RESUMO
Multiple sclerosis (MS) is a chronic and degenerative disease that impacts central nervous system (CNS) function. One of the major characteristics of the disease is the presence of regions lacking myelin and an oxidative and inflammatory environment. TGF-ß1 and Nrf2 proteins play a fundamental role in different oxidative/inflammatory processes linked to neurodegenerative diseases such as MS. The evidence from different experimental settings has demonstrated a TGF-ß1-Nrf2 signaling crosstalk under pathological conditions. However, this possibility has not been explored in experimental models of MS. Here, by using the cuprizone-induced demyelination model of MS, we report that the in vivo pharmacological blockage of the TGF-ß1 receptor reduced Nrf2, catalase, and TGFß-1 protein levels in the demyelination phase of cuprizone administration. In addition, ATP production, locomotor function and cognitive performance were diminished by the treatment. Altogether, our results provide evidence for a crosstalk between TGF-ß1 and Nrf2 signaling pathways under CNS demyelination, highlighting the importance of the antioxidant cellular response of neurodegenerative diseases such as MS.
RESUMO
Objective: To compare Transforming growth factor beta-1 (TGF-ß1) expression in patients with and without adenomyosis. Methods: A prospective design was performed including 49 patients submitted to hysterectomy. Immunohistochemistry was performed on anatomopathological samples staged in paraffin blocks from patients with and without adenomyosis. The sample contained 28 adenomyosis cases and 21 controls. Student's t-test and multivariate logistic regression tests were used for statistical analysis. Associations were considered significant at p < 0.05. Results: We found no significant association between adenomyosis and: smoking (p = 0.75), miscarriage (p = 0.29), number of previous pregnancies (p = 0.85), curettage (p = 0.81), pelvic pain (p = 0.72) and myoma (p = 0.15). However, we did find a relationship between adenomyosis and abnormal uterine bleeding (AUB) (p = 0.02) and previous cesarean section (p = 0.02). The mean TGF-ß1 intensity (mean ± SD) in the ectopic endometrium of women with adenomyosis showed no significant association (184.17 ± 9.4 vs.184.66 ± 16.08, p = 0.86) from the topic endometrium of women without adenomyosis. Conclusion: TGF-ß1 expression was not increased in the ectopic endometrium of women with adenomyosis.
Assuntos
Adenomiose , Fator de Crescimento Transformador beta1 , Humanos , Feminino , Adenomiose/metabolismo , Adenomiose/patologia , Fator de Crescimento Transformador beta1/metabolismo , Estudos Prospectivos , Adulto , Pessoa de Meia-Idade , Estudos de Casos e ControlesRESUMO
OBJECTIVE: The aim of this study was to evaluate the association of -924 G>A (rs2232365) and -3279 C>A (rs3761548) FOXP3 variants with IBD susceptibility, clinical and endoscopic activity, and IL-10 and TGF-ß1 plasma levels. METHOD: The study included 110 IBD female patients, 60 with Ulcerative Colitis (UC) and 50 with Crohn's Disease (CD), and 154 female controls. FOXP3 variants were determined with Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Plasma levels of IL-10 and TGF-ß1 were determined using immunofluorimetric assay. RESULTS: AA genotype of rs2232365 and rs3761548 was associated with CD (OR = 3.147, 95% CI 1.015-9.758, p = 0.047) and UC (OR = 3.221, 95% CI 1.050-9.876, p = 0.041) susceptibility, respectively. However, were not associated with TGF-ß1 and IL-10 levels, and endoscopic/clinical activity disease. GAGA haplotype was associated with IBD (OR = 4.003, 95% CI 1.100-14.56, p = 0.035) and UC susceptibility (OR = 6.107, 95% CI 1.609-23.18, p = 0.008). In addition, IBD patients with the GAGA haplotype had lower TGF-ß1 levels (p = 0.041). Moreover, G/C haplotype (dominant model) had a protective effect of 60% in CD susceptibility and lower Endoscopic Severity Index. CONCLUSIONS: These results suggest that FOXP3 variants could exert a role in the Treg, which could be one of the factors involved in the susceptibility and pathogenesis of IBD.
