Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.966
Filtrar
1.
J Neurophysiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985935

RESUMO

Neuroplasticity is regulated by a balance of neurotrophic factors and inhibitory molecules that are permissive and restrictive to central nervous system (CNS) adaptation, respectively. Intermittent hypoxia (IH) and high intensity interval training (HIIT) are known to upregulate neurotrophic factors which are associated with improvements in learning and memory and greater functional recovery following CNS insults. We investigated whether the RhoA/ROCK signaling pathway (known to restrict neuroplasticity) is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH or IH combined with HIIT (30 minutes/day, five days/week, for six weeks). IH included ten three-minute bouts which alternated between hypoxia (15% O2) and normoxia. IH+HIIT synchronized the hypoxia protocol with treadmill training at speeds of 50 cm.s-1 during hypoxia, and 15 cm.s-1 during normoxia. In the hippocampus, IH and IH+HIIT significantly downregulated aggrecan and Nogo-receptor 2 mRNA which are involved in the inhibition of neuroplasticity. However, IH and IH+HIIT significantly upregulated genes including Lingo-1, Ncan, NgR3, and Sema4d in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity inhibiting pathways. These results provide a fundamental step towards elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity which will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39008617

RESUMO

Exercise training is considered a non-pharmacological therapeutic approach for many diseases. Mild-to-moderate endurance exercise training is suggested to improve the mental and physical state of people with Amyotrophic Lateral Sclerosis (ALS). The aim of the present study was to determine the capacity of symptomatic rNLS8 mice, which develop ALS-reminiscent TAR DNA-binding protein 43 (TDP-43) pathology and motor dysfunction, to perform mild-to-moderate intensity treadmill exercise training and to evaluate the effects of this training on skeletal muscle health and disease progression. Symptomatic rNLS8 mice were able to complete four weeks of mild-to-moderate treadmill running (30 min at 6-13 m/min, 3 days a week). Exercise training induced an increase in the percentage of type IIA fibers in the tibialis anterior muscle as well as minor adaptations in molecular markers of myogenic, mitochondrial and neuromuscular junction health in some forelimb and hindlimb muscles. However, this exercise training protocol did not attenuate the loss in motor function or delay disease progression. Alternative exercise regimes need to be investigated to better understand the role exercise training may play in alleviating symptoms of ALS.

3.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984994

RESUMO

While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.


Assuntos
Adaptação Fisiológica , Envelhecimento , Condicionamento Físico Animal , Ratos Endogâmicos F344 , Animais , Masculino , Feminino , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Ratos , Envelhecimento/fisiologia , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treino Aeróbico
4.
Sci Rep ; 14(1): 15996, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987609

RESUMO

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transportador de Glucose Tipo 4 , Hipotálamo , Fator de Crescimento Insulin-Like I , Insulina , Condicionamento Físico Animal , Ratos Wistar , Transdução de Sinais , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Insulina/metabolismo , Ratos , Hipotálamo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Administração Intranasal , Fragmentos de Peptídeos , Memória Espacial/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
5.
Front Mol Neurosci ; 17: 1345864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989156

RESUMO

Neuropathic pain is a type of chronic pain caused by an injury or somatosensory nervous system disease. Drugs and exercise could effectively relieve neuropathic pain, but no treatment can completely stop neuropathic pain. The integration of exercise into neuropathic pain management has attracted considerable interest in recent years, and treadmill training is the most used among exercise therapies. Neuropathic pain can be effectively treated if its mechanism is clarified. In recent years, the association between neuroinflammation and neuropathic pain has been explored. Neuroinflammation can trigger proinflammatory cytokines, activate microglia, inhibit descending pain modulatory systems, and promote the overexpression of brain-derived neurotrophic factor, which lead to the generation of neuropathic pain and hypersensitivity. Treadmill exercise can alleviate neuropathic pain mainly by regulating neuroinflammation, including inhibiting the activity of pro-inflammatory factors and over activation of microglia in the dorsal horn, regulating the expression of mu opioid receptor expression in the rostral ventromedial medulla and levels of γ-aminobutyric acid to activate the descending pain modulatory system and the overexpression of brain-derived neurotrophic factor. This article reviews and summarizes research on the effect of treadmill exercise on neuropathic pain and its role in the regulation of neuroinflammation to explore its benefits for neuropathic pain treatment.

