with crucial skills for accurate diagnosis of breast cancer, especially in low-resource settings.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Humanos , Feminino , Cloreto de Polivinila , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Imagens de Fantasmas , Elasticidade
3.
Catheter Cardiovasc Interv ; 102(6): 1109-1113, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855199

RESUMO

Endomyocardial biopsy (EMB) of the right ventricular (RV) septal surface during cardiac catheterization is the standard method to assess cardiac allograft rejection, heart failure, or inflammatory cardiomyopathies. We developed methodology using a three-dimensional (3D) printed phantom to provide proof of concept for using biplane overlay technology for targeted EMB. A standard bioptome and steerable sheath were used to discern feasibility of biopsy for seven regions of the RV septum guided by 3D overlay. This novel biopsy phantom can help train operators in biopsy techniques, and biplane overlay technology has the potential to advance targeted EMB in transplant and cardiomyopathy populations.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Resultado do Tratamento , Cardiomiopatias/diagnóstico por imagem , Biópsia/métodos , Cateterismo Cardíaco , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Miocárdio/patologia
4.
Ultrasound Med Biol ; 48(8): 1468-1483, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534303

RESUMO

Anthropomorphic phantoms have been used to provide residents with training in ultrasound-guided breast biopsy. However, different individuals differ in terms of the acoustic properties and stiffness of their breast tissues. The individual differences should be reflected in the training breast phantoms. This study aimed to develop a breast tissue-mimicking phantom that offers realistic haptic feedback and ultrasound imaging during needle insertion. We investigated the tunability of the mechanical and acoustic properties of breast tissue-mimicking materials (TMMs) to emulate fat, glandular and tumor tissues. The Design of experiments (DOE) methods and physician's feedback were used to reveal the effect of component concentration on Young's modulus and acoustic properties of breast TMMs. Furthermore, the relative backscatter power of the TMM was studied to adjust the contrast between the simulated tumor and background glandular tissue. The results indicated that Young's moduli of TMMs could be altered by adjusting the concentrations of glycerol, agar and olive oil. Changing the concentration of silicon carbide in a TMM could enhance the contrast between the target and the background materials in an ultrasound image. Finally, a series of TMMs were suggested for fat, glandular, benign tumor and malignant tumor tissues. A breast phantom with a tunability appropriately reflecting the individual differences of breast tissues was developed.


Assuntos
Tecnologia Háptica , Biópsia por Agulha , Retroalimentação , Humanos , Imagens de Fantasmas , Ultrassonografia
5.
Indian J Nucl Med ; 36(2): 201-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385795

RESUMO

Positron emission tomography-computed tomography (PET-CT)-guided biopsy is being increasing practiced worldwide with indications in sampling of lung, abdominal, bone lesions, and among others. Training for PET-guided Interventions at select centers is carried out under supervision of an expert on real patients, similar to training for interventional radiology procedures. Simulation center training has been shown to be useful in improving efficiency of resident trainees. We report the development of concept, design, and practical application of a simplified humanoid training phantom for PET-guided interventions.

6.
Ultrasound Med Biol ; 47(3): 833-846, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358053

RESUMO

The quality of the trans-rectal ultrasound (TRUS) image, and thus seed placement during the prostate brachytherapy (PBT) procedure, relies on the user's technical and clinical competency. Simulation-based medical education can provide a structured approach for the acquisition of clinical competencies, but the efficacy of the training relies on the fidelity of the training simulators. In this work, the design, development and preliminary evaluation of an anthropomorphic training phantom for TRUS PBT is described. TRUS clinical patient data informed the design of 3-D printed moulds to fabricate prostate targets. Tissue-mimicking materials were included that had the sonographic characteristics of the prostate and overlying tissues, as well as the clinically relevant physical response, to provide haptic feedback to the user. Through an iterative design process, prototypes were constructed. These prototypes were quantitatively evaluated using a specification list and evaluated by an experienced clinical brachytherapy oncologist; their feedback was implemented, and the results of this evaluation are presented.


Assuntos
Braquiterapia/métodos , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Educação Médica , Humanos , Masculino , Ultrassonografia/métodos
7.
Int J Artif Organs ; 42(10): 558-565, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31170878

RESUMO

Multi-Detector Computed Tomography is nowadays the gold standard for the pre-operative imaging for several surgical interventions, thanks to its excellent morphological definition. As for vascular structures, only the blood flowing inside vessels can be highlighted, while vessels' wall remains mostly invisible. Image segmentation and three-dimensional-printing technology can be used to create physical replica of patient-specific anatomy, to be used for the training of novice surgeons in robotic surgery. To this aim, it is fundamental that the model correctly resembles the morphological properties of the structure of interest, especially concerning vessels on which crucial operations are performed during the intervention. To reach the goal, vessels' actual size must be restored, including information on their wall. Starting from the correlation between vessels' lumen diameter and their wall thickness, we developed a semi-automatic approach to compute the local vessels' wall, bringing the vascular structures as close as possible to their actual size. The optimized virtual models are suitable for manufacturing by means of three-dimensional-printing technology to build patient-specific phantoms for the surgical simulation of robotic abdominal interventions. The proposed approach can effectively lead to the generation of vascular models of optimized thickness wall. The feasibility of the approach is also tested on a selection of clinical cases in abdominal surgery, on which the robotic surgery is performed on the three-dimensional-printed replica before the actual intervention.