Assuntos
Colite Ulcerativa , Doença de Crohn , Fatores de Transcrição Forkhead/genética , Colite Ulcerativa/sangue , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Doença de Crohn/sangue , Doença de Crohn/genética , Doença de Crohn/imunologia , Feminino , Predisposição Genética para Doença , Humanos , Interleucina-10/sangue , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta1/sangueRESUMO
Introduction Combination of chronic inflammation and an altered tissue remodeling process are involved in the development of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP). Studies demonstrated that mesenchymal stem cells expressing the progenitor gene CD133 were involved in a significant reduction of the chronic inflammatory process in the polypoid tissue. Objective To evaluate the levels of CD133 (Prominin-1) in nasal polypoid tissue and its correlation with interleukin-8 (IL-8) and transforming growth factor ß1 (TGF-ß1). Methods A total of 74 subjects were divided in the following groups: control group ( n = 35); chronic rhinosinusitis with nasal polyps nonpresenting comorbid asthma and aspirin intolerance (CRSwNPnonAI) group ( n = 27); and chronic rhinosinusitis with nasal polyps presenting comorbid asthma and aspirin intolerance (CRSwNPAI) group ( n = 12). Histologic analysis and also evaluation of the concentration of CD133, IL-8, and TGF-ß1 by enzyme-linked immunosorbent assay (ELISA) kits were performed in nasal tissue obtained from nasal polypectomy or from middle turbinate tissue. Results Higher eosinophilic infiltration was found in both CRSwNP groups by histologic analysis. Lower levels of TGF-ß1 and IL-8 were observed in both CRSwNP groups when compared with the control group, whereas the CD133 levels were significantly reduced only in the CRSwNPnonAI group compared with the control group. Conclusion It was demonstrated that the nasal mucosa presenting polyposis showed a significant reduction of CD133 levels, and also that this reduction was significantly correlated with the reduction of TGF-ß1 levels, but not with IL-8 levels. Therefore, these findings may be involved in the altered inflammatory and remodeling processes observed in the nasal polyposis.
RESUMO
AIMS: Bisphenol (BP)-A exposure can impair glucose and lipid metabolism. However, it is unclear whether this endocrine disruptor (ED) modulates these processes in postmenopause, a period with organic changes that increase the risk for metabolic diseases. Herein, we evaluated the effects of BPA exposure on adiposity, glucose homeostasis and hepatic steatosis in ovariectomized (OVX) mice fed on a high-fat diet (HFD). MAIN METHODS: Adult Swiss female mice were OVX and submitted to a normolipidic diet or HFD and drinking water without [control (OVX CTL) and OVX HFD groups, respectively] or with 1 µg/mL BPA (OVX CBPA and OVX HBPA groups, respectively), for 3 months. KEY FINDINGS: OVX HFD females displayed increased adiposity, glucose intolerance, insulin resistance and moderate hepatic steatosis. This effect was associated with a high hepatic expression of genes involved in lipogenesis (Srebf1 and Scd1), ß-oxidation (Cpt1a) and endoplasmic reticulum (ER) stress (Hspa5 and Hyou1). BPA did not alter adiposity or glucose homeostasis disruptions induced by HFD. However, this ED triggered severe steatosis, exacerbating hepatic fat and collagen depositions in OVX HBPA, in association with a reduction in Mttp mRNA, and up-regulation of genes involved in ß-oxidation (Acox1 and Acadvl), mitochondrial uncoupling (Ucp2), ER stress (Hyou1 and Atf6) and chronic liver injury (Tgfb1and Casp8). Furthermore, BPA caused mild steatosis in OVX CBPA females, increasing the hepatic total lipids and mRNAs for Srebf1, Scd1, Hspa5, Hyou1 and Atf6. SIGNIFICANCE: BPA aggravated hepatic steatosis in OVX mice. Especially when combined with a HFD, BPA caused NAFLD progression, which was partly mediated by chronic ER stress and the TGF-ß1 pathway.
Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Fenóis/toxicidade , Adiposidade/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático , Feminino , Glucose/metabolismo , Resistência à Insulina , Lipogênese/efeitos dos fármacos , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , OvariectomiaRESUMO
BACKGROUND: Transforming growth factor ß1 (TGF-ß1) is the main profibrotic cytokine. Its urinary excretion reflects intrarenal production; thus, we conjectured that it is elevated during hemolytic uremic syndrome related to Shiga-toxin-producing Escherichia coli (STEC-HUS). In this pilot study, we explored the ability of baseline TGF-ß1 excretion (exposure variable) to predict renal prognosis at 6 months (outcome variable). In a secondary investigation, we compared changes in cytokine levels during the study period between patients with opposite renal outcomes. METHODS: Urinary TGF-ß1 concentrations were measured prospectively in 24 children with STEC-HUS on admission, and at 15, 30, 60, 90, and 180 days. Normal values were obtained from 20 healthy subjects. RESULTS: Baseline TGF-ß1 concentrations predicted renal outcomes with an area under the curve of 1 (95%CI 0.85-1; sensitivity 100%, specificity 100%) with the best cutoff level >293.7 pg/mg uCr. All patients with high TGF-ß1 levels developed persistent renal impairment, unlike none with low concentrations (4/4 vs. 20/0 respectively, P = 0.0001). The latter had higher cytokine levels (P < 0.05) at each time point without reaching normal concentrations (<45 pg/mg uCr). CONCLUSIONS: Baseline urinary TGF-ß1 levels accurately predicted short-term renal outcomes in STEC-HUS children, and cytokine excretion during the first 6 months after diagnosis was higher among those with worse evolution. Larger studies are needed to validate these findings.
Assuntos
Síndrome Hemolítico-Urêmica/microbiologia , Escherichia coli Shiga Toxigênica/patogenicidade , Fator de Crescimento Transformador beta1/urina , Adolescente , Biomarcadores/urina , Criança , Pré-Escolar , Feminino , Síndrome Hemolítico-Urêmica/diagnóstico , Síndrome Hemolítico-Urêmica/urina , Humanos , Lactente , Rim/patologia , Masculino , Projetos Piloto , Prognóstico , Estudos Prospectivos , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
OBJECTIVE: The aim of this study was to evaluate the association between rs3761548 FOXP3 (-3279 C > A) variant and multiple sclerosis (MS), disability, disability progression, as well as transforming growth factor (TGF)-ß1 and interleukin (IL)-10 plasma levels in MS patients. METHODS AND SUBJECTS: The study included 170 MS patients and 182 controls. Disability was evaluated using Expanded Disability Status Scale (EDSS) and categorized as mild (EDSS ≤ 3) and moderate/high (EDSS > 3). Disability progression was evaluated using Multiple Sclerosis Severity Score (MSSS). The rs3761548 variant was determined with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Plasma levels of TGF-ß1 and IL-10 were determined using immunofluorimetric assay. RESULTS: CA and AA genotypes were associated with MS [odds ratio (OR) 2.03, 95% confidence interval (CI) 1.66-3.53, p = 0.012; OR 8.19, 95% CI 3.04-22.07, p < 0.001, respectively). With the dominant model, the CA + AA genotypes were associated with MS (OR 2.57, 95% CI 1.50-4.37, p < 0.001). In the recessive model, the AA genotype was also associated with MS (OR 5.38, 95% CI 2.12-13.64, p < 0.001). After adjustment by age, ethnicity, BMI and smoking, all these results remained significant, as well as female patients carrying the CA + AA genotypes showed higher TGF-ß1 than those carrying the CC genotype (OR 1.35, 95% CI 1.001-1.054, p = 0.043). No association was observed between the genotypes and disability, disability progression and IL-10 levels. CONCLUSION: These results suggest that the A allele of FOXP3 -3279 C > A variant may exert a role in the T regulatory cell function, which could be one of the factors involved in the susceptibility for MS in females.
Assuntos
Fatores de Transcrição Forkhead/genética , Esclerose Múltipla/sangue , Esclerose Múltipla/genética , Fator de Crescimento Transformador beta1/sangue , Adulto , Brasil , Feminino , Variação Genética , Genótipo , Humanos , Interleucina-10/sangue , Masculino , Pessoa de Meia-Idade , Caracteres SexuaisRESUMO
Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self-renew and give rise to differentiated progeny. Previous studies have reported that MSC may be induced in vitro to develop into different types of specialized cells including male gametes. In vitro gamete derivation technology has potential applications as an alternative method for dissemination of elite animal genetics, production of transgenic animals and conservation of endangered species. This study aimed at investigating the in vitro effect of BMP4, TGFß1 and RA on the potential for germ cell (GC) differentiation of bovine foetal MSC (bfMSC) derived from bone marrow (BM). The effect of BMP4, TGFß1 and RA was analysed on the expression of pluripotent, GC and male GC markers on bfMSC during a 21-day culture period. bfMSC cultured under in vitro conditions expressed OCT4, NANOG and DAZL, but lacked expression of mRNA of VASA, STELLA, FRAGILIS, STRA8 and PIWIL2. Treatment with exogenous BMP4 and TGFß1 induced a transient increase (p < .05) in DAZL and NANOG mRNA levels, respectively. However, exposure to RA was more effective in increasing (p < .05) expression of DAZL and regulating expression of OCT4 and mRNA levels of NANOG. These data suggest that bfMSC may possess potential for early GC differentiation, where OCT4, NANOG and specially DAZL may play significant roles in controlling progression along the GC lineage.
Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Espermatozoides/citologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Bovinos , Técnicas de Cultura de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fator de Crescimento Transformador beta1/farmacologia , Tretinoína/farmacologiaRESUMO
Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor ß1 (TGF-ß1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-ß1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05µM HCB induced cell migration and TGF-ß1 signaling, whereas 5µM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5µM) enhanced α-smooth muscle actin expression and decreased TGF-ß receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5µM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-ß1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds.
Assuntos
Poluentes Ambientais/toxicidade , Hexaclorobenzeno/toxicidade , Hiperplasia/induzido quimicamente , Glândulas Mamárias Animais/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/genéticaRESUMO
Soft denture reline materials have been developed to help patients when their oral mucosa is damaged or affected due to ill-fitting dentures or post-implant surgery. Although reports have indicated that these materials leach monomers and other components that do affect their biocompatibility, there is little information on what cell molecules may be implicated in these material/tissue interactions. The biocompatibility of six soft liners (Ufi Gel P, Sofreliner S, Durabase Soft, Trusoft, Softone and Coe Comfort) was evaluated using a mouse fibroblast cell line, L929. Within 2 h of material disc preparation, each of the materials was exposed by direct contact to L929 cells for periods of 24 and 48 h. The effect of this interaction was assessed by alamarBlue assay (for cell survival). The expression of integrin α5ß1 and transforming growth factor ß1 was also assessed using plate assays such as enzyme-linked immunosorbent assay. Trusoft, Softone and Coe Comfort showed significantly reduced cell survival compared with the other soft lining materials at each incubation period. Furthermore, there were significant differences with these same materials in the expression of both integrin α5ß1 and transforming growth factor ß1. Soft liner materials may affect cell viability and cellular proteins that have important roles in wound healing and the preservation of cell viability and function in the presence of environmental challenges and stresses.