6.
J Biomech ; 172: 112202, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38945010

RESUMO

Differences in running gait between treadmill and overground running has been subject of study, while consistency of group differences between running surfaces has not been previously analysed. This study examined both the differences between running surfaces and the consistency of sex-based differences between surfaces in some spatiotemporal and kinematic variables measured by an inertial measurement unit fastened over the lumbar spine. Thirty-two (sixteen females) endurance runners firstly performed overground and then treadmill (1 % inclination) runs at speeds between 9-21 km∙h-1. Males showed lower flight time (FT) [moderate effect size (ES)] during treadmill running compared to overground, while females showed greater stride frequency (SF) (moderate ES), lower stride length (SL) (moderate ES), FT (moderate ES), and vertical (VT) trunk displacement (moderate ES), as well as greater medio-lateral (ML) trunk displacement (moderate ES). No differences in CT between surfaces were found (trivial to small). Furthermore, all the sex-differences were consistent between treadmill and overground running: Males showed lower SF (large and moderate ES, respectively), greater SL (large and moderate ES) and CT (moderate and large ES), lower FT (large ES), greater VT displacement (moderate to large ES), and lower ML displacement (moderate ES) than females. These results may be of interest to carefully transfer the running gait analyses between surfaces depending on sex.

7.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945884

RESUMO

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Assuntos
Tecido Adiposo Marrom , Fator Neurotrófico Derivado do Encéfalo , Dieta Hiperlipídica , Glucosídeos Iridoides , Iridoides , Norepinefrina , Obesidade , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Proteína Desacopladora 1 , Animais , Masculino , Proteína Desacopladora 1/metabolismo , Glucosídeos Iridoides/farmacologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Iridoides/farmacologia , Norepinefrina/metabolismo , Canal de Cátion TRPA1/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Fármacos Antiobesidade/farmacologia , Caminhada , Aumento de Peso/efeitos dos fármacos , Condicionamento Físico Animal , Canais de Cátion TRPV
8.
Cureus ; 16(5): e61124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38919211

RESUMO

BACKGROUND:  Athletes' physical prowess plays a crucial role in their ability to succeed in any sporting endeavor. Each athlete on the field must have an exceptional aerobic capacity to withstand fierce competition and stringent regulatory guidelines. Maximal oxygen uptake (VO2 max) is a quantitative measure of aerobic capacity and is regarded as one of the most reliable indicators of cardiorespiratory and overall physical fitness of an individual by sports physiologists. The study aims to evaluate the VO2 max of athletes in comparison with nonathletes during treadmill and lower limb cycle ergometry exercises as assessed in the Sports Physiology Laboratory of a rural medical college. Treadmill exercise and bicycle ergometer exercise are the most common to perform as indoor aerobic exercises to assess one's physical fitness. Both these tests are equally useful in eliciting cardiac and vascular responses, so both these modalities were used to assess aerobic fitness. METHODS:  This cross-sectional study, which examined participants aged 17-25, included 30 athletes (cases) and 120 age- and sex-matched controls. The VO2 max was evaluated using the Metabolic Module of Lab Chart Software, which was investigated through the PowerLab data acquisition system, AD Instruments (Bella Vista, NSW, Australia). RESULTS:  The mean age of male athletes was 20.51 ± 2.69 years and of female athletes was 20.53 ± 1.62 years. The mean and standard deviation of VO2 max on the treadmill for male cases was 52.37 ± 8.78 mL/kg/min and for female cases was 40.96 ± 4.06 mL/kg/min, and on a cycle ergometer for male cases was 45.21 ± 9.43 mL/kg/min and for female cases was 34.32 ± 5.12 mL/kg/min. For the control group, the mean age of control males was 21.2 ± 2.62 years and of control females was 20.36 ± 1.5 years. The mean and standard deviation of VO2 max on the treadmill for control males was 33.35 ± 3.77 mL/kg/min and for control females was 25.09 ± 7.07 mL/kg/min, and on the cycle ergometer for control males was 34.17 ± 2.75 mL/kg/min and for control females was 24.15 ± 5.35 mL/kg/min. CONCLUSION: This study showed significantly (p < 0.001) higher VO2 max levels in athletes of both genders compared to their age- and sex-matched controls upon exercise on the treadmill and cycle ergometer. This study underscores the significance of better cardiorespiratory fitness in athletes than nonathletes, giving pertinent insights about their aerobic capacity, which is precisely measured and expressed in terms of VO2.

9.
Exp Brain Res ; 242(7): 1761-1772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822825

RESUMO

BACKGROUND: Multiple sclerosis is a neurodegenerative disease that damages the myelin sheath within the central nervous system. Axonal demyelination, particularly in the corpus callosum, impacts communication between the brain's hemispheres in persons with multiple sclerosis (PwMS). Changes in interhemispheric communication may impair gait coordination which is modulated by communication across the corpus callosum to excite and inhibit specific muscle groups. To further evaluate the functional role of interhemispheric communication in gait and mobility, this study assessed the ipsilateral silent period (iSP), an indirect marker of interhemispheric inhibition and how it relates to gait adaptation in PwMS. METHODS: Using transcranial magnetic stimulation (TMS), we assessed interhemispheric inhibition differences between the more affected and less affected hemisphere in the primary motor cortices in 29 PwMS. In addition, these same PwMS underwent a split-belt treadmill walking paradigm, with the faster paced belt moving under their more affected limb. Step length asymmetry (SLA) was the primary outcome measure used to assess gait adaptability during split-belt treadmill walking. We hypothesized that PwMS would exhibit differences in iSP inhibitory metrics between the more affected and less affected hemispheres and that increased interhemispheric inhibition would be associated with greater gait adaptability in PwMS. RESULTS: No statistically significant differences in interhemispheric inhibition or conduction time were found between the more affected and less affected hemisphere. Furthermore, SLA aftereffect was negatively correlated with both average percent depth of silent period (dSP%AVE) (r = -0.40, p = 0.07) and max percent depth of silent period (dSP%MAX) r = -0.40, p = 0.07), indicating that reduced interhemispheric inhibition was associated with greater gait adaptability in PwMS. CONCLUSION: The lack of differences between the more affected and less affected hemisphere indicates that PwMS have similar interhemispheric inhibitory capacity irrespective of the more affected hemisphere. Additionally, we identified a moderate correlation between reduced interhemispheric inhibition and greater gait adaptability. These findings may indicate that interhemispheric inhibition may in part influence responsiveness to motor adaptation paradigms and the need for further research evaluating the neural mechanisms underlying the relationship between interhemispheric inhibition and motor adaptability.


Assuntos
Adaptação Fisiológica , Córtex Motor , Esclerose Múltipla , Estimulação Magnética Transcraniana , Humanos , Feminino , Masculino , Adulto , Adaptação Fisiológica/fisiologia , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Córtex Motor/fisiopatologia , Inibição Neural/fisiologia , Marcha/fisiologia , Corpo Caloso/fisiopatologia , Corpo Caloso/fisiologia , Lateralidade Funcional/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Potencial Evocado Motor/fisiologia
10.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931563

RESUMO

The investigation of gait and its neuronal correlates under more ecologically valid conditions as well as real-time feedback visualization is becoming increasingly important in neuro-motor rehabilitation research. The Gait Real-time Analysis Interactive Lab (GRAIL) offers advanced opportunities for gait and gait-related research by creating more naturalistic yet controlled environments through immersive virtual reality. Investigating the neuronal aspects of gait requires parallel recording of brain activity, such as through mobile electroencephalography (EEG) and/or mobile functional near-infrared spectroscopy (fNIRS), which must be synchronized with the kinetic and /or kinematic data recorded while walking. This proof-of-concept study outlines the required setup by use of the lab streaming layer (LSL) ecosystem for real-time, simultaneous data collection of two independently operating multi-channel EEG and fNIRS measurement devices and gait kinetics. In this context, a customized approach using a photodiode to synchronize the systems is described. This study demonstrates the achievable temporal accuracy of synchronous data acquisition of neurophysiological and kinematic and kinetic data collection in the GRAIL. By using event-related cerebral hemodynamic activity and visually evoked potentials during a start-to-go task and a checkerboard test, we were able to confirm that our measurement system can replicate known physiological phenomena with latencies in the millisecond range and relate neurophysiological and kinetic data to each other with sufficient accuracy.


Assuntos
Eletroencefalografia , Análise da Marcha , Marcha , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Fenômenos Biomecânicos/fisiologia , Eletroencefalografia/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Marcha/fisiologia , Masculino , Análise da Marcha/métodos , Adulto , Feminino , Realidade Virtual , Caminhada/fisiologia , Encéfalo/fisiologia , Estudo de Prova de Conceito , Adulto Jovem
11.
Front Neurol ; 15: 1401256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882698

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. It is the second most common chronic progressive neurodegenerative disease. PD still lacks a known cure or prophylactic medication. Current treatments primarily address symptoms without halting the progression of PD, and the side effects of dopaminergic therapy become more apparent over time. In contrast, physical therapy, with its lower risk of side effects and potential cardiovascular benefits, may provide greater benefits to patients. The Anti-Gravity Treadmill is an emerging rehabilitation therapy device with high safety, which minimizes patients' fear and allows them to focus more on a normal, correct gait, and has a promising clinical application. Based on this premise, this study aims to summarize and analyze the relevant studies on the application of the anti-gravity treadmill in PD patients, providing a reference for PD rehabilitation practice and establishing a theoretical basis for future research in this area.

12.
Neuropsychiatr Dis Treat ; 20: 1247-1270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883414

RESUMO

Background: There is growing interest in the role of physical activity in patients with of Alzheimer's disease (AD), particularly regarding its impact of cognitive function, gut microbiota, metabolites, and neurotrophic factors. Objective: To investigate the impact of multisensory fusion training (MSFT) combined with 7, 8-dihydroxyflavone (DHF) on the behavioral characteristics, protein expression, microbiome, and serum metabolome using the AD model in mice induced with amyloid-ß (Aß). Methods: We assessed cognitive ability, anxiety-like and depression-like behaviors in Aß mice using behavioral measures. Western blotting was employed to detect the expression of relevant proteins. The 16S rRNA gene sequencing and metabolomics were used to analyze changes in the intestinal microbial composition and serum metabolic profile, respectively, of Aß mice. Results: The behavioral outcomes indicated that a 4-week intervention combining DHF and MSFT yielded remarkable improvements in cognitive function and reduced anxiety and depression-like behaviors in Aß mice. In the hippocampus of Aß mice, the combined intervention increased the levels of BDNF, VGF, PSD-95, Nrf2, p-GSK3ß and p-CREB proteins. Analyses of sequence and metabolomic data revealed that Bacteroides and Ruminococcaceae were remarkably more abundant following the combined intervention, influencing the expression of specific metabolites directly linked to the maintenance of neuronal and neurobehavioral functions. These metabolites play a crucial role in vital processes, such as amino acid metabolism, lipid metabolism, and neurotransmitter metabolism in mice. Conclusion: Our study highlighted that MSFT combined with DHF improves cognitive impairment, anxiety, and depression-like behavior in Aß mice through multiple mechanisms, and further validated the correlation between the gut microbiome and serum metabolome. These findings open up a promising avenue for future investigations into potential treatment strategies for AD.

13.
Front Physiol ; 15: 1372020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711952

RESUMO

Background: The use of elastomeric technology in sports garments is increasing in popularity; however, its specific impact on physiological and psychological variables is not fully understood. Thus, we aimed to analyze the physiological (muscle activation of the pectoralis major, triceps brachii, anterior deltoid, and rectus abdominis, capillary blood lactate, systolic and diastolic blood pressure, and heart rate) and psychological (global and respiratory rating of perceived exertion [RPE]) responses during an incremental treadmill test wearing a new sports garment for the upper body that incorporates elastomeric technology or a placebo garment. Methods: Eighteen physically active young adults participated in two randomized sessions, one wearing the elastomeric garment and the other wearing a placebo. Participants performed in both sessions the same treadmill incremental test (i.e., starting at 8 km/h, an increase of 2 km/h each stage, stage duration of 3 min, and inclination of 1%; the test ended after completing the 18 km/h Stage or participant volitional exhaustion). The dependent variables were assessed before, during, and/or after the test. Nonparametric tests evaluated differences. Results: The elastomeric garment led to a greater muscle activation (p < 0.05) in the pectoralis major at 16 km/h (+33.35%, p = 0.01, d = 0.47) and 18 km/h (+32.09%, p = 0.02, d = 0.55) and in the triceps brachii at 10 km/h (+20.28%, p = 0.01, d = 0.41) and 12 km/h (+34.95%, p = 0.04, d = 0.28). Additionally, lower lactate was observed at the end of the test (-7.81%, p = 0.01, d = 0.68) and after 5 min of recovery (-13.71%, p < 0.001, d = 1.00) with the elastomeric garment. Nonsignificant differences between the garments were encountered in the time to exhaustion, cardiovascular responses, or ratings of perceived exertion. Conclusion: These findings suggest that elastomeric garments enhance physiological responses (muscle activation and blood lactate) during an incremental treadmill test without impairing physical performance or effort perception.

14.
J Exerc Sci Fit ; 22(4): 316-321, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38765321

RESUMO

Background/objective: Post-COVID-19 subjects typically experience symptoms of fatigue, cognitive impairment, and sleep difficulty, which can be relieved by conventional aerobic exercise. Virtual Reality (VR) technology to support conventional exercise has recently gained much attention. Therefore, this study aimed to assess the effects of traditional treadmill exercise compared to virtual reality-simulated treadmill exercise on fatigue, cognitive function, sleep quality, and participant satisfaction with the exercise program in post-COVID-19 subjects. Methods: This single-centered, randomized, parallel-group intervention study was conducted between December 2021 and March 2022. Sixteen of twenty post-COVID-19 subjects completed this study (n1 = 8, n2 = 8). Inclusion criteria were persistent dyspnea/fatigue, mild cognitive problems, and age from 30-60 years. Exclusion criteria were previous severe COVID-19 infection and ICU admission, concomitant respiratory or cardiovascular disease, and musculoskeletal or neurological disease. Eligible subjects were assigned randomly to two groups: a non-VR group that received traditional treadmill aerobic exercise only and a VR group that received treadmill exercise with non-immersive VR. Both groups received moderate-intensity exercise on a treadmill at [50-60 % (peak HR-resting HR) + resting HR] for 30-45 min, three times per week, and for four weeks. The outcome measures were the Chalder Fatigue Scale, Montreal Cognitive Assessment (MoCA) questionnaire, Pittsburgh Sleep Quality Index (PSQI), and participant satisfaction with the exercise program rated on a 5-point Likert scale. Results: Both groups showed significant improvements in the Chalder Fatigue Scale, the MoCA questionnaire, and the PSQI scores after training compared to baseline (p < 0.05), without significant differences between them (p > 0.05). However, participant satisfaction with the exercise program was significantly higher in the VR group than in the non-VR group (p = 0.037). Conclusion: A moderate-intensity 4-week treadmill exercise program with and without non-immersive VR may improve fatigue, cognitive function, and sleep quality to the same extent in COVID-19 survivors. However, participant satisfaction with the exercise program could be greater after conventional treadmill training assisted by non-immersive VR than after conventional treadmill training alone in this cohort. Trial registration: Pan African Clinical Trials Registry, PACTR202311561948428, retrospectively registered.

15.
Life Sci ; 350: 122733, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763432

RESUMO

AIMS: Parkinson's disease (PD) is characterized by loss of dopamine neurons in the brain, which leads to motor dysfunction; excessive inflammation induces neuronal death. This study aimed to determine the most effective exercise modality to improve motor dysfunction in PD by comparing three different exercise regimens (low-intensity treadmill, high-intensity treadmill, and swimming). MATERIALS AND METHODS: The rat model for PD was established through stereotaxic surgery, inducing unilateral 6-OHDA (6-hydroxydopamine) lesions. The low-intensity treadmill regimen exerted better protective effects on neurological and motor functions in a rat model of unilateral 6-OHDA-induced PD compared to high-intensity treadmill and swimming. The most suitable exercise regimen and the optimal duration of daily exercise (15 or 30 min) on motor activity and oxidative stress parameters were evaluated. KEY FINDINGS: Comparison of 15 and 30 min low-intensity treadmill regimens (10 m/min) revealed 30 min daily exercise was the optimal duration and had more favorable impacts on neurological and motor function. Furthermore, we assessed the neuroprotective effects of exercising for 15 and 30 min per day for either four or ten weeks; 30 min of daily exercise for ten weeks improved mitochondrial function, the antioxidant defense system, neurotrophic factors, and muscle mass, and thereby provided protection against dopaminergic neuron loss, and motor dysfunction in rats with 6-OHDA-induced PD. SIGNIFICANCE: 30 min of daily low-intensity treadmill exercise over 10 weeks resulted in heightened mitochondrial function in both muscle and brain tissues, therefore, yielded a neuroprotective effect against the loss of dopaminergic neurons and motor dysfunction in PD rats.


Assuntos
Modelos Animais de Doenças , Mitocôndrias , Estresse Oxidativo , Oxidopamina , Doença de Parkinson , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Ratos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Masculino , Mitocôndrias/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Terapia por Exercício/métodos , Atividade Motora/fisiologia
16.
J Biomech ; 168: 112123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696984

RESUMO

Motorized treadmills have been extensively used in investigating reactive balance control and developing perturbation-based interventions for fall prevention. However, the relationship between perturbation intensity and its outcome has not been quantified. The primary purpose of this study was to quantitatively analyze how the treadmill belt's peak velocity affects the perturbation outcome and other metrics related to the reactive balance in young adults while the total belt displacement is controlled at 0.36 m. Thirty-one healthy young adults were randomly assigned into three groups with different peak belt speeds: low (0.9 m/s), medium (1.2 m/s), and high (1.8 m/s). Protected by a safety harness, participants were exposed to a forward support surface translation while standing at an unexpected timing on an ActiveStep treadmill. The primary (perturbation outcome: fall vs. recovery) and secondary (dynamic stability, hip descent, belt distance at liftoff, and recovery step latency) outcome measures were compared among groups. Results revealed that a higher perturbation intensity is correlated with a greater faller rate (p < 0.001). Compared to the low- and medium-intensity groups, the high-intensity group was less stable (p < 0.001) with a larger hip descent (p < 0.001) and a longer belt distance (p < 0.001) at the recovery step liftoff. The results suggest that the increased perturbation intensity raises the risk of falling with larger instability and poorer reactive performance after a support surface translation-induced perturbation in healthy young adults. The findings could furnish preliminary guidance for us to design and select the optimal perturbation intensity that can maximize the effects of perturbation-based training protocols.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Humanos , Equilíbrio Postural/fisiologia , Acidentes por Quedas/prevenção & controle , Masculino , Feminino , Adulto , Adulto Jovem , Posição Ortostática , Fenômenos Biomecânicos , Teste de Esforço/métodos
18.
Appl Ergon ; 119: 104293, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38703721

RESUMO

BACKGROUND: Load carriage imposes high physical stresses on the human body, increasing the risk of injuries. This study assessed the effectiveness of a passive military exoskeleton in off-loading the weight placed on the body during heavy load carriage under static standing and dynamic walking conditions. METHODS: Eight full-time regular personnel of the Singapore Armed Forces enrolled in the study. Static loading tests included nine trials of 10-s quiet standing while carrying different loads (0-55 kg) with and without the exoskeleton. For dynamic loading, participants walked on a treadmill on flat, inclined, and declined surfaces while carrying two different loads (25 kg, 35 kg) with and without the exoskeleton. In-shoe normal ground reaction forces (GRF) were recorded during quiet standing and treadmill walking. Differences in total force with and without the exoskeleton during static loading were compared using Wilcoxon one-sample signed ranked tests against zero (no weight off-load) as a reference. Statistical parametric mapping test was used to compare the walking in-shoe GRF-time series with and without exoskeleton use for each load and surface condition. RESULTS: Exoskeleton use was effective in off-loading loads of 2.3-13.5 kg during static quiet standing but the response varied substantially across loads and among the participants. Statistical analysis revealed no meaningful differences in the walking in-shoe GRF with and without exoskeleton use. The results were largely consistent across flat, inclined, and declined surfaces, and both 25-kg and 35-kg loads. CONCLUSIONS: The passive military exoskeleton was effective in off-loading some load from the human body during static quiet standing but not dynamic walking on flat and sloped surfaces. The varied response across loads and participants calls for better design and fitting of the military exoskeleton to individual users.


Assuntos
Estudos Cross-Over , Exoesqueleto Energizado , Militares , Caminhada , Suporte de Carga , Humanos , Suporte de Carga/fisiologia , Masculino , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Singapura , Posição Ortostática , Adulto Jovem
19.
J Med Vasc ; 49(2): 90-97, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38697715

RESUMO

AIM: The treadmill walking test with post-exercise pressure measurement can be used as a diagnostic test and could classify peripheral arterial disease of the lower limbs. It can also exclude the diagnosis allowing to raise the possibility of differential diagnoses. In this study, we assessed the feasibility of performing treadmill test by advanced practice nurse to assess suspected lower extremity peripheral artery disease patients. DESIGN AND METHOD: This is a longitudinal monocentric study to assess the feasibility of a treadmill walking test performed by an advanced practice nurse. The primary endpoint was the number of tests performed during this period. The secondary objectives were to evaluate the reasons for requesting the test, the main results obtained in terms of the test's contribution and diagnoses, and patients' clinical characteristics. RESULTS: From February to May 2023, amongst 31 patients who underwent the treadmill walking test, 4 tests were able to rule out peripheral arterial disease and to detect differential diagnoses. For the remaining 27 patients, 4 had stage IIa of the Leriche classification, 23 had stage IIb, 2 of which were associated with a narrow lumbar spine. In contrast to the usual report, the APN's report on the walking test included an identification of cardiovascular risk factors, as well as a possible medical reorientation linked to the correction of a detected cardiovascular risk factor. CONCLUSION: The treadmill walking test can be performed by an advanced practice nurse. He/She added a comprehensive/global patient management, with the detection of cardiovascular risk factors. This new profession led to an increase in the number of tests performed of more than 50% over the period and reduced the time to access the test.


Assuntos
Prática Avançada de Enfermagem , Estudos de Viabilidade , Doença Arterial Periférica , Valor Preditivo dos Testes , Teste de Caminhada , Humanos , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Longitudinais , Teste de Esforço , Caminhada
20.
Arch Med Sci ; 20(2): 618-631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757028

RESUMO

Introduction: Type 2 diabetes mellitus (DM) and Alzheimer's disease (AD) are two major medical conditions that constitute a significant financial burden on most healthcare systems. Due to AD sharing "insulin resistance" mechanistic features with DM, some scientists have proposed "type 3 DM" terminology for it. This study aims to compare the prophylactic effect of exercise and metformin on cognitive brain functions in rats with type 3 DM. Material and methods: Two groups of rats were included in the study: the control group (n = 15) and the streptozotocin-induced type 2 diabetic group (n = 45). The diabetic group was subdivided into three equal subgroups: a sedentary non-treated diabetic group, an exercised group, and a metformin-treated group. We estimated step-down avoidance task latency, serum glucose, insulin, free fatty acids (FFA), cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides (TG), brain Aß-42 and glucose, histological changes by toluidine blue, and immunohistochemistry for brain Aß-42 and tau-positive cells. Results: Serum glucose, FFA, TG, cholesterol, LDL, brain Aß-42, brain glucose, the number of hippocampal dark and degenerated cells, and brain Aß-42 and tau-positive cells, were all significantly lower. In contrast, serum insulin and HDL, the number of hippocampal granular cells, and latency of the step-down avoidance task were significantly higher in exercised and metformin-treated groups compared to the diabetic group. There were significantly higher values of serum insulin and brain/plasma glucose ratio and number of brain tau-positive cells in the metformin-treated group than in the exercised group. Conclusions: We can conclude that exercise can be as effective as metformin regarding prophylaxis against the deleterious effects of type 3 DM on cognitive brain functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...