Assuntos
Vasos Sanguíneos , Modelos Anatômicos , Impressão Tridimensional , Procedimentos Cirúrgicos Robóticos/educação , Vasos Sanguíneos/diagnóstico por imagem , Humanos , Tomografia Computadorizada Multidetectores
8.
J Am Coll Radiol ; 16(2): 211-218, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30409561

RESUMO

PURPOSE: This study evaluated the training and assessment role of anthropomorphic breast ultrasound phantoms that simulated both the morphological and sonographic characteristics of breast tissue, including lesions, in a group of radiology residents at a large academic medical center. METHODS: This was a prospective study involving nine residents across second to fourth years of a radiology residency program. Two devices (phantom 1 and phantom 2) were designed and constructed to produce similar realistic sonographic images of breast morphology with a range of embedded pathologies to provide a realistic training experience. Baseline assessments of all residents' ability to detect and characterize lesions in phantom 1 were carried out, followed by a 2-hour teaching session on the same phantom. All residents underwent a posttraining, final assessment on phantom 2 to evaluate changes in their lesion detection rate and ability to correctly characterize the lesions. RESULTS: The results demonstrated there was a significant increase in both the pooled detection and correct characterization score for all residents pre- and posttraining of 26% ± 14% and 17% ± 8%, P < .0003, respectively. Posttraining assessment surveys revealed that residents rated the training experience highly. CONCLUSIONS: This study suggests that there is a benefit in including a simulation training workshop with a novel anthropomorphic breast ultrasound training device to a radiology resident education program. Finally, the phantoms used in this study are useful for training and assessment purposes because they provide a lifelike simulation of breast tissue to practice ultrasound imaging without direct exposure to patients, in an environment with no pressure.


Assuntos
Educação de Pós-Graduação em Medicina , Internato e Residência , Imagens de Fantasmas , Ultrassonografia Mamária , Competência Clínica , Currículo , Avaliação Educacional , Feminino , Humanos , Estudos Prospectivos , Treinamento por Simulação
9.
Mater Sci Eng C Mater Biol Appl ; 93: 1116-1131, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274042

RESUMO

Image-guided interventions are widely employed in clinical medicine, which brings significant revolution in healthcare in recent years. However, it is impossible for medical trainees to experience the image-guided interventions physically in patients due to the lack of certificated skills. Therefore, training phantoms, which are normally tissue mimicking materials, are widely used in medical research, training, and quality assurance. This review focuses on the tissue mimicking materials used in image-guided needle-based interventions. In this case, we need to investigate the microstructure characteristics and mechanical properties (for needle intervention), optical properties and acoustical properties (for imaging) of these training phantoms to compare with the related properties of human real tissues. The widely used base materials, additives and the corresponding concentrations of the training phantoms are summarized from the literatures in recent ten years. The microstructure characteristics, mechanical behavior, optical properties and acoustical properties of the tissue mimicking materials are investigated, accompanied with the common experimental methods, apparatus and theoretical algorithm. The influence of the concentrations of the base materials and additives on these characteristics are compared and classified. In this review, we assess a comprehensive overview of the existing techniques with the main accomplishments, and limitations as well as recommendations for tissue mimicking materials used in image-guided needle-based interventions.


Assuntos
Algoritmos , Biópsia por Agulha Fina/métodos , Biópsia Guiada por Imagem/métodos , Técnicas Fotoacústicas/métodos , Animais , Biópsia por Agulha Fina/instrumentação , Humanos , Biópsia Guiada por Imagem/instrumentação , Técnicas Fotoacústicas/instrumentação
10.
Ultrasound Med Biol ; 43(11): 2733-2740, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843619

RESUMO

A device for the training and quantitative assessment of the competency of trainee radiologists in the technically challenging area of breast sonography was developed and evaluated. Currently, suitable commercially available devices are lacking, and there is a growing realization that the reliance on direct exposure to patients for learning may not represent best practice from either the trainees' or patients' perspective. Three devices (PI, PII and PIII) were designed to produce very realistic sonographic images of breast morphology with a range of embedded pathologies. The pilot evaluation used a case study research design to evaluate the role of the anthropomorphic breast sonography training device in training and assessment in a clinical environment. Through the case study, it was possible to evaluate the process and relationships when using this type of training intervention for a small group of radiology resident trainees. The investigation involved a baseline assessment of trainees' (n = 4) ability to detect and characterize all lesions in PI, followed by a 4-wk training period on PII and a post-training assessment using PIII. The evaluation revealed an improvement of 30% ± 8% in the trainee's performance from pre- to post-training. It was expected that the performance of the trainees would improve as the training phantom described in this study aligns with the learning theory of constructivism and fits the ideal specifications of a medical training device in terms of its realism and facilitation of self-directed learning and deliberate practice of the trainees. The device provides a useful platform upon which training and assessment can be facilitated.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Competência Clínica/estatística & dados numéricos , Imagens de Fantasmas , Radiologia/educação , Ultrassonografia Mamária/métodos , Mama/diagnóstico por imagem , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA